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ABSTRACT

Here we present firestar, an expert system for
predicting ligand-binding residues in protein
structures. The server provides a method for
extrapolating from the large inventory of function-
ally important residues organized in the FireDB
database and adds information about the local
conservation of potential-binding residues. The
interface allows users to make queries by protein
sequence or structure. The user can access pair-
wise and multiple alignments with structures that
have relevant functionally important binding sites.
The results are presented in a series of easy to read
displays that allow users to compare binding
residue conservation across homologous proteins.
The binding site residues can also be viewed with
molecular visualization tools. One feature of firestar
is that it can be used to evaluate the biological
relevance of small molecule ligands present in PDB
structures. With the server it is easy to discern
whether small molecule binding is conserved in
homologous structures. We found this facility
particularly useful during the recent assessment
of CASP7 function prediction. Availability: http://
firedb.bioinfo.cnio.es/Php/FireStar.php.

INTRODUCTION

Genome sequencing projects have lead to a surge in the
number of protein sequences that lack experimental
functional data. At the same time the rise of structural
genomics initiatives has meant that the structural data-
bases are starting to fill up with unannotated structures.
Experimental approaches for function characterization
are expensive and difficult to automate and this has meant
that researchers have turned increasingly to computa-
tional methods to try to close the gap between the number
of new unannotated sequences and the number of
sequences with known function.

The standard way to overcome this deficit is the
homology-based transfer of functional annotation. The
transfer of general functional information [in the form of
GO terms (1), etc.] typically requires little more than a
BLAST (2) homology search, as long as the protein does
not have more than one domain and as long as the query
sequence meets a certain threshold of similarity to the
annotated protein template. The main constraint for this
classical approach is that transfer of function based solely
on the percentage of identity of two sequences is not
always 100% reliable (3). This constraint has meant that it
has been necessary to develop techniques that are capable
of assigning function in a more sophisticated manner.
In many cases the most interesting functional informa-

tion, such as catalytic residues and those residues bound
to ligands, is to be found at the residue level. Here
transference of function is considerably more laborious
since binding sites are disperse, and alignments must be
generated and checked by hand before the interesting
residues can be mapped onto the query sequence.
Homology-based transfer of functional information

at the residue level has been explored in numerous
works. The Catalytic Site Atlas (4) is built from
annotations extracted from literature and these annota-
tions are extended to the whole PDB trough PSI-BLAST
transference. The same authors used this to explore the
evolution of catalytic sites in homologous families (5).
Automated functional information transfer is also carried
out by databases such as Swissprot-Trembl (6). However,
while there are web servers that use homology to predict
functional features such as GO terms (7–9), and web
servers that predict probable binding sites based on clefts
or cavities (10) we do not know of an available server that
is capable of mapping functional residues onto a target
with the aim of highlighting potential functionally
important residues.
Here we present firestar, an expert system that merges

the time consuming tasks of alignment and mapping into
a single server with a simple input. It combines the
FireDB (11) database, a large inventory of structure-
based functionally important residues, and SQUARE
(12,13), a method for the assessment of the local reliability
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in sequence alignments, to predict likely residues of
functional importance in query sequences. This simple
tool also includes measures of reliability for the predic-
tions, a set of methods for the visualization of the results
on the corresponding sequences and structures and a
multiple alignment option for easy comparison.

METHODS

FireDB

The FireDB database is a databank containing a
comprehensive and detailed repository of known func-
tionally important residues. It integrates biologically
relevant data filtered from the close atomic contacts in
Protein Data Bank (14) crystal structures and reliably
annotated catalytic residues from the Catalytic Site Atlas.
Residues in close contact with ligands are defined as those
residues with atoms that are closer than 1.0Å plus the sum
of Van der Waals radius of the atoms involved.
Redundancy in the PDB was addressed when designing

the database. PDB sequences are clustered with cd-hit (15)
at 97% sequence identity and a consensus sequence is built
for each cluster. The consensus sequences form the basis
of FireDB and of firestar. All functional information is
associated to the consensus sequences—equivalent bind-
ing sites from proteins within the same cluster are
conveniently mapped onto the consensus sequence. The
functional residues used by firestar are derived from all the
proteins in each cluster, but associated to just a single
sequence. As of 8 January 2007, FireDB contained a total
of 16 843 clusters, of which 9021 had associated functional
information.

SQUARE

firestar evaluates the probability that a residue is involved
in ligand binding with a version of SQUARE, a method
that was developed to predict regions of reliably aligned
residues in pairwise sequence alignments. For SQUARE
to evaluate the reliability of an alignment one of the
two sequences in the alignment must be associated with a
PSI-BLAST-generated profile. In the case of firestar,
PSI-BLAST profiles are pre-generated for all the FireDB
consensus sequences. This allows SQUARE to evaluate all
the pairwise alignments in firestar—the sequence and
structural alignments generated as part of firestar are all
between the query sequence and the stored FireDB
consensus sequences.
SQUARE assigns conservation-based reliability scores

by extracting values for each aligned residue from the PSI-
BLAST profiles generated from the FireDB consensus
sequences. The alignment scores are smoothed with a
triangular five-residue window. From the SQUARE
reliability scores it is possible to discern which residues
are aligned reliably, and which of the binding and
functional residues are likely to have some level of
functional conservation. While SQUARE was developed
to evaluate the reliability of pairwise alignments, it has
been shown that the method is even more effective at
predicting the conservation of residues in binding
sites (13). A stand-alone version of SQUARE for

pairwise alignment reliability is available at http://
square.bioinfo.cnio.es.

firestar

Accepted input forms are sequences in fasta format, or
structures described by their PDB codes or coordinates in
PDB format. Target sequences are subjected to standard
PSI-BLAST searches. Profiles are generated with an
nrdb90 database from the EBI (16) and the final search
is made against the FireDB consensus sequence database.
Functional residues mapped onto the resulting alignments
and the reliability of each position in the alignment is
evaluated with SQUARE. The residue scores from
SQUARE represent the probability that a given target
residue is aligned to the evolutionary equivalent residue in
the consensus sequence. It has been shown that
evolutionary conserved binding site residues are almost
always involved in ligand binding in the target protein
(13).

If the user input is a structure (with PDB code or
uploaded structure) firestar can generate structural align-
ments between the query and the templates selected by
PSI-BLAST with the structural alignment program LGA
(17). In this case SQUARE evaluates the reliability of each
position in the structural alignment.

There are three output types generated by the server:

(1) In pairwise mode, every PSI-BLAST hit is shown
and each alignment comes with the SQUARE
residue-based alignment evaluation and mapping of
the functional residues (Figure 1b).

(2) In the multiple sequence mode, user selected PSI-
BLAST hits are aligned with MUSCLE (18). Here
the user can highlight functional residues dynami-
cally so that comparisons between homologues are
easier (Figure 1c).

(3) In the structural alignment mode the output is based
on the alignment from LGA. The output is similar to
the pairwise mode, but also allows molecular
visualization with a Jmol applet. The interface
makes it possible to select aligned functional residues
and display them in the Jmol window. This is
especially valuable to observe the displacement
of functional residues in homologous structures
(Figure 2).

firecat—user-defined pairwise alignment inputs

The evaluation of active site conservation by SQUARE is
sensitive to alignment quality, a poor alignment may mean
SQUARE does not tag a binding residue as conserved.
On occasions, automatic alignments may not be the most
appropriate, so user-defined pairwise alignment inputs
are also possible. Users may upload their own pairwise
alignment with the constraint that the template
they use must be in the FireDB database. FireDB is
updated regularly from the PDB database, so the
FireDB template database contains all the structures
present in the PDB at the time of the most recent FireDB
update. In this case firestar will produce an output in
pairwise mode.
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FUNCTIONALITY

The server interface is implemented in PHP running on
apache servers. All the sequence handling, parsing and
communicating with the MYSQL FireDB database is
done by domestic scripts implemented in perl. firestar is
integrated as part of the larger FireDB system and all
outputs are cross-linked with the residue, ligand and
protein information stored in FireDB. firestar is thus
continually updated with the growth of the PDB and the
Catalytic Site Atlas.

TESTING THE SERVER IN A PREDICTION
CONTEXT. THE CASP7 FUNCTION PREDICTION
EXPERIMENT

One complication with the functional data in the PDB
is that bound ligands may or may not be biologically

relevant. This problem was addressed in the FireDB
database; ligands classified as solvent by mmCif (19)
are ignored by FireDB and biological relevance can
be assessed by the co-occurrence of sites in homologous
proteins. Conserved sites in two or more homologues
imply an evolutionary pressure in residue conservation
and suggest biological relevance. firestar adds additional
capacity since it makes it easier to find several homologues
with same binding site conserved in aligned positions.
We developed the firestar server as one of the tools for

our evaluation of the function prediction section of the
7th edition of Critical Assessment in Structure Prediction
(CASP) (20). firestar was essential to determine context
and conservation in other structures and whether the
ligands bound to the target structures could be considered
as biologically relevant or not. Only the biologically
relevant ligand-binding sites formed part of the CASP
evaluation.

Figure 1. firestar sequence alignment outputs. (a) The PSI-BLAST alignment between the sequence of target T0312 and the best three
structures. Information about binding sites is displayed alongside the alignment reliability scores. Per residue reliability scores returned by
SQUARE are in blue and are based on residue similarity and conservation of neighbouring residues as described in Tress et al. (15). (b) MUSCLE
multiple sequence alignment between the query and the sequence of all three PDB templates. Functionally important residues can be displayed
dynamically.
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A PRACTICAL CASE

CASP Target T0312 is a hypothetical DNA-binding
protein from Archaeoglobus fulgidus. It has a homo-
trimeric form in the coordinates file (PDB: 2H6L) and the
three monomers bind both zinc and acetate in the same
cleft. Acetate is a common solvent and it is not supposed
to be relevant.
We ran firestar with the T0312 sequence, the pairwise

output returned by PSI-BLAST showed two hits
(Figure 1a). The first alignment in Figure 1a shows
2H6L itself and shows the zinc binding at Tyr 61 and at
three conserved histidines, the second alignment is with
template 2hx0 that was deposited in the PDB after the
CASP7 prediction deadline. The third alignment shows
the best template available to predictors, 1xv2 (21),
a distant template that was found by PSI-BLAST with a
high e-value and a poor alignment.
As it turns out 1xv2 also binds zinc, but only one of the

three binding histidines (His 104) is reliably conserved in

the PSI-BLAST alignment with the target sequence.
A second histidine (His 91) is conserved but less reliable,
while the third histidine and the tyrosine are not
conserved. In fact two of the histidines are misaligned in
the PSI-BLAST alignment, something that becomes clear
in the MUSCLE alignment (Figure 1b). The histidines
involved in binding in 1xv2 are also aligned in LGA
structural alignment (Figure 2b) and here it can be seen
that all the three histidines are also reliably aligned.
Moreover the Jmol window shows that the side-chain
orientations of the histidines are conserved (Figure 2c).
The target clearly contains a biologically relevant zinc-
binding site even though the other residues involved in
zinc binding (Tyr 61 from T0312 and Glu 45 from 1xv2)
were not conserved.

In addition it is clear that even though this target would
be regarded as ‘difficult’, the binding residues could have
been predicted by firestar before the structure was solved if
the server was provided with a good alignment. The LGA

Figure 2. firestar structural alignments and visualization. (a) Users can select the region of the structure that they wish to align. (b) The structural
alignment also shows information from functional residues and the reliability of the alignment according to SQUARE. (c) The Jmol visualization
window. Buttons (not shown) permit the visualization of the superpositions of each separate functional site in the two structures.
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structural alignment was available only because the
structure has recently been released, but it would have
been possible to use the firecat tool to build the correct
alignment and predict the binding residues from firestar
even without access to the structure.

FUTURE DIRECTIONS

Future releases of firestar will include improvements to the
server interface and the development of new features. We
plan to make a version available at the INB web services
(http://www.inab.org/en/resources.htm), and the central
web services in Canada as part of the services offered by
the NoE Embrace.

We plan to exploit the predictive abilities of firestar and
to make results available in the context of large annota-
tion efforts, in particular in the BIOSAPIENS and
GENEFUN projects. At the same time we are working
on a version of firestar that will validate the biological
relevance of all bound ligands found in PDB entries.

In addition to updating the server we are planning to
test firestar with functionally interesting residues such as
post-translational modifications, mutations or even resi-
dues linked to diseases in OMIM (22).

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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