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SUMMARY

Progression through G1/S phase of the cell cycle is coordinated by cyclin-dependent kinase 

(CDK) activities. Here, we find that the requirement for different CDK activities and cyclins in 

driving cancer cell cycles is highly heterogeneous. The differential gene requirements associate 

with tumor origin and genetic alterations. We define multiple mechanisms for G1/S progression 

in RB-proficient models, which are CDK4/6 independent and elicit resistance to FDA-approved 

inhibitors. Conversely, RB-deficient models are intrinsically CDK4/6 independent, but exhibit 

differential requirements for cyclin E. These dependencies for CDK and cyclins associate with 

gene expression programs that denote intrinsically different cell-cycle states. Mining therapeutic 
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sensitivities shows that there are reciprocal vulnerabilities associated with RB1 or CCND1 

expression versus CCNE1 or CDKN2A. Together, these findings illustrate the complex nature 

of cancer cell cycles and the relevance for precision therapeutic intervention.

Graphical abstract

In brief

Knudsen et al. find that there is extensive heterogeneity in the requirement for CDK and cyclins 

across cancer models. Multiple biochemically distinct mechanisms drive cell division. Divergent 

cell-cycle states harbor distinct genetic and pharmacological vulnerabilities, suggesting that cell-

cycle diversity could be exploited for a precision approach to cancer therapy.

INTRODUCTION

The cell cycle is driven by the action of cyclin-dependent kinases (CDKs) (Hartwell and 

Kastan, 1994; Malumbres and Barbacid, 2001; Nurse, 2012; Sherr, 1996). Conventionally, 

D-type cyclins (cyclins D1, D2, or D3) accumulate in response to physiological mitogenic 

signals or oncogenic signals that drive cellular proliferation (Diehl, 2002; Sherr, 1995). 

These cyclins preferentially interact with CDK4 or CDK6 to produce active complexes. The 

CDK4/6 catalytic activity is considered key for initiating progression through G1/S phases 

of the cell cycle, which is mediated by these kinases driving the phosphorylation of the 

retinoblastoma (RB) tumor suppressor and related proteins (p107 and p130) (Burkhart and 

Sage, 2008; Knudsen et al., 2019; Weinberg, 1995). The RB family of proteins function as 
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transcriptional corepressors and serve to inhibit proliferation by impeding the expression of 

genes required for cell-cycle progression that are under the control of the E2F family of 

transcription factors or FOXM1 (Nevins, 2001; Sadasivam and DeCaprio, 2013). Tumors 

that lack the RB tumor suppressor are CDK4/6 independent (Dean et al., 2010; Finn 

et al., 2009; Knudsen and Witkiewicz, 2016) and resistant to pharmacological CDK4/6 

inhibitors such as palbociclib (Bertucci et al., 2019; Finn et al., 2009; O’Leary et al., 

2018a). Consistent with this resistance, many RB-deficient tumors express high levels of 

the CDK4/6 inhibitor p16ink4a (Witkiewicz et al., 2011; Xiong et al., 1993). These data 

support the concept that RB represents the key substrate for CDK4/6 complexes in driving 

cell division.

In addition to CDK4/6, CDK2 plays an important role in coordinating cell-cycle progression 

(Coverley et al., 2002; Sherr, 2000). CDK2 through binding with cyclin E or cyclin A 

can promote cell-cycle progression in G1, S, or G2 phases of the cell cycle. While CDK2 

can ostensibly phosphorylate RB (Hinds et al., 1992), CDK4/6 is viewed as priming the 

phosphorylation of RB (Narasimha et al., 2014). The exact relationship of CDK4/6 and 

CDK2 in driving the hyperphosphorylation of RB remains unclear, and mono- and partially 

phosphorylated forms of RB further complicate what has been largely viewed as a binary 

switch for proliferation (Narasimha et al., 2014; Rubin et al., 2020; Sanidas et al., 2019). 

Against these findings, the specific requirement and/or sufficiency of CDK2 in driving the 

phosphorylation of RB and cell-cycle progression has remained unclear, with differential 

results that could be a reflection of cellular context (Tetsu and McCormick, 2003). RB 

activation can act to limit the activity of CDK2 by controlling the expression of cyclin E 

and cyclin A (DeGregori et al., 1995; Johnson and Schneider-Broussard, 1998; Knudsen et 

al., 1999; Leng et al., 1997). Thus, conventionally, the cell cycle is considered relatively 

linear, wherein CDK4/6, through the phosphorylation of RB and related proteins, controls 

the activity of CDK2 as summarized in multiple reviews (Goel et al., 2018; Knudsen et al., 

2019; Sherr, 1996; VanArsdale et al., 2015).

While there is substantial biochemical data that supports the linear model of cell-cycle 

progression, studies in mice and other systems have questioned the rigidity of these 

relationships (Barriere et al., 2007; Kozar et al., 2004; Malumbres and Barbacid, 2006; 

Malumbres et al., 2004). Mice or human cells can divide in the absence of CDK4/6 or 

CDK2 in certain instances (Malumbres et al., 2004; Tetsu and McCormick, 2003). These 

cell-cycle adaptations have also emerged as potential features of resistance to CDK4/6 

inhibitors that are used clinically (Herrera-Abreu et al., 2016; Kumarasamy et al., 2020). 

Notably, RB loss or cyclin E gain are associated with resistance to CDK4/6 inhibitors; 

different oncogenic permutations also seem to impinge on the cell cycle to limit sensitivity 

to the pharmaceutical agents (Li et al., 2018; O’Leary et al., 2018b; Turner et al., 2019; 

Wander et al., 2020). In spite of this plasticity, the majority of tumors are expected 

to use CDK4/6 and CDK2 to traverse the G1/S transition. Here, we sought to define 

the spectrum of CDK and cyclin dependencies broadly in cancer cell lines and patient-

derived models with complementary biochemical analyses. Together, these findings indicate 

multiple different cell-cycle states with specific genetic and pharmaceutical vulnerabilities 

and a high degree of heterogeneity within tumor types.
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RESULTS

Diversity of CDK/cyclin dependence in cancer cell lines

Targeting the cell cycle as a means to treat cancer is appealing since deregulated 

proliferation is achieved mechanistically through mitotic cell division (Asghar et al., 2015; 

Shapiro, 2006; Suski et al., 2021). The key drivers of the cell cycle are cyclins and CDKs. 

Conventionally, CDK4 or CDK6 in complex with D-type cycles initiate the phosphorylation 

of RB in G1 phase of the cell cycle, which is followed by the activation of downstream 

CDK/cyclin complexes that promote progression through the remainder of the cell cycle 

(Figure 1A). We used DepMAP data (McFarland et al., 2018; Tsherniak et al., 2017), in 

which individual genes were targeted by CRISPR-Cas9-mediated deletion to assess the 

functional requirements of CDK and cyclin genes across 717 cell lines. The CERES score 

is a corrected measure of essentiality, in which scores of −1 to −2 are generally associated 

with genes that are considered essential for proliferation. There was a subset of CDKs and 

cyclins that are involved in transcription (e.g., CDK7, CDK9) and other processes that have 

distinct vulnerabilities (Figure S1). However, cell-cycle regulators coalesce into two general 

behaviors (Figures 1B and S1). The genes CCNA2 and CDK1 are essentially universally 

required, which is consistent with general expectations, but distinct from the compensation 

that has been observed in select models (Diril et al., 2012; Gopinathan et al., 2014; 

Kalaszczynska et al., 2009) (Figure 1B). In contrast, for other cell-cycle genes, there was a 

diversity of responses to their deletion, in particular, genes that regulate the G1/S transition 

(CDK4, CDK6, CCND1, CDK2, and CCNE1) yield particularly variant vulnerabilities 

(Figures 1B and S1). There were also a number of CDK genes that are not associated with 

significant vulnerability; for example, CDK3 and CDK5 (Figure S1). We focused the further 

analyses on the CDK and cyclins that promote G1/S progression, maintaining CDK1 and 

CCNA2 as controls for the efficacy of gene targeting. The diversities of sensitivity were 

borne out in different tumor cell types (Figures 1C and S2). Clustering cell lines based 

on vulnerabilities defined 6 distinct groups of cells that could be broadly categorized by 

sensitivity to loss of a particular CDK or Cyclin, with the invariant dependence on CDK1 

and CCNA2 (Figure 1D). These data were associated with certain genetic configurations 

of the cell lines (Figure 1D); for example, most of the RB1-deficient tumor lines are in 

clusters 3 and 4, with CDKN2A loss excluded. Similarly, most of the CCNE1 amplifications 

occurred in cluster 3 (Figure 1E). To investigate potential genetic drivers, the enrichment 

of specific oncogenic events was compared across the clusters (Figure S3). These data 

illustrate that across the clusters, there were few oncogenic events that were selective, with 

the exception of enrichment for TP53 mutations in cluster 4, fewer epidermal growth factor 

receptor (EGFR) mutations in cluster 1, and few MYC amplifications in cluster 5.

Tumor-type selective dependence on CDKs/cyclins

Statistical analyses of the clusters revealed that they harbored distinct dependencies on 

select CDK or cyclin genes. Four clusters were dependent on CDK4, CDK6, or CCND1 

(clusters 1, 2, 5, and 6) (Figure 2A). One cluster was more dependent on CCNE1 

(cluster 3), and one cluster was minimally dependent on these G1/S CDKs and cyclins 

(cluster 4). Importantly, the dependence on CDK1 and CCNA2 was observed across all 

clusters, indicating that the disparity in sensitivity is not due to a technical limitation of 
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gene targeting (Figure 2A). Statistical analyses and clustering confirmed the relationships 

between CDK4, CDK6, CCND1, and CCNE1 (Figure 2B). Interrogating the relationship of 

these clusters with specific disease types illustrated that there were significant enrichments 

that are likely relevant for targeting specific cancers with select classes of CDK inhibitors. 

For example, breast cancer cell lines were enriched within cluster 2 (Figure 2C). In 

contrast, ovarian and endometrial cancers were enriched in cluster 3 (Figure 2C). Cluster 

4 harbored all of the cervical cancer cell lines, suggesting that such human papillomavirus 

(HPV)-driven tumors may be largely refractory to the inhibition of a single G1/S CDK 

(Figure 2C). It should be noted that while there is enrichment for dependency, in most tumor 

types there is heterogeneity, in which there are cell lines that fall into multiple clusters. 

These enrichments mapped to individual gene dependencies (Figures 2D–2F and S4). For 

example, neuroblastoma and melanoma are highly dependent on CCND1, breast cancer, and 

melanoma on CDK4 and leukemia and myeloma on CDK6 (Figure 2D). A number of other 

differential and enrichments were observed; for example, a dependence of brain cancer on 

CCND3 and CDK2 and (Figure S4). The main differentiating factor between clusters 1 and 

5 was the relative requirement for CCND1. This is likely due to vulnerability in cluster 

5 for CCND2 and CCND3 depletion in hematological malignancies (Figure 2E). Lastly, 

gynecological malignancies were enriched for dependency on CCNE1 and CDK2, which is 

consistent with the high level of CCNE1 amplification that is found in such tumor types 

(Figure 2F).

Differential CDK/cyclin complexes delineate vulnerability profiles

To interrogate the relevance of these clusters with sensitivity to CDK4/6 inhibitors that are 

applied clinically, we used the published half-maximal inhibitory concentration (IC50) data 

of palbociclib and abemaciclib for breast cancer (O’Brien et al., 2018) and ovarian cancer 

cell lines (Konecny et al., 2011). In both classes of cell lines, there was an enrichment 

for cluster 2 (dependent on CDK4 and CCND1) for sensitivity, while clusters 3 and 4 

were associated with resistance (Figure 3A). Clusters 5 and 6 exhibited intermediate IC50s 

(Figure 3A). To mechanistically explore the gene dependencies and the relationship to 

pharmaceutical intervention, we used a panel of breast cancer cell lines that encompasses 

multiple clusters and harbors distinct genetic features (Figure 3B). Initially, we used 

palbociclib with live cell imaging that confirmed the data with published IC50 data. MCF7 

are sensitive to palbociclib, while HCC1806, MB157, MB436, and MB468 are resistant 

(Figure S5). To determine how RB-proficient tumor models escape CDK4/6 inhibition, we 

used MB157 and HCC1806 cell lines. MB157 is in cluster 3, which harbors a vulnerability 

to the loss of CCNE1. Depleting CCNE1 using RNAi resulted in the robust inhibition of 

cell proliferation (Figure 3C). Biochemically, the loss of cyclin E was associated with the 

dephosphorylation of RB and subsequent reduction in cyclin A expression as a downstream 

target gene (Figure 3C). CCNE1 amplification in MB157 uncouples CDK4/6 from cell-

cycle progression as indicated by persistent RB phosphorylation and cyclin A expression 

following the depletion of these kinases (Figure S5). Consistent with the biochemical 

data, the cells continued proliferating following the knockdowns of CDK4 and CDK6, as 

indicated by live cell imaging and bromodeoxyuridine (BrdU) incorporation (Figures 3D 

and S5). The other RB-proficient breast cancer cell line, HCC1806, also harbors CCNE1 

amplification and is resistant to palbociclib (Figure S5). However, our analysis indicates that 
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they fall under a different cluster (cluster 6), in which the cell cycle is dependent on cyclin 

D1. Consistent with this, CCND1 knockdown in HCC1806 cells blocked cell proliferation, 

without modulating the effect of palbociclib (Figure 3E). To delineate the functional role 

of cyclin D1 on the cell-cycle machinery of HCC1806 cells, we interrogated its interaction 

with multiple CDKs by co-immunoprecipitation. In the actively proliferating HCC1806 cell 

line, cyclin D1 does not form an apparent complex with CDKs, including CDK4, CDK6, 

CDK2, and CDK1, while only an interaction with p27KIP1 was observed (Figures 3F and 

S5). MCF7 cells were included as a comparator that harbors conventional cyclin D1/CDK4 

and cyclin D1/p27KIP1 complexes (likely as a trimer) (Figure 3F). The lack of apparent 

cyclin D1/CDK complexes in HCC1806 cells was further interrogated by in vitro kinase 

reactions, in which no cyclin D1-associated kinase activity was detected based on the 

phosphorylation status of an exogenous RB substrate (Figure 3G). Additional data illustrated 

that the proliferation of HCC1806 cells does not require an active CDK4, which makes 

them discrete from MCF7 cells, in which the presence of this kinase is critical (Figure S5). 

These analyses suggest a non-canonical function of cyclin D1 to drive the proliferation of 

HCC1806 cells in the absence of a clearly definable catalytic complex. Knockdown of cyclin 

D1 in HCC1806 cells resulted in the accumulation of p27KIP1 protein, which interacts with 

CDK2 and cyclin E1 and limits the CDK2 kinase activity, which could contribute to the 

growth arrest (Figures 3H and 3I). Depletion of p27KIP1 is sufficient to partially rescue 

the cell-cycle arrest induced by cyclin D1 knockdown, supporting the supposition that the 

principal requirement of cyclin D1 in this cell line is to titrate p27KIP1 (Figure S5). These 

data define several distinct RB-positive cell cycles as summarized in Figure 3J.

Although HCC1806 cells harbors high cyclin E1 levels, they are not vulnerable to the loss 

of CCNE1, which makes this model distinct from MB157. Co-immunoprecipitation revealed 

that the depletion of cyclin E1 results in the formation of cyclin D1/CDK4 complex, which 

could impart resistance to CCNE1 depletion (Figure S5). Consistent with this observation, 

concurrent knockdowns of CDK4 and cyclin E1 resulted in a growth arrest, indicating the 

compensatory role of CDK4 (Figure S5). Moreover, CCNE1 depletion in HCC1806 cells 

renders this model to be sensitive to palbociclib (Figure S4). Thus, there are specific tumor 

models in which CCNE1 amplification yields distinct phenotypic effects.

It is widely believed that RB loss represents a singular form of cell-cycle deregulation. As 

expected, the RB-deficient models MB436 and MB468 were resistant to the depletion of 

CCND1, CDK4, and CDK6 (Figures 4A and S6). In addition, as with HCC1806, cyclin 

D1 did not bind to CDK4, but in the RB-deficient models, cyclin D1 also did not bind to 

p27KIP1. Presumably, this was due to the high expression of p16INK4A in these RB-deficient 

models (Figure 4B). These data suggest that other CDK-cyclins are driving the cell cycle of 

RB-deficient models. The RB-deficient cell models are present in clusters 3 or 4, which are 

differentiated based on the sensitivity to CCNE1 depletion. The MB436 model is cyclin E 

dependent, while MB468 is cyclin E independent (Figure 4C). A feature of cluster 4 is the 

presence of cervical cancer cell lines that harbor HPV-E7, which is known to inactivate the 

RB and the related proteins p107 and p130 (Goodwin and DiMaio, 2000; Ludlow and Skuse, 

1995). Therefore, we interrogated potential differences in cell-cycle circuits involving p130. 

These data revealed that in MB436, p130 phosphorylation is cyclin E dependent, while in 

MB468 cells, p130 phosphorylation is independent of cyclin E (Figure 4D). The functional 
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role for p130 was determined by knockdown and subsequent impact on downstream targets 

cyclin A, cyclin B1, and CDK1 (Figure 4E). Consistent with these findings, CDK2 activity 

as determined with a sensor and conventional in vitro kinase assay, is CCNE1 dependent in 

MB436 cells but CCNE1 independent in MB468 (Figures 4F and S6). Together, these data 

suggest that in specific settings, the loss of RB obviates a requirement for both CDK4/6 

and cyclin E in driving the cell cycle. Interestingly, this epistatic relationship could also 

be observed in MB157 cells, where the specific deletion of RB1 altered the subsequent 

requirement for CCNE1 and CDK2 in cell division (Figures 4G and 4H). In this setting, 

p130 is still largely dephosphorylated, but apparently not sufficient in the absence of RB to 

fully suppress proliferation (Figure 4I). While resistant to CCNE1 depletion, MB468 cells 

are sensitive to CCNA2 depletion or treatment with PF-06873600 (a CDK4/6/2/1 inhibitor) 

(Figure S6). Thus, MB468 are CDK dependent, albeit with little apparent requirement for 

conventional G1/S regulatory mechanisms.

Gene expression features associated with CDK/cyclin vulnerability

To identify putative gene expression associated with sensitivity to CDK or cyclin depletion, 

we used RNA sequencing data for the cell lines (Figures 5, S7, and S8). Due to the clinical 

relevance of CDK4/6 inhibitors, we focused on the comparison of CDK4- or −6-sensitive 

solid tumor models (clusters 1 and 2) versus those that were resistant (clusters 3 and 4). 

There were a large number of differentially expressed genes between the clusters. Gene 

set enrichment analysis (GSEA) illustrated that the clusters were highly associated with 

‘‘hallmark’’ features, including RAS pathway and the epithelial-to-mesenchymal transition 

(Figures 5A and S7). In addition to these features, a particularly dominant gene expression 

feature shown in the volcano plot was the expression of the CDK or cyclin that is 

associated with the vulnerability (Figures 5B–5E and S8). For example, the predominant 

gene expression differences between cluster 1 and 2 compared with 3 were CCNE1 and 

CCND1 (Figures 5B and 5D). In addition, CDKN2A (the endogenous CDK4/6 inhibitor) 

and RB1 emerged as the top genes associated with the differences between clusters 1 and 

2 compared with 3 and 4 (Figures 5B–5E). These data support the concept that while there 

are substantial biological differences that could be driving dependencies, the intersection of 

cyclin gene expression with RB1 and CDKN2A is relevant to the resultant vulnerabilities.

To define the predictive gene expression markers for a given genetic vulnerability, we used 

logistic regression analyses of the top 10 differentially expressed genes between clusters 

(Figures 5F–5G and S9). A stepwise algorithm was used to filter irrelevant genes that do not 

contribute to prediction. This approach gave rise to specific weighted classifiers associated 

with dependency for cyclin D1 or cyclin E. These classifiers were used with the breast 

cancer and ovarian cancer IC50 data to predict sensitivity and resistance, respectively, to 

palbociclib (Figures 5E, 5F, S9, and S10).

Discordant cell-cycle states

Together, the data above suggest that there are distinct cell-cycle states that can be largely 

predicted by gene expression differences. Conventionally, cyclin D1 would be expected to 

contribute to cyclin E expression by initiating the phosphorylation of RB and derepression 

of E2F (Goel et al., 2018; Knudsen et al., 2019; Sherr, 1996; VanArsdale et al., 2015). This 
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trend was observed in colon and pancreatic cancer cell lines (Figures 6A and S11) However, 

in many tumor types, cyclin D1 and cyclin E expressions were inversely correlated (Figures 

6B and S11). This finding was similar to the inverse relationship of CDKN2A and RB1 

expression cell lines (Figures 6B and S11). These findings suggest the possibility of two 

relatively large and distinct tumor populations—those driven by cyclin D1 with RB intact 

and those driven by cyclin E and/or with RB compromised. These inverse relationships are 

apparent in The Cancer Genome Atlas (TCGA) data as well as the cell lines (Figures 6C 

and S11). Analysis of gene expression quantiles using clusters not confounded by CCND2 

or CCND3 (clusters 1, 2, 3, 4, and 6) illustrated that very few cells were consistently high or 

low for each gene, as summarized in the Sankey plot (Figure 6D).

As a complementary strategy, we optimized multispectral immunofluorescence for staining 

triple negative breast cancer (TNBC) tumor tissues (Adams et al., 2018). This panel includes 

antibodies against cyclin D1, cyclin E, and phospho-RB (Ser 807/811) (Figures 6E and S12). 

In the analyses of 149 TNBC cases, we found a distribution of discrete cell-cycle states 

as shown by the clustering of the protein levels (Figure S12). Dual positive cyclin D1 and 

cyclin E high tumors were relatively rare, compared to tumors dominated by a single cyclin. 

Together, these data reinforce the concept of fundamentally different cell-cycle states that in 

principle could harbor distinct collateral vulnerabilities.

Collateral therapeutic vulnerabilities associated with cell-cycle states

In investigating genetic vulnerabilities that were associated with high or low gene 

expression, we found that CCNE1, CCND1, RB1, and CDKN2A revealed reciprocal 

relationships (Figures 6F, S13, and S14). For example, genes whose deletion represented a 

specific vulnerability in cyclin D1 high tumor cells were generally associated with resistance 

in cyclin E high tumor cells. This relationship is summarized in the Sankey blots for both 

CCND1/CCNE1 and RB1/CDKN2A (Figures 6G and S15). Mining the pathways associated 

with vulnerabilities revealed both expected and unexpected dependencies. For example, 

CCNE1 high cell lines harbored vulnerability to CDK2, SKP2, and CKS1B, as may be 

expected as effectors of CCNE1 function (Figure 6H). Given the noted role of CCNE1 in 

driving replication stress (Bartkova et al., 2006; Jones et al., 2013), there were selective 

sensitivities to multiple genes involved in DNA replication (e.g., CDT1, CDC45). However, 

the CCNE1 high cell lines were unexpectedly selectively sensitive to multiple polycomb 

repressor complex (PRC) subunits EED, EZH2, E2F3, and EP300, as illustrated in network 

analysis. Similar reciprocal vulnerabilities were observed between RB and CDKN2A high 

expressing cell lines (Figure S15).

To understand the broader therapeutic implications of these findings, drug sensitivity data 

from the Cancer Cell Line Encyclopedia associated with the cell lines was stratified by gene 

expression for CCND1, CCNE1, RB1, and CDKN2A. This approach yielded a relatively 

small set of consistent drug vulnerabilities as summarized in the heatmaps (Figure 7A). As 

expected, CDK4/6 inhibitor sensitivity was associated with the high expression of CCND1 

and RB1, while resistance was associated with the high expression of CDKN2A and CCNE1 

(Figures 7B and 7C). CCNE1 and CDKN2A high tumor cell lines were largely resistant to 

MEK inhibitors present in the dataset (Figures 7B and 7C). In contrast, such tumor cells 
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were selectively sensitive to the WEE1 inhibitor MK1775 and the survivin inhibitor YM155 

(Figures 7B and 7C). When we evaluated these data, it appeared that there were distinctions 

between CDKN2A high and CCNE1 high tumors. Notably, CDKN2A high/RB low tumor 

cells exhibit sensitivity to microtubule poisons, Polo-like kinase 1 (PLK1) inhibitors, aurora 

kinase (AURK) inhibitors, and B cell leukemia/lymphoma 2 (BCL2) inhibitors, relative 

to CCNE1 high tumors (Figures S16 and S17). Conversely CDKN2A high tumors are 

particularly resistant to MDM2/4 inhibitors compared with CCNE1, RB, or CCND1 high 

cell lines (Figure S16). This is likely due to the high mutation of p53 in the CDKN2A 

high/RB low cell lines (Figure S17). Independent analysis based on RB mutations using the 

data from the Genomics of Drug Sensitivity further validated the vulnerabilities associated 

with RB loss (Figure S17).

To explore in vivo responses, we investigated how the expression of cell-cycle genes 

correlated with response to treatment in the patient-derived xenograft (PDX) cohorts 

from Gao et al. (2015) (Figures 7D and S18). This cohort was largely treated with 

cytostatic agents. The upper quartiles of CCND1, RB1 compared with CCNE1, and 

CDKN2A largely recapitulated the behaviors observed in cell culture (Figures 7D and 

S15). These relationships were also observed with CDK4/6 combinations with MEK and 

mammalian target of rapamycin (mTOR) inhibitors (Figure 7D), suggesting that cell-cycle 

gene expression programs harbor dominant relationships over not only single agents but 

also combination therapies. To further interrogate these findings, we used a panel of 

TNBC PDX models (Figures 7E and 7F) (DeRose et al., 2011). The RB-proficient model 

HCI-009 is responsive to the combination CDK4/6 + mTOR inhibition (Figure 7F). In 

contrast, all of the RB-deficient models (HCI-010, HCI-012, and HCI-015) were resistant 

to this combination (Figure 7F). In total, these in vivo studies reinforce the role of RB 

in coordinating cytostatic responses to single-agent and select combination therapies. To 

interrogate sensitivities in tumor models that would be resistant to MEK and CDK4/6 

inhibitors, we used isogenic models, in which RB was deleted in breast cancer cell lines. 

In the MCF7 cell line, the RB-deleted cells were more sensitive to YM155 and alisertib 

and the combination (Figure 7G). In the MB231 model, RB-deletion facilitated sensitivity 

to alisertib (Figure 7G). However, the RB-deleted cells were not more sensitive to YM155 

and MK177, but such agents were cooperative with alisertib in the RB-deleted models 

(Figure 7G). Similar findings were observed using other combinations that target survival 

(navitoclax) and cell-cycle regulatory processes (Figure S18). Together, these data suggest 

that targeted combination approaches can be used against specific cell-cycle states that are 

resistant to agents that have a cytostatic mechanism of action.

DISCUSSION

The cell cycle is a well-studied process, with significant data supporting both canonical 

CDK4/6-RB-CDK2 coupling (Goel et al., 2018; Knudsen et al., 2019; Sherr, 1996; 

VanArsdale et al., 2015) and adaptations through which this pathway can be distorted 

(Alvarez-Fernandez and Malumbres, 2020; Herrera-Abreu et al., 2016; Knudsen and 

Witkiewicz, 2017; Kumarasamy et al., 2020). Here, using a broad panel of cell lines, we 

believe that it is apparent that there are multiple intrinsic cell-cycle states in cancer cells. 

While specific observations can be trivialized, such as the universal dependence on CDK1/
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CCNA2 or lack of impact of CDK3/CDK5, it should be noted that the literature is full of 

contradictory conclusions related to the functional significance of veritably all CDK/cyclins 

(Diril et al., 2012; Gopinathan et al., 2014; Kalaszczynska et al., 2009; Pozo et al., 2013; 

Tetsu and McCormick, 2003). Using clustering algorithms, cancer cells can be differentiated 

into at least 6 groups. Of these ~50% are dependent on CDK4 or CDK6 for proliferation. 

The dependence on CDK6 is differentiated through dependence on either cyclin D1 or 

cyclins D2 or D3. These dependencies are linked to the tissue of origin as well as genetic 

features of the cancer that arises. Ostensibly, the ‘‘tissue of origin dependencies’’ is at least 

partially reflective of normal tissue. For example, CDK6 and CCND2 and CCND3 play a 

larger role in hematopoiesis (Lam et al., 2000; Scheicher et al., 2015; Sicinska et al., 2003), 

and, correspondingly, leukemia, multiple myeloma, and lymphoma cell lines are more 

dependent on CDK6, CCND2, and CCND3 than on CDK4 or CCND1. Genetic features 

appear to be broadly dominant, as resistance to CDK4 or CDK6 can emerge in tumor 

cells of essentially any lineage with RB loss. Similarly, cyclin E amplification is associated 

with dependence on the CCNE1 gene, as is observed most frequently in gynecological 

malignancies.

In spite of these generalizations, the heterogeneity of the cell cycle emerges as being 

particularly complex. There appear to be multiple functionally independent cell-cycle states 

that are operable across and within histological tumor types. In the context of breast cancer, 

there are clearly cell types (e.g., MCF7) that largely conform to a conventional cell cycle 

with strict dependence on CDK4/6. This can be bypassed by at least 3 mechanisms. 

First, cyclin E can bypass the requirement for CDK4/6, as shown in the MB157 model, 

wherein cyclin E drives RB phosphorylation. Second, it appears that in certain settings, 

as exemplified by the HCC1806 model, there is a complex dependence on cyclin D1 and 

CDK4/6 that does not conform to a simple standard paradigm. The HCC1806 model is 

highly dependent on cyclin D1, but resistant to CDK4/6 inhibitors. In this context, it appears 

that the depletion of cyclin D1 unleashes p27KIP1 and the suppression of CDK2 activity. 

The mechanism related to these complexes and switching of dependencies with knockdown 

will require further study and analysis of more cell models. For example, how cyclin E 

depletion results in the assembly of CDK4 complexes’ sensitivity to palbociclib in this 

model remains unclear. Furthermore, it is likely that other cell lines in this cluster are using 

different mechanisms to bypass the requirement for CDK4 or CDK6. This heterogeneity is 

reflected in the differential sensitivity of cells within this cluster to the CDK4/6 inhibitor 

palbociclib. Third, tumor cells that have lost RB are uniformly resistant to the depletion of 

CDK4 and CDK6, as well as cyclin D1. While the resistance to CDK4/6 inhibition is well 

documented, even RB-deficient tumor models have differing CDK and cyclin requirements. 

One subgrouping is clearly dependent on cyclin E. In this setting cyclin E is driving the 

phosphorylation of p130 to enable cell-cycle progression. However, there is another group 

that is largely resistant to the depletion of essentially all of the G1/S regulatory CDKs 

and cyclins. These models are still sensitive to CDK1 and CCNA2 depletion, suggesting 

a possible utilization of CDK1 to drive both G1/S and G2/M, as has been observed in 

mouse models (Santamaria et al., 2007). Interestingly, in cells that are cyclin E addicted, the 

deletion of RB is sufficient to enable proliferation with cyclin E knockdown. Thus, multiple 

complex dependencies are intrinsically operable across different tumor types.
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A challenge in the clinical use of CDK4/6 inhibitors has been the identification of predictive 

biomarkers. With unbiased approaches, it emerged that the most potent gene expression 

features associated with dependence on a CDK or a cyclin was essentially the expression 

levels of the target and other known members of the network in a reciprocal relationship. 

For example, cells that are dependent on cyclin D1 generally express high levels of cyclin 

D1 and RB1, but low levels of cyclin E and CDKN2A. These reciprocal relationships 

are apparent in both cell lines and primary tumors, suggesting that these states are 

pathologically relevant. These findings also challenge the canonical view that cyclin D1 

is promoting the expression of cyclin E by derepressing E2F, which is one of the central 

precepts of the classical CDK4/6-RB pathway. From these relationships, it is possible to 

develop classifiers using logistic regression that are accurate in predicting the sensitivity to 

palbociclib. Such tools as shown here could be important in defining tumors with little or 

no benefit from CDK4/6 inhibitors, which remains a significant clinical issue (Anurag et al., 

2020).

Targeting the cell cycle has emerged as a clinically significant regimen. However, as shown 

here, cell-cycle diversity and adaptations can limit the success of such approaches. Taking 

into consideration different cell-cycle states, we were able to identify genes and drugs 

that had a degree of selectivity. Gene networks indicate that different cell-cycle states 

are more dependent on specific functions. For example, CCNE1 high tumors are more 

sensitive to the depletion of DNA replication factors, PRC complex, and multiple additional 

epigenetic factors (e.g., CHAF1, EP300). These findings support potential vulnerabilities 

and avenues to treat such cancers. In contrast, CCND1 high tumors harbored vulnerabilities 

to metabolic genes (e.g., PGK1, ENO1) and other processes that could be similarly targeted 

or used in combination with CDK4/6 or other cytostatic agents. We also uncovered highly 

unexpected relationships, such as that CDKN2A high tumors exhibited vulnerability to TP53 

depletion, which suggests a dependence of these tumor cells on the gain-of-function activity 

of mutant TP53. This finding is consistent with CDKN2A high cells being particularly 

resistant to MDM2/4 inhibitors. A feature of these analyses is that it would appear that 

fundamentally, high CCND1/RB1 and high CCNE1/CDKN2A tumors need to be treated 

differently. Cytostatic-acting therapies, notably MEK and CDK4/6 inhibitors, act selectively 

in CCND1/RB1 high tumors, and RB-deficient tumors remain resistant to not only single 

agent but also combination strategies, as observed in xenograft studies. In CCNE1/CDKN2A 

high tumors, cytotoxic agents that target the cell cycle (particularly WEE1 inhibitors) are 

more effective. In addition, it would appear that such tumors are primed toward apoptosis, 

as indicated by the increased sensitivity to Survivin and BCL2 inhibitors. This adds to 

an expanding literature that there are collateral vulnerabilities associated with cell-cycle 

deregulation or survival pathways that have been most studied in the context of RB loss 

(Gong et al., 2018; Oser et al., 2018; Pearson et al., 2021; Witkiewicz et al., 2018). Given 

the universal requirement for some of these genes, using combinations it is possible to 

expand the therapeutic window and increase the selectivity for RB deficiency, as we show 

using isogenic models. Expanded analyses of these synergistic combinatorial approaches 

illustrate that the enhanced cell-cycle-specific targeted therapies can be used in tumor 

models (data not shown). Together, these data suggest that the intrinsically different cell-
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cycle states define tumors that should be treated in a distinct fashion with combinatorial 

strategies that expand upon cell-cycle dependencies and collateral vulnerabilities.

Limitations of the study

The data presented here emerged from the analyses of large publicly available datasets and 

biochemical functional analyses from a limited number of breast cancer cell lines. Further 

analyses will be required to determine the breadth of these findings in additional models 

and tumor types. Of particular importance will be determining whether normal cells that 

represent the cell of origin of a specific tumor type are in fact using these mechanisms 

for G1/S control or whether they are solely cancer specific. Another feature that remains 

under analysis is the potential need to target multiple cyclin or CDK genes in parallel to 

halt cell-cycle progression. We consider that this will be necessary to understand highly 

discordant cell cycles, as exemplified by the MB-468 cell line here.

To fully develop gene expression determinants associated with the response to CDK4/6 

inhibitors will require the utilization of patient cohorts. This represents a challenge as few 

patients are treated with CDK4/6 inhibitors as single agents, as assessed in the preclinical 

models described here. The cell-cycle states that are differentially defined by CCND1/RB 

or CCNE1/CDKN2A could be considerably more complex and conditioned by the contexts 

in which these genes are amplified or deleted. More study within a given tumor type 

and with the use of isogenic lines will be required to fully credential the genetic and 

therapeutic dependencies that are uncovered here. Furthermore, combination treatments that 

are particularly effective against RB-deficient or cyclin E-driven models will need to be 

validated in vivo and across more models to determine potential clinical validity.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents 

should be directed to and will be fulfilled by the lead contact, Erik Knudsen 

(erik.knudsen@roswellpark.org)

Materials availability—All unique/stable reagents generated in this study are available 

from the Lead Contact with a completed Materials Transfer Agreement

Data and code availability

• This paper analyzes existing, publicly available data, links to the datasets used 

are listed in the key resources table. All other data reported in this paper will be 

shared by the lead contact upon request.

• The paper does not report original code.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead author upon request.
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EXPERIMENTAL MODELS AND SUBJECT DETAILS

Public cell line and clinical data—The DepMap data and the cell line RNA seq, 

mutation, copy number, and sample information were obtained from the depmap data portal 

(https://depmap.org/portal/download/) consisting of 1811 cell lines from 35 distinct cancer 

types. All the TCGA datasets were acquired from cBioportal from the PanCancer Atlas 

Study (https://www.cbioportal.org/datasets). These data consist of 31 tumor types.

Cell lines—Different TNBC cell lines, HCC1806, MB-436 and MB-468 were grown 

in RPMI media containing 10% FBS. MCF7 and MB231 cells were cultured in DMEM 

medium containing 10% FBS. The MB-157 cell line was cultured in Mcoy5 medium 

supplemented with 10% FBS. All the cells lines were grown at 37°C and 5% CO2 and 

were confirmed to be mycoplasma free. Cell-line authentication were performed using STR 

analysis.

In vivo PDX studies—Human female breast cancer samples (average age 54) were 

collected and studied under approved IRB protocols #89989 and #10924 at Huntsman 

Cancer Institute, University of Utah that obtained patient consent. The University of Utah 

Institutional Animal Care and Use Committee (IACUC) approved all procedures using live 

animals. Tumors were implanted at the age of 3–4 weeks. All animals were housed under 

standard, regulated conditions: food and water given ad lib; housing temperature range 68 – 

79 degrees humidity range: 30 – 70%; and a 12 hour light cycle (6am-6pm = On, 6pm-6am 

= Off). Cryopreserved tumor fragments were implanted into the inguinal mammary fat pad 

of female NSG mice (n = 20 mice per PDX cohort) using previously described methods 

(DeRose et al., 2013). When tumors reached 100–150 mm3, mice with similarly sized 

tumors were randomized to treatment groups (3–7 mice per group). AZD8186 (reconstituted 

in corn oil) was given at a dose of 30 mg/kg, oral, twice per day (4 days on, 3 days off). 

Palbociclib (reconstituted in 50mM sodium lactate) was given at a dose of 100 mg/kg, oral, 

once per day (5 days on, 2 days off). Combinations used the same dose and schedule as 

the single agents. Mice were treated for a 21-day period, and tumors were measured using 

calipers.

TNBC clinical samples—Study cases were obtained from surgical pathology files at 

Thomas Jefferson University with Institutional Review Board approval and patient consent. 

All cases are from female breast cancer with an average age of 55 and have been previously 

described (Adams et al., 2018). Evaluable primary TNBC tumors (n=149) were available in 

a TMA format.

METHOD DETAILS

Clustering of cancer cell lines based on dependancy—Cancer cell lines were 

clustered based on their dependency for CDK and CCN genes using k-means clustering in 

R to give 6 distinct clusters. The alteration of these clusters where represented using the 

oncoprint package in R. The Pearson’s chi square test in R was used to show the statistical 

difference in alteration between clusters for each gene. Odds ratios defined in R were used to 

find the significance of a cancer type occurring in a particular cluster.
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Enrichment analyses—Enrichment of cancer cell lines of each tumor types based on 

the dependency score for CCN and CDK genes were calculated using fgsea package in 

R. The fgsea function uses a list of cancer types along with the cell lines associated 

with that cancer type and a table containing information regarding the dependency score 

of cell lines for each gene to calculate enrichment. Conventional Gene Set Enrichment 

Analysis (GSEA) was performed using GSEA version 4.1.0. Briefly, gene name and log2 

FoldChange columns were extracted from the output files of deferential gene expression 

analysis using DESeq2 to serve as the Ranked List (.rnk) files. Four .rnk files were 

generated using DESeq2 output files between the pair-wise contrasts (cluster1 vs. cluster3; 

cluster1 vs. cluster4; cluster2 vs. cluster 3 and cluster2 vs. cluster4). Each of these 

files was used as Ranked List file for the tool ‘‘Run GSEAPreranked’’. The parameters 

we used to run this tool are as follows: Gene sets database: ftp.broadinstitute.org://pub/

gsea/gene_sets/h.all.v7.4.symbols.gmt; Number of permutations: 1000; Collapse/Remap 

to gene symbols: No_Collapse; Chip platform: ftp.broadinstitute.org://pub/gsea/

annotations_versioned/Human_Gene_Symbol_with_Remapping_MSigDB.v7.4.chip.

Logistic regression to predict dependency—The log fold change and the p-value 

were calculated using a standard two tailed student t-test between gene expression of cell 

lines belonging to cluster(m) Vs cluster(n) (where m,n=1,2,3,4,5,6 and m≠n). A cutoff of 

+0.5 and −0.5 for log fold change and 0.05 for p-value were used to extract differentially 

expressed genes and illustrated in volcano plots. Based on the dependency score of CDK and 

CCN family genes, cell lines where classified as resistant (those cell lines who’s dependency 

score is greater than the 25th percentile dependency score) or vulnerable (those cell lines 

who’s dependency score is lesser than the 25th percentile dependency score). The gene 

expression of top 10 expressed genes in cluster(m) and top 10 expressed genes in cluster(n) 

from the volcano plot between cluster(m) Vs cluster(n) (where m,n=1,2,3,4,5,6 and m≠n) 

was used to predict if a cell line is resistant or vulnerable to a gene G (where G are genes 

belonging to the CCN and CDK family) using logistic regression. Stepwise algorithm was 

used to remove unimportant genes that do not contribute significantly in the prediction of 

sensitivity. In order to test the accuracy of the Logistic regression model the data is divided 

into 2 sets: a) Training set which accounts to 2/3rds of the data. This consists of gene 

expression of genes used as dependent variables to predict if the cell line is resistant or 

vulnerable. The training set is used to create alogistic regression model based on Cluster(m) 

vs Cluster(n) to predict sensitivity/resistants of gene G for each cell line. b) Test set which 

accounts to 1/3rd of the data. This consists of gene expression of genes used as dependent 

variables. The test set is used to test the validity of the model. The accuracy of the model 

is tested on the test set by constructing an ROC curve showing sensitivity and specificity 

of the model. The model was also used to predict vulnerability/resistant of breast cancer 

and ovarian cancer cell lines based on IC50 values (1000 nM is used as cutoff with IC50 

value<1000n as sensitive and IC50>1000nm as resistant) of palbociclib.

Therapeutic agents, plasmids and infection procedures—Palbociclib (IBRANCE) 

was purchased from MedChemExpress (NJ, USA). AZD8186 (S7694), YM155 (S1130), 

Alisertib (S1133), Pemetrexed (S1135), Navitoclax (S1001) were purchased from 

Sellckchem (Houston, TX). All drugs were dissolved in DMSO for cell culture use. CSII-
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EF lentiviral vector containing the cDNA for HDHB fused to mCHERRY was from Dr. 

Spencer’s laboratory (Gookin et al., 2017). Lentiviral infection was performed on H2B-GFP 

labelled MB436 and MB468 cells. The translocation of HDHB between cytoplasm and 

nucleus was captured using IncuCyte imaging.

Cell proliferation assays and toxicity—Select cultures were transduced to stably 

express H2B-GFP as an independent measure for proliferation. The GFP positive cells 

were selected using using BD FACSAria II cell sorter. The proliferation of the H2B-GFP 

cell lines was determined using IncuCyte live-cell imaging systems. The cell counts were 

determined based on the number of GFP-labelled nuclei and the data were exported to 

GraphPad Prism for statistical analysis and graph generation. The cell-cycle progression 

was determined using a chemiluminescent ELISA BrdU incorporation assay (Sigma; 

11669915001) following the manufacturer’s protocol. Luminescence was read on a BioTEK 

Synergy 2 plate reader. Each drug treatment was performed in triplicates and confirmed in 

two independent experiments.

Knockdown experiments—Cells were reverse transfected with gene specific siRNAs 

using Dharmacon Human On-target plus siRNA: CDK4 (L-003238–00-0005), CDK6 

(L-003240–00-0005), Cyclin D1 (L-003210–00-0005) Cyclin E1 (L-003213–00-0005), 

Cyclin A (L-003205–00-0005), CDKN1B (L-003472–00-0005), CDK2 (L-003236–

00-0005), and non-targeting siRNA (D-001810–10-05). CDK2 siRNA (ID# 103569) was 

purchased from Thermo Fisher. Transfection was performed using Lipofectamine RNAiMax 

Transfection Reagent (Invitrogen, 13778150). Following 24 H transfection cells were treated 

with palbociclib or DMSO. The transfection efficiency of the siRNAs was determined by 

western blotting.

Immunoblot analysis—Whole cell extracts were prepared using RIPA lysis buffer (10 

mM Tris HCl, pH 8.0, 1mM EDTA, 150 mM NaCl, 1% Triton-X-100, 0.1% sodium 

deoxycholate, 0.1% SDS) in the presence of 1X Halt protease inhibitor (Thermo Fisher) and 

1 mM PMSF (Sigma, St Louis, MA). The resulting proteins were resolved on an SDS-PAGE 

gel and the proteins were then transferred to nitro-cellulose membrane for immune blotting. 

The membranes were incubated with protein-specific primary antibodies overnight at 4°C 

followed by incubation with HRP-tagged anti-mouse or anti-rabbit secondary antibodies 

for 1 hour at room temperature. An enhanced chemiluminescence kit (Thermo Fisher, 

Waltham, MA) was used to detect the immuno-reactive bands. The primary antibodies 

purchased from Cell-Signaling Technology (Danvers, MA) include pRB S807/811 (8516S), 

pRB (S780) (9307S), RB-4H1 (9309S), RBL2 (13610S), CDK2 (2546S), CDK4 (12790S), 

CDK6 (3136S), Cyclin E1 (4129S), P27KIP1 (3686S), and Cyclin B1 (12231S). Phospho-

p130 (S672) (Ab76255) was purchased from Abcam. Cyclin D1 (SC20044), Cyclin 

A (SC271682), CDK1 (SC-54), β Actin (SC47778) and GAPDH (SC-47724) were 

purchased from Santacruz Biotech, Dallas, TX. Mouse-IgGk-HRP (Santacruz; SC516102) 

and Goat-anti-rabbit-HRP (Thermo Fisher; 31460) were used as secondary antibodies. An 

enhanced chemiluminescent substrate (National Diagnostics; CL-300) was used to detect the 

immunoreactive bands.
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Immunoprecipitation—Total proteins were extracted using the IP-lysis buffer (20 mM 

Tris-HCl, pH 8.0, 2mM EDTA, 137 mM NaCl, 1% NP-40) in the presence of 1X Halt 

protease inhibitor (Thermo Fisher) and 1 mM PMSF (Sigma, St Louis, MA). In total, 0.5–

0.8 mg of protein from the lysates were incubated with 5 µg of bait antibodies, anti-P27KIP1 

(Cell Signaling; 3686S) and anti-Cyclin D1 antibody (Invitrogen: MA5–12707) overnight at 

4°C. Mouse (Cell Signaling, 5415S) or rabbit (Cell Signaling, 3900S) IgG1 isotype control 

was used. Protein immunocomplexes were then incubated with Protein G-agarose or protein 

A-agarose (Thermo Fisher) at 4°C up to 4H and were then washed 3 times with IP wash 

buffer (20 mM Tris-HCl, pH 8.0, 100 mM NaCl, 0,5% NP-40). Complex bound to the 

protein beads were eluted using 2X SDS buffer and were subjected to western blotting.

In vitro kinase reactions—CDK2 and cyclin D1 associated kinase reactions were 

performed as described in our previous study (Functional determinant). Protein extracts 

were prepared using kinase lysis buffer (50 mM Tris-HCl pH 7.5, 150 mM NaCl, 0.1% 

NP-40, 10 mM DTT, 10% glycerol) in the presence of protease inhibitors. Anti-cyclin 

D1 antibody (Invitrogen: MA5–12707) was used to immunoprecipitate cyclin D1 and its 

associated CDKs. The kinase reactions were performed using the specific buffer containing 

50 mM HEPES-KOH, pH 7.5, 20 mM MgCl2, 1mM DTT in the presence of 2mM ATP. 

Recombinant RB C-terminal (10µg) was used as a substrate (Knudsen ES, Differential 

reglation).

To determine CDK2 kinase activity, cells were lysed using CDK2 kinase lysis buffer (50 

mM HEPES-KOH pH7.5, 150 mM NaCl, 1 mM EDTA, 1 mM DTT, 0.1% Tween-20). 

CDK2 complexes were immunoprecipitated using anti-CDK2 antibody (Santacruz; 

SC-6248). Kinase reactions were carried out in the reaction buffer ( 40 mM Tris-HCl pH 

8, 20 mM MgCl2, 0.1 mg/mL BSA, 50 µM DTT).

Multiplexed IF staining—Formalin-fixed Paraffin-embedded (FFPE) tissue sections 

orTMAs were cut at 4–5 µm on charged slides. Slides were dried at 65°C for 6 hours. After 

drying, the slides were placed on the BOND RXm Research Stainer (Leica Biosystems) and 

deparaffinized with BOND Dewax solution (AR9222, Lecia Biosystems). The multispectral 

immunofluorescent (mIF) staining process involved serial applications of the following for 

each biomarker: epitope retrieval/stripping with ER1 (citrate buffer pH 6, AR996, Leica 

Biosystems ), blocking buffer (AKOYA Biosciences), primary antibody, Opal Polymer HRP 

secondary antibody (AKOYA Biosciences), Opal Fluorophore (AKOYA Biosciences). All 

AKOYA reagents used for mIF staining come as a kit (NEL821001KT). Spectral DAPI 

(AKOYA Biosciences) was applied once slides were removed from the BOND. They were 

cover slipped using an aqueous method and Diamond antifade mounting medium (Invitrogen 

ThermoFisher). The mIF panel consisted of the following antibodies (clone, company, and 

opal fluorophores): Cyclin D (SP4, Epredia, Opal 570), Cyclin E (EP435E, abcam, Opal 

520), MCM2 (RBT-MCM2, Biosb, Opal Polaris 480), Pan Cytokeratin (AE1AE3, Agilent 

DAKO, Opal Polaris 780), pHH3 (Ser10, Millipore Sigma, Opal 620), pRB (Ser807/811, 

Cell Signaling, Opal 690).

Tissue imaging and analysis—Slides were imaged on the Vectra® Polaris Automated 

Quantitative Pathology Imaging System (AKOYA Biosciences). Further analysis of the 
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slides was performed using inForm® Software v2.4.11 (AKOYA Biosciences). Whole slide 

spectral unmixing was achieved using the synthetic spectral library within inForm. From the 

unmixed images representative cores were selected under the guidance of Dr. Witkiewicz, 

pathologist, to train tissue and cell segmentation. Next a unique algorithm was created 

using a machine learning technique, in which the operator selects positive and negative cell 

examples for each biomarker. These algorithms were then batch applied across the entire 

TMA. A final quality control review discarded cores with insufficient staining or absence 

of tumor compartment. The percentage of markers (Cyclin E, Cyclin D1 and pRB) for each 

core (red: RBpos and blue:RBneg) was calculated and normalized. K-means clustering was 

applied to the data to generate four clusters.

Breast cancer cell line oncoprint—Data from CCLE was aggregated for breast 

cancer models used in previous analysis to determine which models had single nucleotide 

variations (SNVs), insertions/deletions (INDEL), or homozygous deletions (HOMO DEL) 

or amplifications (AMP). Copy number deletions and amplifications were determined using 

cutoffs of 0.5 and 1.5, respectively. Mutations for PIK3CA, TP53, PTEN, RB1, and 

CDKN2A were double checked against ATCC’s cell lines by mutation packet. Four missing 

INDELs were identified and adjusted in the oncoprint (HCC1187: TP53 INDEL, HCC1395: 

PTEN INDEL, BT549: RB1 INDEL, MDAMB436: RB1 INDEL). Oncoprint was generated 

using the ComplexHeatmap package in R.

Tissue correlation plot from TCGA—For selected tissue types, the correlation plot for 

selected TCGA tissue types was generated using the corrplot package in R.

Cell line expression Sankey plot—For cell lines included in K-means analysis from 

Figure 1 (excluding liquid tumors from cluster 5), CCLE expression data was used to 

determine cell line groups with high (cell lines in upper 25% of gene expression range), low 

(lower 25%) and intermediate expression levels for CCND1, CCNE1, RB1 and CDKN2A. 

Plot was generated using networkD3 in R to compare high/low/intermediate expression 

groups between genes. Transition lines were colored to reflect the cell lines’ expression 

quantile in CCND1.

Cyclin and RB networks and Sankey plots—For each network and Sankey plot, 

genes were filtered to exclude genes that had indeterminate vulnerability in either gene 

(CCND1/CCNE1, RB1/CDKN2A). These genes were then aligned to a protein-protein 

interaction network downloaded from Biogrid (Homo sapiens, v. 3.5.168) (Oughtred et 

al., 2021). Only genes with edges to other included genes were kept. Networks were 

visualized and clustered using Cytoscape. Enrichments were performed using list.to.go from 

the ALPACA package in R. Sankey plots were generated to show movement of genes 

between high/low groups using network D3 in R.

Concordance drug analysis, volcano plots + trend lines and p-values—Using 

the cell line quantile high/low cutoffs in the CCLE expression data (excluding liquid tumors 

from cluster 5) and the secondary drug screen data from DepMap, drug response log fold 

changes (logFCs) were calculated between high and low expression cell line groups, using 

mean response from each group. P-values between high and low groups were determined 
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using a Student’s t-test. LogFCs were then compared across all four genes (CCND1, RB1, 

CCNE1, CDKN2A) to see which drugs had similar response patterns between high and 

low expression groups in respective gene pairs (logFC values with the same sign in either 

CCND1 and RB1, or CDKN2A and CCNE1). These drugs were then filtered to drugs with 

at least 2 significant p-values across the 4 genes. Only drugs that had multiple doses in 

the remaining list and at least one logFC greater than +/− 0.2 were shown. Heatmap was 

generated using the ComplexHeatmap package in R (Gu et al., 2016)

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses of the data was performed using the methods as described in the 

‘‘method details’’ in the following sections: Clustering of cancer cell lines based on 

dependency; Logistic regression to predict dependency; Tissue imaging and analysis; 

Concordance drug analysis, volcano plots + trend lines and p-values. The exact number of 

animals for PDX studies is provided in the figures. The number of replicates and measures 

of significance are present in the figure legends and denoted in the figures.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• There is significant heterogeneity in the requirement for G1/S-promoting 

CDK/cyclins

• Reciprocal expression relationships denote divergent cell-cycle states in 

tumors

• Specific vulnerabilities are associated with different cell-cycle utilization

• Multiple separable mechanisms drive cell-cycle progression in tumor cells
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Figure 1. Diverse requirements for CDK and cyclins across cancer cell lines
(A) Schematic of cell-cycle progression and CDK/cyclins.

(B) Boxplot showing dependency to select CDK and cyclin gene members in cancer cell 

lines (n = 717).

(C) Heatmap showing the dependency of CDK and cyclin genes for representative cancer 

cell types.

(D) Cancer cell lines were clustered based on their dependency for the indicated CDK and 

CCN family genes using k-means clustering to give 6 distinct clusters.

(E) Genetic information showing amplification of CCNE1, CDK6, CDK4, and CCND1 

and homozygous deletion or mutation of RB1 and CDKN2A for the 6 clusters. Pearson’s 

chi square test was used to find the significance of alteration events between each cluster 

compared with the rest of the clusters (*p < 0.05, **p < 0.01, ***p < 0.001).
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Figure 2. Tumor type-selective vulnerability to select CDK and cyclin genes
(A) Sensitivity to individual CDK and cyclin depletion is indicated in the heatmap and 

boxplots for each of the clusters. The clusters are composed of the following number of cell 

lines: cluster 1, n = 133; cluster 2, n = 105; cluster 3, n = 68; cluster 4, n = 103; cluster 5, n = 

138; and cluster 6, n = 170.

(B) Significance of dependency for CCND1, CCNE1, CDK6, and CDK4 between clusters 

was determined using a paired Student’s t test. The −log10 p value is shown in the heatmaps 

(red represents highly significant and blue is less significant, as denoted in the color bar).

(C) The percentage of a given cancer cell type belonging to each cluster. The statistical 

significance of cancer cell lines is based on the odds ratio between the cell lines in cancer 

type and clusters (*p < 0.05, **p < 0.01, ***p < 0.001).
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(D) Enrichment of cancer cell lines in the indicated tumor types based on the dependency 

scores for CCND1, CDK4, and CDK6. The enrichment analysis and statistical significance 

was performed using the fgsea package in R.

(E) Select analyses of cluster 5 indicating the requirement for CCND2 and CCND3. 

Enrichment of cancer cell lines in the indicated tumor types based on the dependency score 

for CCND2 and CCND3.

(F) Enrichment of cancer cell lines in the indicated tumor types based on the dependency 

score for CDK2 and CCNE1. Frequency of CCNE1 amplification in the top 7 TCGA tumor 

types is summarized in the bar graph. Abbreviations are based on the TCGA naming 

convention: BLCA, bladder urothelial cancer; OV, ovarian serous cystadenocarcinoma; 

SARC, sarcoma; STAD, stomach adenocarcinoma; UCEC, uterine corpus epithelium 

carcinoma; UCS, uterine carcinosarcoma.
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Figure 3. Differential CDK/cyclin requirements in RB-proficient models
(A) Color bar shows clusters organized by IC50 of palbociclib with the relative sensitivity to 

the indicated CDK and cyclin genes depicted in the heatmap for breast and ovarian cancer 

cell lines. Boxplots summarize the IC50 from the indicated clusters (****p < 0.0001 as 

determined by t test).

(B) Oncoprint depicts genetic features of breast cancer cell lines relative to the clustering. 

Specific cell lines used functionally are summarized in the box.

(C) Live cell imaging was used to explore the impact of CCNE1 knockdown in the absence 

and presence of palbociclib in the MB157 cell line. Error bars indicate means and SDs from 

triplicate, and experiments were done at 2 independent times. Biochemical characterization 

of the effect of CCNE1 knockdown in the MB157 cell model.

(D–F) Live cell imaging to monitor the growth of MB157 in the absence and presence 

of palbociclib following CDK4/6 knockdown (D). The means and SDs are shown. The 
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experiment was performed in triplicate. (E) Live cell imaging on HCC1806 cells to 

determine the effect of CCND1 knockdown in the presence or absence of palbociclib. Means 

and SDs were calculated and the experiments were done in triplicate at 2 independent times. 

(F) Complex formation between cyclin D1 and other CDKs and p27KIP1 in HCC1806 and 

MCF7 cell lines was determined by co-immunoprecipitation.

(G) Immunoprecipitated cyclin D1 from MCF7 and HCC1806 cells was used in kinase 

reactions against an exogenous RB substrate. Kinase activity is measured by RB 

phosphorylation.

(H) Immunoprecipitation in HCC1806 cells following CCND1 knockdown was performed. 

Co-immunoprecipitated proteins were determined by western blotting.

(I) Immunoprecipitated CDK2 from HCC1806 cells with cyclin D1 depleted by RNAi or 

with a non-targeting RNAi poll (SiNT) was used for kinase reactions against an exogenous 

RB substrate. Kinase activity is measured by RB phosphorylation.

(J) Schematic of different RB-proficient cell cycles operable in breast cancer models.
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Figure 4. Differential requirements of RB-deficient cells on cyclin E and p130
(A and B) Live cell imaging to track the division of MB436 and MB468 cells treated with 

palbociclib and/or the knockdown of CDK4 and CDK6 (A). Means and SDs are shown and 

calculated from triplicate. (B) Co-immunoprecipitation of cyclin D1 showing the failure to 

assemble complexes with the indicated proteins.

(C) Live cell imaging to demonstrate the differential effect of CCNE1 knockdown in MB436 

and MB468 cell lines in the presence or absence of palbociclib. Error bars indicate means 

and SDs. Experiments were done in triplicate and repeated at 2 independent times.

(D) Biochemical characterization of the differential effect of CCNE1 knockdown in MB436 

and MB468 cell models.

(E) Biochemical analysis of the impact of CCNE1 and RBL2 knockdown on cell-cycle 

proteins.
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(F) Live-cell imaging to track the localization of CDK2 sensor in the nucleus and cytoplasm 

at the indicated time points in MB436 and MB468 cell lines following CCNE1 knockdown 

(nuclear localization indicates low kinase activity and cytoplasmic localization indicates 

high kinase activity; scale bar, 50 µm).

(G) MB157 parental model and model with RB deleted were used to evaluate the effect of 

CCNE1 knockdown on the indicated proteins by immunoblotting.

(H) Live-cell imaging and BrdU incorporation assay were performed in MB157 cell line 

to delineate the effect of RB deletion on the sensitivity to CDK2 or CCNE1 knockdown. 

Column represents means and SDs from 3 independent experiments (***p < 0.001 as 

determined by Student’s t test).

(I) The indicated proteins were detected in the MB157 parental model or the RB-deleted 

variant with CCNE1 and RBL2 knockdown.
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Figure 5. Gene expression features are associated with different CDK-cyclin vulnerabilities
(A) GSEA analysis was used to define enriched ‘‘hallmark’’ gene sets based on ranked gene 

expression differences between the clusters. Representative top enrichments plots are shown.

(B–E) Differential gene expression analyses were performed using the gene expression data 

from all of the cell lines for the indicated clusters. The number of cell lines in each cluster 

used: cluster 1, n = 133; cluster 2, n = 105; cluster 3, n = 68; and cluster 4, n = 103. 

Volcano plots summarize the gene distribution, and top genes of significance are indicated in 

red font (log fold-change cutoff >0.5 and p < 0.05). Top eight up-/downregulated genes are 

summarized in the heatmaps.

(F and G) Logistic regression used the top genes that were different between clusters 2 and 

3 to define a classifier for vulnerability to CCND1 or CCNE1 depletion. Receiver operating 

characteristic (ROC) curves and classifier are shown. The subsequent ability of that classifier 

to predict sensitivity to palbociclib in breast cancer samples is shown in the ROC curves.
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Figure 6. Cell-cycle features define different tumor classes
(A) In colon and pancreatic cancer cell lines, there is a positive relationship between 

CCND1 and CCNE1 and no correlation between RB and CDKN2A. The correlation 

coefficient and related p valuate are shown.

(B) In other tumor types (e.g., ovarian, breast, sarcoma, lung), there is a reciprocal 

relationship of CCND1/CCNE1 and RB1/CDKN2A, suggesting distinct cell-cycle states 

in different tumors. The correlation coefficient and related p values are shown.

(C) Analysis of TCGA data (pan-cancer release) relative to the relationship of CCNE1/

CCND1 and RB/CDKN2A in cancers. In most of the tumor types indicated, there is a 

reciprocal relationship (color bar shows correlation coefficient and * denotes significance).

(D) Sankey analysis of solid tumor clusters (n = 574) shows the relationship between cell 

lines in different expression quantiles.
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(E) Multispectral staining showing different RB-proficient cell cycles dominated by cyclin E 

or cyclin D1. Representative images are shown (scale bar, 100 µm).

(F) Heatmaps show the top vulnerabilities in the indicated tumor type based on the 

expression of CCND1 or CCNE1.

(G) Sankey plots demonstrate the sensitivity/resistance behavior to gene depletion based on 

the expression of CCND1 compared with CCNE1.

(H) Network analyses of gene differentially required in CCND1 high (green) compared with 

CCNE1 high (teal) tumor cell lines.
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Figure 7. Drug responses show reciprocal relationships based on cell-cycle states
(A) Heatmap showing drugs with reciprocal response relationships between groups of cell 

lines with high and low expression in CCND1/RB1 and CCNE1/CDKN2A (determined 

using upper and lower expression quantiles; N = 71 in each quantile group, N = 140 in the 

intermediate group). Values shown are the ratio between mean drug response of cell lines 

with high gene expression compared to mean drug response of cell lines with low gene 

expression (color bar is the log fold-change [logFC] in the comparison groups).

(B) Volcano plots with trend lines showing the correlation between drug response log 

fold-changes and p values across each gene for specific drug families.

(C) Correlation plot showing drug family response trendline correlation coefficients and p 

values (*p < 0.05, **p < 0.01, ***p < 0.001).

(D) Correlation between CCND1, CCNE1, RB1, and CDKN2A gene expression, with 

drug sensitivity in PDX models. PDX models with gene expression greater than the 75th 
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percentile are marked in red and models with gene expression less than the 25th percentile 

are marked in blue. PDX models that have no information regarding drug sensitivity were 

removed. The correlation coefficient and related p valuate are shown.

(E) Representative multispectral staining for PDX models that are RB proficient (HCI-009) 

and RB deficient (HCI-012) (scale bar, 100 mm).

(F) The indicated PDX models were treated with CDK4/6 (palbociclib) and/or mTOR 

(AZD8186) inhibitor, and the effect on tumor growth was measured by calipers. The number 

of mice for each treatment group is shown, and the means and SEMs are plotted.

(G) The effect of the indicated drugs and combinations were evaluated in isogenic MCF7 

and MB231 cells harboring RB deletion. Cell viability was determined using the CellTiter-

Glo (CTG) assay. The column represents means and SDs from triplicates (**p < 0.01, ***p 

< 0.001 as determined by Student’s t test).
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit monoclonal anti-pRB 
(Ser807/811)(D20B12)

Cell Signaling Technology Cat# 8516, 
RRID:AB_11178658

Rabbit monoclonal anti-pRB (Ser780) Cell Signaling Technology Cat# 9307, 
RRID:AB_330015

Mouse monoclonal anti-RB (4H1) Cell Signaling Technology Cat# 9309, 
RRID:AB_823629

Rabbit monoclonal anti-CDK2 (78B2) Cell Signaling Technology Cat# 2546, 
RRID:AB_2276129

Rabbit monoclonal anti-CDK4 
(D9G3E)

Cell Signaling Technology Cat# 12790, 
RRID:AB_2631166

Mouse monoclonal anti-CDK6 
(DCS83)

Cell Signaling Technology Cat# 3136, 
RRID:AB_2229289

Mouse monoclonal anti-Cyclin 
E1(HE12)

Cell Signaling Technology Cat# 4129, 
RRID:AB_2071200

Rabbit monoclonal anti-P27KIP1 
(D69C12)

Cell Signaling Technology Cat# 3686, 
RRID:AB_2077850

Rabbit monoclonal anti-Cyclin 
B1(D5C10)

Cell Signaling Technology Cat# 12231, 
RRID:AB_2783553

Rabbit monoclonal anti-p130 (D9T7M) Cell Signaling Technology Cat# 13610, 
RRID:AB_2798274

Mouse IgG1 Isotype control (G3A1) Cell Signaling Technology Cat# 5415, 
RRID:AB_10829607

Normal rabbit IgG Cell Signaling Technology Cat# 2729, 
RRID:AB_1031062

Mouse monoclonal anti-Cyclin 
D1(DCS-6)

Santacruz Biotechnology Cat# sc-20044, 
RRID:AB_627346

Mouse monoclonal anti-cyclin D1 
(DCS-11)

Thermo Scientific Cat# MA5–12707, 
RRID:AB_10986118

Goat anti-rabbit IgG Secondary 
antibody HRP

Thermo Scientific Cat# A27036, 
RRID:AB_2536099

Mouse monoclonal anti-Cyclin A (B-8) Santacruz Biotechnology Cat# sc-271682, 
RRID:AB_10709300

Mouse monoclonal anti-CDK1 (17) Santacruz Biotechnology Cat# sc-54, 
RRID:AB_627224

Mouse monoclonal anti-β Actin (C4) Santacruz Biotechnology Cat# sc-47778 HRP, 
RRID:AB_2714189

Mouse monoclonal anti-GAPDH 
(0411)

Santacruz Biotechnology Cat# sc-47724, 
RRID:AB_627678

m-IgGk BP-HRP Santacruz Biotechnology Cat# sc-516102, 
RRID:AB_2687626

Rabbit monoclonal anti-Cyclin D1 
(SP4)

Epredia Cat# RM-9104-S1, 
RRID:AB_149913

Rabbit monoclonal anti-Cyclin E1 
(EP435E)

Abcam Cat# ab33911, 
RRID:AB_731787

Rabbit monoclonal anti-phospho p130 
(S672)

Abcam Cat# ab76255, 
RRID:AB_2284799

Rabbit monoclonal anti-MCM2 (RBT-
MCM2)

Bio SB Cat# BSB 6334, RRID N/A

Mouse monoclonal anti-human 
cytokeratin (AE1AE3)

Agilent DAKO Cat# M3515, 
RRID:AB_2132885
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REAGENT or RESOURCE SOURCE IDENTIFIER

Rabbit polyclonal anti-pHH3 (Ser10) Millipore Sigma Cat# 06–570, 
RRID:AB_310177

Biological samples

Triple negative breast cancer TMA Witkiewicz lab; Roswell park cancer Center NA

Welm PDX model Welm Lab, Huntsman Cancer Institute, University of Utah NA

Chemicals, peptides, and recombinant proteins

AZD8186 Selleckchem S7694

Palbociclib MedChem express HY-50767A

YM155 Selleckchem S1130

Alisertib Selleckchem S1133

Pemetrexed Selleckchem S1135

Navitoclax Selleckchem S1001

Dimethyl Sulfoxide Fisher Scientific BP231–100

Protein A agarose beads Thermo Scientific 20333

Protein G agarose beads Thermo Scientific 20399

Lipofectamine RNAimax Thermo Scientific 13778–150

Critical commercial assays

Chemiluminescent ELISA BrdU 
incorporation assay

Sigma 11669915001

Cell titer-Glo (CTG) Luminescent cell 
viability assay

Promega G7573

ProtoGlow ECL National Diagnostics CL-300

Deposited data

DepMap gene dependency data, RNA 
seq, mutation, copy number, and cell 
line sample information

DepMap https://depmap.org/portal/
download/

TCGA datasets were acquired from 
cBioportal from the PanCancer Atlas 
Study

cBioportal https://www.cbioportal.org/
datasets

Experimental models: Cell lines

HCC1806 ATCC Cat# CRL-2335, 
RRID:CVCL_1258

MB436 ATCC Cat# HTB-130, 
RRID:CVCL_0623

MB468 ATCC Cat# HTB-132, 
RRID:CVCL_0419

MCF7 ATCC Cat# HTB-22, 
RRID:CVCL_0031

MB231 ATCC Cat# CRM-HTB-26, 
RRID:CVCL_0062

MB-157 ATCC Cat# CRL-7721, 
RRID:CVCL_0618

Experimental models: Organisms/strains

NSG mice Jackson Labs 5557

Oligonucleotides

On-TARGETplus Human CCNE1 
siRNA SMARTpool

Horizon Discovery L-003213–00-0005
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REAGENT or RESOURCE SOURCE IDENTIFIER

On-TARGETplus Human CCND1 
siRNA SMARTpool

Horizon Discovery L-003210–00-0005

On-TARGETplus Human CDK4 
siRNA SMARTpool

Horizon Discovery L-003238–00-0005

On-TARGETplus Human CDK6 
siRNA SMARTpool

Horizon Discovery L-003240–00-0005

On-TARGETplus Human CDKN1B 
siRNA SMARTpool

Horizon Discovery L-003472–00-0005

On-TARGETplus Human CDK2 
siRNA SMARTpool

Horizon Discovery L-003236–00-0005

On-TARGETplus Human CCNA2 
siRNA SMARTpool

Horizon Discovery L-003205–00-0005

On-TARGETplus Human RBL2 siRNA 
SMARTpool

Horizon Discovery L-003299–00-0005

On-TARGETplus Nontargeting control 
Pool

Horizon Discovery D-001810–10-05

Recombinant DNA

CSII-EF lentiviral vector, cDNA for 
HDHB-mCHERRY

Spencer Lab N/A

pLenti0.3UbCGWH2BC1-PatGFP Abel lab; Roswell Park cancer Center N/A

pL-CRIPSR-EFS-sgCtrl-tRFP Bremner Lab; Lunenfeld-Tanenbaum Research Institute N/A

Software and algorithms

Prism Graphpad.com V7

FCS express deovosoftware.com V7

inForm® Software AKOYA Biosciences v2.4.11

R Studio RStudio.com N/A

Gene Set Enrichment Analysis (GSEA)
ftp.broadinstitute.org://pub/gsea/gene_sets/h.all.v7.4.symbols.gmt
ftp.broadinstitute.org://pub/gsea/annotations_versioned/
Human_Gene_Symbol_with_Remapping_MSigDB.v7.4.chip

v4.1.0

Protein-protein interaction network Biogrid Homo sapiens, v. 3.5.168
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