
����������
�������

Citation: Chahine, G.; Schroepfer, P.;

Ouabi, O.-L.; Pradalier, C. A

Magnetic Crawler System for

Autonomous Long-Range Inspection

and Maintenance on Large Structures.

Sensors 2022, 22, 3235. https://

doi.org/10.3390/s22093235

Academic Editor: Carlo Alberto

Avizzano

Received: 8 March 2022

Accepted: 20 April 2022

Published: 22 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A Magnetic Crawler System for Autonomous Long-Range
Inspection and Maintenance on Large Structures

Georges Chahine 1,2,* , Pete Schroepfer 1,2, Othmane-Latif Ouabi 2 and Cédric Pradalier 2

1 College of Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; pschroepfer6@gatech.edu
2 IRL 2958 Georgia Tech-CNRS, 2 Rue Marconi, 57070 Metz, France; oouabi@georgiatech-metz.fr (O.-L.O.);

cedricp@georgiatech-metz.fr (C.P.)
* Correspondence: gchahine@gatech.edu

Abstract: The inspection and maintenance of large-scale industrial structures are major challenges
that require time-efficient and reliable solutions to ensure the healthy condition of structures during
operation. Autonomous robots may provide a promising solution for this purpose. In particular,
they could lead to faster and more reliable inspection and maintenance without direct intervention
from human operators. In this paper, we present a custom magnetic crawler system, and sensor suit
and sensing modalities to enable such robotic operation. We first describe a localization framework
based on a mesh created from a point cloud coupled with Inertial Measurement Unit (IMU) and
Ultra-Wide Band (UWB) readings. Next, we introduce a mapping framework that relies on a 3D laser,
and explicitly state how autonomous navigation and obstacle avoidance can be developed. Lastly, we
present how ultrasonic guided waves (UGWs) are integrated into the system to provide accurate robot
localization and structural feature mapping by relying on acoustic reflections in combination with
the other systems. It is envisioned that long-range inspection capabilities that are not yet available in
current industrial mobile platforms could emerge from the designed robotic system.

Keywords: robotics; sensor fusion; sensors; autonomous inspection; mobile robotics; ship hull
inspection; autonomous; perception; ultrasonic

1. Introduction

The marine industry is an essential element of economical activity. It is estimated that,
every day, thousands of cargo vessels travel the seas for the shipping of goods. However,
outer ship hulls deteriorate over time due to their operational conditions, for example,
maritime environments can favor the emergence of corrosion patches in metallic ship
structures and the formation of biofouling on the surface. In other industrial sectors such
as the petrochemical industry, large structures such as storage tanks are also necessary
and deteriorate over time due to fatigue, corrosion, creed, and other factors. Hence,
the inspection and maintenance of large-scale structures are critical to ensure their healthy
state, so that the risk of catastrophic failures can be mitigated.

Standard inspection and maintenance methods are time-consuming. Indeed, outer-
hull service, inspection, and maintenance are mostly conducted at a dry dock, either
manually or with a remote automated system. In this condition, complete hull thickness
measurements are achieved by discrete sampling, but this accounts for 5–8 days of work.
This may also be achieved in areas that are difficult to access or that present risks for
inspection when carried out by a human operator. Overall, the mentioned methods are
time-inefficient and usually have serious financial impact to the owners.

In this work, the integration of ultrasonic guided waves (UGWs) is presented. On metal
plates, UGWs are generated by applying piezoelectric transducers in contact with the
surface. These waves propagate radially around the emitter through the plate material
and potentially over large distances. When encountering structural features (such as plate
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edges, stiffeners, weld joints), these waves are reflected, and the transducer collects ultra-
sonic echoes. In this setup, the resulting acoustic data carry essential information on source
position and structure geometry. Hence, their integration into a mobile robotic system
may lead to accurate robot positioning on the structure in combination with other sensors.
Furthermore, as these waves are sensitive to thickness-altering flaws (such as corrosion
patches), they can be used for inspection purposes to enable the long-term objective of
long-range defect detection, which has not yet been established for a mobile system.

Related Work

Autonomous robotic systems have not yet been demonstrated enough to convince
owners and end users, whereas they could reduce inspection and maintenance costs while
increasing operation efficiency. By bridging the gap between the current and desired
capabilities of ship inspection and service robots, the recent development of adaptable
autonomous robotic solutions can be used to detect corrosion patches and/or cleaning the
surface of the outer hulls and storage tanks of ships. Increasing regulatory constraints,
the desire to reduce inspection costs and human risk, and recent pandemic outbreaks have
driven research in the field of autonomous inspection. The state of the art in autonomous
robotic inspection contains sparse yet interesting venues for storage tank and ship inspec-
tion. For instance, the authors in [1] provided an autonomous approach to inspecting ship
hulls, yet the approach was limited to weld lines and does not offer a global approach for
other parts of the surface.

Other comprehensive approaches include [2], where the authors presented a magnetic
autonomous robot for ship-hull inspection. The approach, however, does not support
mapping capabilities, which hinders human monitoring. The proposed method seems
especially focused on the mechanical design of the robot and does not sufficiently address
the autonomous part. Additionally, the authors’ experiments were limited to lab testing,
and unlike our approach, did not address obstacle detection or avoidance.

The literature discussing autonomous ship-hull inspection does not often address
above-water robots. Nevertheless, a few contributions, such as [3–5] discussed the au-
tonomous inspection of underwater parts of ship hulls. In addition to above-water robots,
this project also included the development of autonomous underwater vehicles (AUVs) for
ship-hull inspection and unmanned aerial vehicles (UAVs) [6]. However, this paper does
not discuss the use of AUVs and UAVs (more information: https://www.bugwright2.eu/
project/ (accessed on 7 March 2022)).

UGWs are usually deployed on sensor networks that are permanently attached to the
structure for structural health monitoring (SHM) [7–9]. In this setup, however, only a fixed
and restricted area can be monitored. The use of guided waves on a mobile robotic platform
is emerging research topic in the literature. Recent works focus on the use of directional
guided waves for mapping structural features with a mobile unit [10,11]. Omnidirectional
guided waves were also considered for mapping defects with a mobile unit [12]. However,
it is still a challenge for various reasons, namely, the complexity of the physics of wave
propagation, which is multimodal and dispersive [7]. This means that propagation velocity
depends on wave frequency. The interpretation of multiecho data in noisy environments
(and in imperfect robot localization conditions) is also a particularly difficult challenge.
However, recent advances were undertaken to enable the use of omnidirectional UGWs
for acoustic localization and mapping purposes. In [13,14], the geometry of an isolated
metal plate and the positions of a mobile colocated emitter/receiver pair of piezoelectric
transducers were jointly estimated using UGWs echoes and a FastSLAM approach [15].
These works show the feasibility of embedding UGWs onto a robot. Still, experiments were
conducted by manually moving the sensors without using a real robotic platform.

In this paper, we describe research on an above-water magnetic crawler prototype
for the long-range inspection of storage tanks and ship hulls. This work is unique in both
applications and implemented solutions for pose estimation, texture generation, and defect
detection using guided waves. We also present an approach for the autonomous inspection
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of large structures. With a mature mechanical design, we focus on the autonomous parts
of the system, namely, pose estimation (Section 3.1), obstacle detection (Section 4.1.2),
mapping (Section 4.1.1), and defect detection (Section 3.2).

2. Experimental Platform: Altiscan Magnetic Crawler

The Altiscan magnetic crawler is a differentially driven robot equipped with magnetic
wheels. The robot, manufactured by ROBOPLANET, is capable of driving on vertical
surfaces, such as storage tanks and ship hulls. The crawler is also equipped with the
following sensors:

• off-the-shelf 6-DOF IMU;
• off-the-shelf UWB receiver;
• off-the-shelf RGB camera;
• 3D Lidar: Livox Mid-70;
• embedded computer: Axiomtek CAPA310;
• rotary wheel optical encoders;
• contact V103-RM U8403008 piezoelectric transducer.

Power, water, and data channels are bundled into a single cord connected to the
crawler and the respective inputs. Water supply is essential to ensure adequate surface
contact between the piezoelectric transducer and the metal surface. The crawler can be
operated in manual and autonomous modes. Lastly, a picture of the magnetic crawler is
shown in Figure 1.

(a) (b)

Figure 1. First prototype of magnetic crawler robot during a testing session near Bazancourt in France.
(a) Close-up of magnetic crawler; (b) magnetic crawler on top of 20 m high storage tank.

3. Data Analysis and Interpretation

In this section, we present the scientific methodology adopted by the project towards
the autonomous inspection of large structures. To that end, this section is divided into three
parts: pose estimation, mapping and obstacle detection, and ultrasonic data processing.

3.1. Pose Estimation

A probabilistic algorithm for pose estimation is often necessary to create accurate
localization. Currently, probabilistic algorithms such as the extended Kalman Filter (EKF),
unscented Kalman Filter (UKF) and particle filter (PF) provide the best means of performing
pose estimation for nonlinear systems with noisy measurements [16]. More specifically,
the PF provides high accuracy with a nonlinear system while also providing multimodal
pose distribution capable of handling non-Gaussian sensor noise [17–19].
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3.1.1. Particle Filter

In our case, the particle filter is an optimal localization algorithm given the dynamics
of the crawler, coupled with the sensor package used for localization. As mentioned above,
the crawler uses a differential drive, and the kinematic motion model for a differential drive
is nonlinear. By using a PF that handles nonlinear motion models well and does not require
linearization, the PF is a good choice for this type of motion. In terms of sensors, the crawler
has only encoder readings (odometry), an IMU, and UWB measurements that it can use
for localization. Range measurements such as UWB can lead to multimodal distribution
when there are insufficient range measurements or high levels of noise, and often exhibit
non-Gaussian noise due to time-of-flight measurements [17,19]. As the PF, unlike the EKF
or UKF, produces no Gaussian assumptions regarding noise or the probability density
function of the position, it is the filter that best matches data given by the sensors.

3.1.2. Particle-Filter Mesh Projection

The major drawback of the PF for real-time use, as it tends to be computationally
intractable in high dimensions due to bottlenecks in the algorithm coupled with a required
high density of particles. In the case of wheeled robots, one solution is to only provide a
pose estimate in SE(2) with 3 DoF [20–22]. Indeed, this solution works reasonably well for
wheeled robots operating on a flat surface such as a road or hallway. However, once the
robots starts to move on less planarlike surfaces, the mapping between the estimated pose
in SE(2) with 3 DoF and the real pose of the robot within the world is not possible without
introducing a high degree of uncertainty or error. Thus, for robots such as the crawler,
which generally dives in complex three-dimensional structures such as ships or storage
containers, this method would not be optimal.

One means of solving PF tractability problem is to reduce the required particles while
maintaining a pose estimate in SE(3) with 6 DoF. Normally, this is not possible because, with
6 DoF, the set of possible poses after the robot moves is so large that a giant sample is needed
to obtain an accurate estimate. However, if the set of possible poses after motion is applied
(i.e., within the PF transition function) is reduced, lowering the particle count becomes
possible without reducing the accuracy of the estimate. In this case, the crawler’s motion is
actually constrained in such a way because it must move along a surface. These constraints
reduce the effective workspace of the crawler, allowing for motion to be constrained to a
surface (i.e., the set of possible poses in the world after motion is applied is constrained by
the fact the crawler is moving on a surface, and the surface is known; this motion constraint
can be seen in Figure 2, where the motion of the crawler can be seen as stuck to a surface
when comparing mesh and nonmesh paths).

For the surface, manifold approximation in the form of a mesh is used during ini-
tialization and in the transitional function to reduce the workspace. To create this mesh,
the surface on which the crawler moves is scanned to create a dense point cloud. On the
basis of this point cloud, a mesh data structure is constructed that serves as an approx-
imation of the smooth manifold on which the crawler moves. During the initialization
and transitional functions, particles that are not on the surface of the manifold are then
projected onto this manifold, ensuring that all particle positions are constrained to the
mesh surface.

Once the position of the particles is constrained to the mesh surface, the orientation is
further constrained so that it is consistent with the crawler moving on a surface. Here, the
crawler (and by extension the particle) is attached to the surface of the manifold. To this end,
the x axis in the robot frame is retained to preserve the equivalent of the yaw orientation of
the crawler. The z axis of the crawler is then aligned with the normal vector of the manifold
at the point where the crawler is located. The current orientation is then further constrained
by aligning the y axis of the crawler to be perpendicular with the normal vector. In a sense,
this can be seen as constraining the pitch and roll of the crawler to the mesh on a local plane
while retaining the yaw.
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Figure 2. 3D path comparison of 200 particle MCPF with a 20,000 SPF and ground truth ( front and
side views).

By reducing the possible position and orientation of the robot, it is now possible to
use a particle filter in the range of 200–500 particles while still maintaining a high level
of accuracy (see Table 1 and Figure 3, both using the root mean square error (RMSE),
defined below).

RMSE =

√
∑T

t=1(ŷt − yt)2

T

Table 1. Average RMSE comparison.

Particles Mesh NoMesh

200 0.0856 0.3694

500 0.0780 0.3389

20,000 - 0.2532
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Figure 3. RMS translation error for 200 particles against ground truth obtained from a Leica MS60
Total Station. Shaded areas represent standard error deviation. The inclusion of mesh constraints
dramatically improves position estimates and the standard deviation of the error.

3.2. Ultrasonic Guided Waves

Autonomous robotic inspection on a large structure may be enabled by the use of
ultrasonic measurements. Indeed, these waves may be leveraged to improve both local-
ization and mapping capabilities by relying on acoustic echoes on the structural features
(individual metal panel boundaries, stiffeners. . . ), as illustrated by Figure 4. Furthermore,
they can be used to enable long-range inspection, which has not yet been established for
current robotic systems. In the following, we describe how UGWs are integrated in the
current magnetic crawler and how they can be leveraged to achieve ultrasonic mapping.

(a) (b)

Figure 4. (a) Ultrasonic guided waves reflecting on the edges of a metal panel in a simulated
environment. (b) Example of ultrasonic measurement acquired on an isolated metal panel in pseudo
pulse-echo mode (i.e., with two nearly collocated transducers).

3.2.1. Integration of UGWs

In this part, we describe how UGWs were integrated within our magnetic crawler
system. The robot is equipped with a single piezoelectric contact transducer placed in its
head. This is in contact with the surface to simultaneously generate and receive UGWs
propagating in the material. We used an electrical circuit, shown in Figure 5, to emit
and receive UGWs using a single transducer in true pulse-echo mode. The principle
was to protect the acquisition device during excitation at high amplitude. Otherwise,
the acquisition device could be damaged. This was achieved by the use of Zener diodes
that limited the voltage level at their ends while only inducing little deformation on low-
amplitude signals (that contained the acoustic echoes). The robot was also equipped with a
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tether that carried a tube to continuously bring water at the interface between sensor and
surface with an electrical water pump.

Figure 5. Schematic of designed electrical circuit to use a true pulse-echo setup. D1 and D2 are
commutation diodes, DZ1 and DZ2 are Zener diodes, and R is a resistor.

The sensor used for our prototype system was a contact V103-RM U8403008 piezoelec-
tric transducer. This sensor was used as it is a common industrial sensor that was easily
available. Although it can generate and receive UGWs, it is not an optimal choice, as it
should be used for 1 MHz signals; for our application, lower frequencies are typically used.

3.2.2. Ultrasonic Mapping via Beamforming

The chore of our methodology to achieve acoustic localization and mapping was beam-
forming [23]. This spatial filtering approach can focus, in the localization space, the energy
contained in the measurements acquired over the robot trajectory. Hence, acoustic reflectors
(such as individual metal plate boundaries) can be localized by retrieving local maxima
on beamforming results. The principle of this strategy was successfully demonstrated
in [14] to achieve acoustic SLAM. An example of plate geometry reconstruction using our
magnetic crawler system is provided in the Section 4.

4. Field Experiment
4.1. Mapping and Obstacle Detection

In this section, we present our approach to the mapping problem while taking into
account contextual constraints such as obstacles and the need to detect free space.

Maps are important to robots since they can be used for obstacle avoidance, path
planning, and to constrain the attitude of the robotic system. Maps are also important to
human operators looking for visual feedback from the robot’s perspective.

As previously discussed, the robot was equipped with an RGB camera, a 3D lidar,
and an IMU. In addition, optical sensors capture wheel odometry. Further, as discussed in
Section 3.1, an Extended Kalman Filter (EKF) [24] filter was used to fuse IMU and wheel
odometry data. For the remainder of this article, the obtained pose is further referenced to
as the “EKF pose”.

To compensate for uncertainties such as drift, pose correction is performed using a
constrained version of Iterative Closest Point (ICP). The latter approach is further discussed
in Section 4.1.3.

4.1.1. Stop and Map

The majority of filtering techniques, such as the Kalman filter [25], introduce time
delays between filter estimates and actual observations. In that sense, the generated
estimate satisfied control requirements for autonomous driving. Nevertheless, mapping
was more challenging. To solve this problem, a stop-and-map approach was implemented
in the autonomous planner, i.e., the robot task manager.

As shown in Figure 6, the proposed mapper is idle while the robot is moving and only
captures data when the robot stops. Once static, the point cloud is accumulated, and the
pose is captured.
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Drive, then
STOP

Accumulate
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Text Text

Figure 6. Flowchart of proposed mapper: grayed-out rectangles denote repeated behavior.

The latter approach thus does not suffer from data delays. The EKF pose is then
captured around half a second after the robot stops. Minimal stop time was set to 3 s
to allow for the on-board laser to accumulate sufficient points for data fitting. This is
especially useful with 3D lidars equipped with a scanning unit, such as the Livox Mid-70.
A sample accumulated cloud can be seen in Figure 7.

(a) (b)

Figure 7. RGB vs. intensity map showing metal plates used to test the magnetic crawler robot in Metz.
(a) Accumulated intensity point cloud taken from the Livox Mid-70; (b) RGB camera feed.

4.1.2. Obstacle Detection

The accumulated point cloud was then voxelized and processed through RANSAC [26]
by fitting a second-degree manifold [27]. The choice of a second-degree manifold is rooted in
the application in which the mapper is used: ship hulls and storage tanks using autonomous
robots for inspection are often significant in size. As a result, nonflat surfaces comprise
a significant radius. The curvature is thus locally negligible, i.e., the surface around the
current position of the robot can be represented as a plane. Nevertheless, a second-degree
manifold better captures surface geometry at unique places with an important curvature,
such as at the tip of the ship structure.

Lastly, RANSAC inliers denote free observable space that belongs to the detected
manifold, and outliers denote positive obstacles such as protruding objects and negative
obstacles such as holes.
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4.1.3. Pose Correction and ICP

ICP is an algorithm used to stitch overlapping point clouds. It works by iteratively
finding the transformation that better aligns point cloud pairs. An ICP prior on the trans-
formation to-be-found improves the chances of converging to a valid solution [28].

Odometric EKF still suffers from translational drift. To that end, ICP is used between
accumulated point clouds to reduce drift between successive stops. Nevertheless, ICP does
not always properly converge on featureless surfaces. To overcome this issue, a constrained
version of ICP was implemented. The purpose of these constraints is to prevent ICP from
reducing the quality of the estimated EKF pose when it does not properly converge. The list
of constraints can be found in Table 2.

Table 2. List of ICP constraints.

Constraint Type Value

2D Constraint φ = θ = Z = 0
Maximal rotation norm 0.05 rad.
Maximal translation norm 0.35 m.
Minimal differential rotation error 0.01 rad.
Minimal differential translation error 0.01 rad.

After running few ICP iterations and due to point cloud overlap, the density of points
should be standardized for both the newly accumulated point cloud and the previous ICP
map. To that end, a density filter is applied to both inputs. Although filter value depends
on point cloud density, its true purpose is to have the same density (value) for both inputs.
The full list of ICP parameters is listed in Table 3.

Table 3. List of ICP parameters used for pose correction.

Parameter Name Mapper

Matcher KD tree matcher
Matcher KNN size 15
Error minimizer size Point to Plane
Max iterations 25
Octree grid filter 0.01
Maximal input point density 400,000
Maximal ICP map point density 400,000

Lastly, the map pose is corrected according to Equation (1), where C is the ICP correc-
tion inferred by matching the current accumulated cloud to the previously accumulated
point cloud, P is the current pose in the reference frame of the map, Pcprev is the previously
captured EKF pose when the robot was still static, and Pcnew is the most recently captured
pose with the robot also being static.

Pnew = PprevP−1
cprev Pcnew C (1)

4.1.4. From Point Clouds to Texture Maps

Up to this point, the proposed framework still lacked a high-level visual component
to be used by the system operator for visual feedback, manual driving, and debugging a
possible snag. So far, point clouds have proven to be versatile data containers, and they are
the precursors to creating maps. Nevertheless, there is a need for a representation that is
finite in space and intelligible for people who are not point cloud experts. To that end, a
multilayer texture map was conceived.

The generated texture is a projection of the RGB image on the robot surface. In the
latter context, we assumed that the ground was flat. Ground pixels are projected onto
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the camera frame for color extraction. For this, we used pinhole model p = A[R|t]Pg,
where Pg is a 3D ground point, [R|t] is the extrinsic matrix that provides the geometric
connection between lidar and camera frames, and A is the camera intrinsic matrix obtained
by checkerboard calibration. Lastly, the colors of ground points Pg are inferred by copying
the colors of the nearest pixel after projection, i.e., those of p(u, v, 1).

We projected the RGB image onto the ground surrounding the robot. What followed
was the fusion of relevant semantic information, such as free spaces and obstacles, extracted
from point cloud data. As such, pixels not seen by the lidar i.e., unobservable space, are
marked in black, pixels belonging to obstacles are marked in red, and free space keeps the
original RGB colors. The texture map comprises 3 layers:

• A bottom layer consisting of a dynamically updated projection of the ground portion
of the image drawn at the estimated pose.

• A middle layer that overwrites the bottom layer using a clean representation, updated
every time the robot stops.

• A top layer consisting of metadata such as grid resolution.

4.2. Ultrasonic Mapping

At the time of the writing, our prototype setup for emission and reception of UGWs
was not yet fully established for successful operation on a large structure such as a storage
tank. Still, we obtained experimental results with our system in a laboratory environment
to only map the boundaries and the inner surface of an isolated 1700 × 1000 × 6 mm steel
plate that was placed nearly vertically. A picture of the experimental setup is provided
in Figure 8a. In the experiment, IMU readings were integrated into the robot trajectory
estimation for accurate robot heading. However, UGW measurements were not used for
robot localization.

Figure 8. Plate geometry mapping with our robotic platform relying on UGWs. (a) Experimental
setup. (b–e) Mapping results at different steps along robot trajectory. Red arrow, robot pose; red line,
trajectory.

Obtained results using the beamforming method presented in [29] are provided in
Figure 8b–e at different steps of the robot transect resulting from manual driving. Results
show that acoustic mapping using UGWs and our magnetic crawler system is feasible,
as the plate dimensions and plate orientation with respect to the robot are recovered
with sufficient precision. Detailed results are available in [29]. Overall, the experiment
demonstrated the feasibility of ultrasonic mapping using guided waves and our magnetic
crawler system. In future work, the combination of UGW measurements with other sensors
and their deployment in more realistic environments should be investigated to achieve
acoustic SLAM and eventually long-range defect detection.



Sensors 2022, 22, 3235 11 of 14

4.3. Autonomous Navigation

The autonomous navigation system on the crawler consists of a mission system and
a set of commands or tasks that can be used by the mission system. The mission system
allows for the user to plan and create a mission in advance, consisting of a set of commands
or tasks affecting the crawler’s behavior. For example, the crawler can schedule a task to
continually monitor for objects while simultaneously performing a vertical transect for a
set distance or until it reaches a set height.

In addition to more basic commands, such as performing vertical and horizontal
transects, and rotations, the crawler can also utilize a mesh for control. In this case,
the crawler gives a position on or near the mesh, generates a path to this position, and
follows the trajectory to the position.

5. Infield Intervention

In this section, we show how the proposed system performed during infield interven-
tions. To validate our system, a Leica MS-60 total station was used to track the real-time
position of the crawler robot. Using NTP and PTP protocols, time synchronization was
performed among on-board sensors, the on-board computer on the crawler, the total station,
and the operator’s computer.

The experimental environment consisted of the large metallic storage tanks shown in
Figure 1b. During the experiments, the robot was given the task of autonomously driving
on the structure. Further, the on-board lidar was used to detect nearby obstacles. During the
entire process, the robot captured ultrasonic measurements while mapping the structure
in real time.

5.1. Pose and Autonomy Evaluation

For the mission on the metallic tank, the crawler was given the goal of performing
a vertical transect to the top of the tank, returning to the bottom, rotating, and then
performing a horizontal transect (see Section 2). The particle filter ran in real time on the
crawler’s embedded computer with 200 particles. With 200 particles, the crawler was also
able to use this localization for control due to the high accuracy of the particle filter (see
Section 1).

In addition to the standard controls, we were also able to test the mesh-based control.
In this case, the crawler was able to successfully create a path on the mesh data structure
and use that path to navigate to the given location on the real surface.

5.2. Mapping and Texture Generation

As shown in Figure 9, the mapping algorithm provided semantic information that
could be interpreted by both humans and computers. As expected, ICP did not always
converge, but it improved the result when it did. When ICP did not converge, the fused
pose was used instead.
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Figure 9. Accumulated point cloud with obstacle detected. Texture map shows free space in real
world colors, the same obstacle detected in the point cloud (red), and previously observed free
space (green).

6. Conclusions

This paper showed the potential afforded by autonomous inspection vehicle systems.
By using the state of the art in localization, mapping, and the processing of ultrasonic guided
waves, we showed how we can create an autonomous systems capable of navigating on its
own while providing qualitative visual and quantitative feedback through the analysis of
map and ultrasonic data. The development of such techniques is crucial to lowering costs
associated with storage tank and ship inspections, and to decrease the already significant
human risk. In this work, we showed how to generate and improve pose estimates,
for instance, by using the mesh of the structure to constrain the pose. Semantic texture
maps were also generated for navigation and obstacle avoidance. Lastly, we integrated
ultrasonic measurements in our system to localize the boundaries of a metal panel using
ultrasonic echoes.

Future work consists of improving the robot autonomy, for instance, by integrating
data reported from the Unmanned Aerial Vehicle (UAV)s, Autonomous Underwater Ve-
hicle (AUV)s, and the above-water crawler. The latter integration is needed to achieve
a comprehensive understanding of structural integrity and for the precise localization
of defects.
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Abbreviations
The following abbreviations are used in this manuscript:

EKF Extended Kalman filter
UGW Ultrasonic guided wave
PF Particle filter
ICP Iterative closest point
SLAM Simultaneous localization and mapping
GPS Global positioning system
IMU Inertial measurement unit
DoF Degrees of freedom
SLERP Spherical linear interpolation
RMS Root mean square
CAD Computer-aided design
UWB Ultrawide band
MDPI Multidisciplinary Digital Publishing Institute
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