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Abstract

An interaction of laser pulse, containing a few cycles, with substance is a modern problem,
attracting attention of many researches. The frequency conversion is a key problem for a
generation of such pulses in various ranges of frequencies. Adequate description of such
pulse interaction with a medium is based on a slowly evolving wave approximation (SEWA),
which has been proposed earlier for a description of propagation of the laser pulse, contain-
ing a few cycles, in a medium with cubic nonlinear response. Despite widely applicability of
the frequency conversion for various nonlinear optics problems solutions, SEWA has not
been applied and developed for a theoretical investigation of the frequency doubling process
until present time. In this study the set of generalized nonlinear Schrédinger equations
describing a second harmonic generation of the super-short femtosecond pulse is derived.
The equations set contains terms, describing the pulses self-steepening, and the second
order dispersion (SOD) of the pulse, a diffraction of the beam as well as mixed derivatives.
We propose the transform of the equations set to a type, which does not contain both the
mixed derivatives and time derivatives of the nonlinear terms. This transform allows us to
derive the integrals of motion of the problem: energy, spectral invariants and Hamiltonian.
We show the existence of two specific frequencies (singularities in the Fourier space) inher-
ent to the problem. They may cause an appearance of non-physical absolute instability of
the problem solution if the spectral invariants are not taken into account. Moreover, we claim
that the energy preservation at the laser pulses propagation may not occur if these invari-
ants do not preserve. Developed conservation laws, in particular, have to be used for devel-
oping of the conservative finite-difference schemes, preserving the conservation laws
difference analogues, and for developing of adequate theory of the modulation instability of
the laser pulses, containing a few cycles.
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Introduction

A well-known process of second harmonic generation (SHG) by the laser beam was the first
nonlinear optical effect, which was observed by P. Franken et al. [1] in 1961. One year later, J.
Armstrong, N. Bloembergen et al. [2] published the fundamental paper, dealing with the opti-
cal frequency conversion, in which the coupled nonlinear equations were developed and many
explicit solutions of these equations were obtained in the framework of the plane wave approx-
imation. During passed decades the SHG was widely observed: in plasma optics [3-5] and
nonlinear optics, including high-harmonic generation [6-12], and in a medium containing
nanoparticles [13, 14], and in semiconductor [15]. In [16] the SHG at the boundary between
dielectric media is analyzed. Obviously, this list of papers can be easily increased.

Many researchers pay an attention to an investigation of various factors, which restrict the
frequency doubling efficiency. For example, in [17] the effect of a group-velocity dispersion
was considered. In [18] the authors have considered an influence of interplaying between two
types polarizations of the pulse at the fundamental frequency on the frequency doubling effi-
ciency. With increasing of the laser pulse intensity it is necessary to take into account a cubic
nonlinear response of a medium under the SHG. An influence of the self-modulation as well
as cross-modulation of the laser pulse on the frequency doubling efficiency was investigated
experimentally and theoretically (see, for example [2, 19-28]). It should be stressed that the
most general analytical theory of this process has been developed recently in [28], taking into
account the time-dependent pulse shape and without using the basic wave energy non-deple-
tion approximation on the base of using the integrals of motion (conservation laws) of the
problem. We notice that the authors of [22] have obtained the most (but not all) solutions of
this problem in the framework of long pulse duration approximation. In [29] an effective way
for increasing of SHG efficiency in bulk medium was demonstrated by using of the incident
beam with a ring (tubular) profile. This leads to re-profiling of the beams due to their diffrac-
tion and, therefore, to decreasing the beam phase distortions.

New opportunities appeared at SHG under the big phase-mismatching, so-called cascading
SHG [30-33]. This process allows us to achieve an effective cubic nonlinear response in a
medium with a quadratic nonlinear response. This effect was firstly predicted by Yu. N.
Karamzin and A. P. Sukhorukov [34] in 1974. Later, it was used for a compression of the soli-
ton with femtosecond duration [30, 34-50], and for the beam self-focusing [51-53], and for
using the cascading SHG for suppression of the optical pulse intensity fluctuations, occurring
in a sequence of pulses with randomly variations of their maximal intensities [54-57]. Such
sequence of the laser pulses is produced by a laser, operating at the free generation mode. The
total duration of the pulses sequences is equal to milliseconds. Therefore, the cascading SHG
allows realizing the laser generation mode that is similar to the Kerr-locked mode applying for
the femtosecond laser system.

There are a lot of other schemes of SHG, using the modern substances (see, for example,
[58-84]) and at a present time the problem is still actual and important for various applica-
tions. Among these applications, we stress using of SHG for a measurement of pulse parame-
ters and of parameters of a medium as well as for visualization of various fast processes,
occurring in the substances. The most famous approaches of parameters measuring are SPI-
DER (spectral interferometry for direct electric-field reconstruction) [85] and FROG (fre-
quency-resolved optical gating) [86, 87]. Also, in [88], a technique, based on combination of
FROG spectra measurements was proposed to completely characterize the amplitude and
phase of an ultrashort pulse in space and time. Mix FROG method was implemented in [89].
Thus, the frequency doubling of the optical pulse, containing a few cycles, is of practical inter-
est until present time. However, in this case it is necessary to take into account the self-
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steepening of the laser pulses on both fundamental and doubled frequencies. According to our
knowledge, the first analysis of this problem was made numerically in [90] at the group veloc-
ity synchronism and phase matching, without taking into account the beam diffraction and
the second order dispersion influence on the pulses interaction. For writing the corresponding
equations, the authors have applied an approach, which was developed first by N. Tzoar and
M. Jain [91] under the investigation of the single pulse propagation in a medium with a cubic
nonlinear response. Experimental observation of the self-steepening influence on the pulse
spectrum deformation was demonstrated in [92]. Then, this approach was successfully used
for describing the processes of a laser pulse propagation in the optical fiber [93]. The corre-
sponding nonlinear Schrodinger equation (NLSE) contains the first time derivative of a non-
linear medium response. This equation was derived using the slowly varying envelope
approximation (SVEA) and named as generalized NLSE.

Taking into account a laser beam diffraction, T. Brabec and F. Krausz proposed in 1997 a
new approach, so-called slowly evolving wave approximation (SEWA). Derived equation was
also named as the generalized nonlinear Schrédinger equation (GNLSE) [94]. Let us note that
the SEWA requires not only an envelope of a wave packet, but also the phase changing must
slowly vary as the pulse covers a distance, which is equal to the wavelength. The main feature
of GNLSE consists in its containing of mixed derivatives on time and spatial coordinates, and
of the second-order time derivative of a medium nonlinear response (which describes the
pulse self-steepening).

It should be emphasized that a differential operator of the GNLSE, written in [91, 93], coin-
cides with a differential operator of the GNLSE, derived in [94] if the optical beam diffraction
does not take into account. They differ only by the factor two at the coefficient characterizing
the self-steepening term of the equation. Obviously, these equations written in the dimension-
less units look the same.

Finding of conservation laws attracts an attention of various authors (see, for example,
recently published papers [95-99]). In papers [100, 101] we derived the conservation laws for
the frequency doubling process if the self-steepening of the pulses occurs. However, until pres-
ent time, the set of GNLSEs describing a SHG of super-short femtosecond pulse with taking
into account a diffraction of the laser beam (it means that this process is described in the
framework of the SEWA) as well as their conservation laws were not derived. We do this in the
present paper.

As is well-known, the invariants are very useful for computer simulation of the laser pulse
propagation because the equations describing various problems of nonlinear optics are nonlin-
ear ones and as a rule they do not allow us to find their analytical solution. As a consequence,
the finite-difference time-domain (FDTD) method [102, 103] for computer simulation of a
propagation of the optical pulse, containing a few cycles, is usually employed. For example, in
[104] the authors develop the time-transformation method based on FDTD. An alternative
method, which permits applying fast numerical algorithms, is a generalized source method
(GSM) [105]. Linear GSM was adapted to describe the SHG in diffraction gratings, containing
non-centrosymmetric materials [106]. Obviously, there are other papers, in which a computer
simulation is applied for an investigation of the SHG problem. As a rule, a split-step method
was used at computer simulation.

Another approach for computer simulation is based on developing of the conservative
finite-difference schemes [107]. They allow preserving the difference analogues of the corre-
sponding conservation laws. Obviously, it is necessary firstly to write these conservation laws.
With this aim, we propose a new transform for the derived GNLSEs, which reduces the equa-
tions to the form containing neither mixed derivatives on time and spatial coordinates nor
time derivatives of the nonlinear response of a medium. Using a new set of GNLSEs, we obtain
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the energy invariant, spectral invariants and Hamiltonian. We add some specific requirements
to the problem statement (excluding of the singularities in frequency space) to avoid a develop-
ment of non-physical instability of the SHG process at taking into account the pulses self-
steepening. These requirements, together with the spectral invariants, are also important for a
validity of the energy conservation law.

Generalized nonlinear Schrédinger equations derivation
Derivation of the equations for SHG process in the framework of SEWA

Derivation of the equations describing the optical frequency doubling in the framework of
SEWA for an electric field strength E(z, x, t) starts from the well-known wave equation:

(0% + V3)E(e,5,1) — 50:D(z,5,1) =, 1)

written above in 2D case, for example. The laser pulse propagates along z coordinate, ¢ is

a time, c is the light velocity in a vacuum, x is a transverse coordinate to the optical pulse
propagation direction, an operator V> = 8i is the transversal Laplace operator. We
choose only x-coordinate as a transverse one for simplicity. This does not restrict our con-
sideration. The function D(z, x, t) describes an electric field induction and is written in the
form:

D(z,x,t) = E(z,x,t) + 4nP(z, x, ), (2)

the function P(z, x, t) is a medium polarization, containing its linear and nonlinear
responses:

P<Z7'xﬂ t) :Plin(z7x7 t)+Pnl(z7'x’ t) (3)

For linear non-instantaneous medium response Py;,(z, x, t) the following representation
+o0
P, (2%, 1) = / () E(e,x, t — £)de (4)
0
is widely used, which yields in the relation for a dielectric permittivity:

e(t) = % / " e () exp (—ioot)dw, E() =1+ 477 (o), (5)

—00

here 7" (w) is a linear electric susceptibility of a medium at the frequency w.

Function P,(z, x, t) describes a nonlinear response of a medium. If we consider a medium
with the quadratic nonlinearity, then this function is defined as P,; = y®E? and 4 is a qua-
dratic electric susceptibility.

The next step for the wave equation reduction consists in representation of an electric field
strength E(z, x, t) in a following manner:

E(z,x,t) = E,(z,x,t) + E,(z,x,t) = %(A1 (z,x, 1) exp [—i(w,t — k,2)]+ (6)
+A,(z,x,t) exp [—i(2w,t — k,z)] + c.c.),

where E(z, x, t), E;(z, x, t) are the electric field strengths of waves, propagating with carrier fre-
quency w,, and with doubled frequency 2w, and with wave-numbers k, k,, correspondingly.
In (6) we introduce the slowly varying envelopes for both wave packets and denote them as
Ai(z, x, t) and A,(z, x, t). Symbols c.c. denote a complex conjugation. The linear polarization of
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a medium at these frequencies can be written as

1
P, (z,x,t) = Py, (z,x,t) + Py, (2, %, 1) = 3 (L,(2z,x,t) exp [—i(w,t — k,z)]+

ling

(7)

+L,(z,x,t) exp [—i(2w,t — k,2)] + c.c.).

The corresponding nonlinear polarization of a medium at chosen frequencies is written as
follows

+(2)
Pz, 1) = E (Al exp [=i(20,t — (2K, — k,)z — k,2)}+

+2A%A, exp [—i(w,t + (2k, — ky)z — k,2)] + c.c.).
Let us remind that the following relations for wave-numbers are valid:

ky = n,(0,/c) = /Ew,)(,/c),
ky =y, (200,/¢) = \/€(20,)(20,/c),

where n,, n,, are the medium refractive indexes at the frequencies w, and 2w,,
correspondingly.
Taking into account the expressions (6) and (8) and (1) transforms to the following form:

1 ‘ PA, . OA PA ,
3 &P (ik,z) K 8z21 + 2ik, 8—z1 — KA, + 8x21> exp (—iw,t)—

1 .
- SO e Am P A exp it + (2~ )] +

1 _ PA, . OA P A, .
+5 exp (ik,z) [(ﬁ + 2ik, 8—; — kA, + 8722> exp (—2iw,t)—

1 o o
—gaf(DQ(z, x,t) + 2y P A exp [—i(2w,t — (2k, — kQ)Z)])] +c.c. =0,

where Dj(z, x, t), j = 1, 2 is a linear part of the electric field induction at the frequencies w, and
2w,, correspondingly:

Di(z,x,t) = (A;(z,x,t) + 4nL,(z, x, t)) exp (—ijo,t). (10)

Let us multiply (9) by exp(- ik,z) or exp(— ik,z). Then, we integrate each of these expres-
sions over the corresponding wave period, taking into account the orthogonal property of the
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sine and cosine functions. Then, (9) can be reduced to the following equations:

L 2ik, —2 — KA, + 1+

A OA, 5 A
9272 dz Ox?

dry@ o N’ . . .
+7 ]. + _8_ A1A2 eXP [_l(2k1 - kZ)Z] CXP (_lwot)_

2
¢ o

1
—gafDl(z, x,t) =0,

A, 0A, A, 1)
— kA,
0z* 29z Ox?
2y (20,)” i 0
er (1 + 21 ot ) A?exp [i(2k, — k,)z] | exp (—2iw,t)—
Lo,
—;('iDQ(z7 x,t) =0.
Let us note the Fourier transform property:
+00 _
oD Dy(z,x,1t) __naf[ ‘ D,(z,x, ) exp (—iot)dw =
| s (12)
=35 o’D;(z,x,w) exp (—iwt)dw, j=1,2.
Therefore, (11) can be written as:
A, 0A, DA,
2ik, — — kA,
( oz TG, pe
4 i 0
4 n}’CQ (1 +La_) AjA, exp [—i(2k, — kz)z]> exp (—iw,t)+
1 o w? -
t o exp (—iwot)/  E()A, (25,0 — o) expl-i(w — 0, )ldo =
A, . 04, ., | OA (13)
( oz Tk, ThAt e
21y (20,)° i 9\ .
+w ( *2;3_) AZexpi(2k, — k,)2] | exp (—2ie,t)+
1 +oo 2 ~
+ o exp(~2io,) / @ &), (25,0~ 20,) exp [0 — 20,))do> =
=0.
Taking into account the dispersion relation:
?
K(o) = (), (14)

PLOS ONE | https://doi.org/10.1371/journal.pone.0226119 December 12, 2019 6/33


https://doi.org/10.1371/journal.pone.0226119

@ PLOS|ONE

Generalized nonlinear Schrodinger equations

one can write (13) as follows

O’A 04, DA
(822+2k8 kA+a +
@2 ;
+4W2w° (” : gt) AJA, exp [—i(2k, —k2)z]> exp (—iw,t)+ (15)
c
1 +00 ~
+2— exp(—iwot)/ K (w)A,(z,x,0 — w,) exp [—i(w — w,)t|do = 0,
n —00
d°A, 04, , A,
A,
(G 2k 52— o, + 5+
21y? (2m,)° i 9\, .
t—— 1+2—woa— A exp [i(2k, — k,)z] | exp (—2iw 1)+ (16)

+2i exp (—2iw,t) / K(w)A,(z,x,0 — 20,) exp [—i(w — 2w,)t]do =

=0.
Normally, we expand k(w) in a series near the frequency w, in (15):
8(71 a\ 2
(k + Z (@ _n!w") ) _
o R N (17)
= (kl Fho—0)+ 20— o)+ 2%)
and near the frequency 2w, in (16):
O™ k( (0 —2w,)" ’
<k + Z 8(0’" w2, m! > B
(18)

2
—<k2+sl(w—2wo) = (o —2w,) +Z s 260 ),

here 3, and s,,, are the n—th or m—th order derivatives of the wave number at the frequencies
w, and 2w,, correspondingly.

Let us neglect the terms f,,, s,,,, 1, m = 3, 4, . . . referring to the third order dispersion and
other higher terms in (17) and (18). Also, we neglect the term (w — w,)*. Thus, (17) and (18)
take the forms:

k(w) = k? + 2k, (0 — ,) + k By (0 — wo)z + ﬁ?(w - w0)2 + BBy (w0 — wa)s, (19)

k() = K + 2k,s, (0 — 20,) + k,s,(0 — 20,)"+

2 3 (20)
+s2 (0 —2mw,)" + 5,8, (0 — 20,)".
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After Inverse Fourier transform, we obtain the following equations set for describing the
frequency doubling process:

, ., O
((ik, + &) + %)Aﬁ—
) a 82 82 ) 83
+<k§ +21k1ﬁ1&_k1ﬁ2ﬁ_ﬂfﬁ_ iB.p, %)Aﬁ' (21)
4ra?y® i 9\ . )
—I—T (1 + w—oa> AjA, exp (iAkz) = 0,
((ik +2)2 - a—2)A -
T e T e
.0 o 0
+ (kﬁ + 2ik,s, Frin ks, Frie s; o iss, %> A, + (22)
21(2m,)" i 9\, o
+T 1 +2—woa Al exp (—iAkz) = 0.

Above Ak = k, — 2k; is the phase mismatch. (21) and (22) are called as the set of generalized
nonlinear Schrodinger equations (GNLSEs).

Coordinate system transform

First type of coordinate system transform. In a coordinate system moving with the first
wave packet

fiZ, T:tiﬂlza (23)

(21) and (22) could be re-written as follows:

, ) a\’> &
((lk1+8_£_ﬁla) +%>A1+

‘ . 0 o > . ok
+(kf+21klﬁla_klﬁ2ﬁ_ﬁ?ﬁ_lﬁlﬁ2%>Al+ (24)

dn(w,) 3@ i 9\’
TR L (14 L) ATA, exp (iAKE) =
+ 2 +wo 7 ATA, exp (iAkE) = 0,

, ) a9\’ o
((zkz—i—a—é—ﬁla) +%>A2+

) 0 N >
+ (kg + 21k251 a — k252 % — S? % — 15152 %> A2+ (25)
21(2,)"2?
+ 2
[

i 9\, ,
(1 + 2_0)05) Al exp (—iAkE) = 0.
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Let us raise to the second power the expressions in brackets and then neglect the terms with

the second order derivative on & — coordinate:

L0 LD A
(21[{18—5— 21/31]{1&— Zﬁl 8581 -‘r@)Arf‘
‘ a 82 82 ) 83
+<21k1ﬁla— klﬁ?ﬁ_ﬂiﬁ_ 1ﬁ1ﬁ2%)A +

An(w,)’7? i 9\’ ,. .
O (1 ) AjA exp (i8kE) = O,

, 0t
0 o o
<21k + = —2ipk,— — 2P, 9% + 8x2> A+
S, o >
+ (k% + 2ik,s, 5 ks, Feh s; pri is,s, %> A+
220, (i O\, _
2 1+ S0, O Af exp (—iAkE) =

By grouping the terms in (26) and (27) and dividing them by 2ik;, j = 1, 2, we obtain:

iy ONOA, iBy (| iB ONTA i DA,
(H >ag+ <+ K, Ot 812 2%, O

21w, y? i 9\, -
—is 1 +;a— ATA, exp (iAKE) = 0,

(0]

i, i (B, +s\ 0\ 04,
(“k af)a:‘wl‘*)(”z( K, )af)aﬁ

+i52 144 ig TA, _L%_
2 k,0t) ot> 2k, Ox

2nw,y®
—i

i 9\, ‘
<1 + T%E) Al exp(—zAkf) =0.

Cn?m

(26)

The set of Eqs (28) and (29) describes the SHG process for the pulse with super-short dura-

tion, which is about a few femtoseconds.

Further reduction of these equations is a consequence of the following assumptions.

1. The group velocities of pulses and their phase velocities differ insignificantly:

k
ﬁl__l <<]-7
wﬂ
k,
-2«
s 20, <

(30)
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2. Difference between inverse values of the phase velocities of waves is many times less than
unity:

Ak

20

o

k, k

20, o,

< 1. (32)

As aresult, (28) written with respect to the wave for basic frequency w,, reduces to

i 0\ (0A, if,0°A,
(1) (32 3 %0)-

i O"A, 2mo,y?i i 9\ . , 3)
—%W—T 1+w—a AlAleXp(lAkf) :0,
1 » [
and (29) takes the following form:
i 0\ [0A 0A, is,0’A

14 L 9N(%% g (O 1504

() (G- -0 555 »
i A, 2nw,y®i i 0\ . ,

Second type of coordinate system transform. In a coordinate system moving with over-
age velocity

_Bits, (35)

the set of Eqs (21) and (22) could be re-written as follows:

(1 + i(B, +s,) 8> 0A,

2k, Ot 375
(Bi=s) (1, 136, +5,) ) 04,
T U e o T
‘ 36
LiB (B ONTA, i 0 ()
2 k1 ot ot? 2kl Ox*
2nw, y?i ! ’
i(ﬁ1+51>2 %7
(” ok, 01) ¢
(B —s1) i(3s, + f,) 9\ 04,
> Utk oo
| 37
iy 8 0\ Ph A, ()
2 k,ot) 0t* 2k, Ox
2100 7 Di i 0\ -
e <1 +%E) Af exp (—iAkE) = 0.
20 o
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If the assumptions (30)-(32) are valid, then (36), with respect to basic frequency w,, reduces

to
i 0\O0A, (B, —s) i 0 04,
<1+ @, >8é+ > toa) o T

iB, i 0\ 04, i A,
e T Sl
5 ( to 01) or 2k, 0w (38)

2nw, i i 0\
Y S R BT iAKE) =
o, +w 5 ) 4 Lexp (iAkE) = 0,

and (37), with respect to doubled frequency 2w,. takes the following form:

i 9\04, (B —s) i 0\ 04,
<1+2waf> oz > \Fawad) ot

is, i 0\ A, i JA,
2 (14— -T2
3 ( " o0, &) oF 2k, 0% (39)
2w, Vi i 0\ .,
-k (1 A —iAkE) =
o, +2w pw 2 exp (—iAkE) = 0.

Below we use the First type of Coordinate system transform.

Dimensionless variables and problem statement

Let us introduce dimensionless variables:

t
5_)£7 x_>fa t_)_v (40)
ldif T
AJ 2
A= Ak — Akl 1, = 2k d*. (41)

Above the parameter 7, is a duration of the incident pulse for basic frequency w,, I, is its
maximal intensity, the parameter a is a beam radius.
In new variables, the GNLSE set (33) and (34) takes the following form:

0 0A 2\ A DA
<1+2iya> Rk +1D21<1+21ya> 8t21+iD 2
a 2
+ioc(1 + Ziyat) AjA, exp (iAkE) = 0,
) aA 9 0A, 2\ A,
(1—1—1/8) a¢ <1+z/at)8+zD22<1+z/at> o +

iDO’A
2 Ox2

Ly

2
2+ dor (1 + iy%) A? exp (—iAkE),

which is considered in the following domain
(&x,1)eQ=Q.xQ, Q. =(0,L],
Qa = Qx X Qt = (O7Lx) X (07Lt)7
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with the boundary conditions (BCs) for the functions A;(&, x, £), j = 1, 2:

A A 04, 0
i x=0,L, T t=0,L, _E t=0 - (43)
(E6)e. xQ (Ex) e xQ, (Ex)€Q, xQ,
or
A A o 0
i x=0,L, Y t=0,I, _E t=1 R (44)
(&HeqQ xQ (&,x) €Q. xQ, (&x) €Q, xQ,
and with the initial conditions
Aj E=0 = Aoj(xa t) . (45)

(x,1) €Q xQ,

Above y is a parameter, which is inversely proportional to the doubled frequency 2w, and
the pulse duration T,

1

20,7,

7 (46)
The parameter v describes group-velocity mismatch (GVM) normalized by pulse duration
Ty
s, — By

T

V= Lag- (47)

Parameters D,;, D,, are equal to a ratio between the diffraction length of the beam and a
dispersion length of the pulse for each wave:

L, o’k k,a? O’k
if . 1 .
D, = Ty s <8a)2> == Ws’g” (8@2) ’ (48)
disy 0=, p! w2 w=w, 0=,
L, o’k k,a? o’k
if . 1 .
D22 = —7——Ssign (—) ==, 1 Sign (—) (49)
ldis2 8('02 w=2w, T?, | 3:1; ' |w:2(”a 8602 w=2w,

They characterize the second order dispersion of a wave packet. Parameter D is equal to
unity for chosen normalization of spatial coordinate along which the laser pulse propagates.
Parameter o describes the nonlinear coupling of waves and is defined in the following form

lyy  4mk,a*y® /T
“:ﬂ:nlayv \/_07 (50)
cn

nl (@]

which is written using the following assumption:

12(0) _1(20) -

”w n?w

which does not restrict our consideration. Let us note that if the equality (51) is not valid, then
one can transform the equations with respect to new variables, in which we obtain only single
coefficient (it characterizes the nonlinear coupling of waves for both equations, see [21]).
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Usually, at theoretical analysis of the problem (42), the exponentially decaying functions
Aj(& x,1),j = 1,2 are used as the initial laser pulse distributions:

O"A,
A, = J — 0
] X — 400 ax" x — +00 ’
(&) e, xQ, (EneQ, xQ,

(52)
O"A.
A, = ! 0
] t— %00 ot t— %00 —
(E,x) €. xQ, (E,x) €. xQ,

and instead of the BCs (43) and (44) the set of equations (42) is solved in the following
unbounded (increasing of |x|, |¢| and z) domain

(€,x,1) €Q :Qé xQ xQ,
Qf = (0,+oo),f)x = Qt = (—00,+00).

Below, for definiteness, we use BCs (43). In addition, for convenience, below we use the
previous notation for a longitudinal coordinate: z instead of &.

Equations transform

For transforming the equations set (42) to the form, which does not contain a time derivative
of the nonlinear response of medium and mixed derivatives on time and spatial coordinate, we
use the following equalities:

.0 . it\ O it ]
(HWa)g:weXp (ny)&(geXp (—J—/)) ji=12. (53)

Also, due to a finiteness of the initial distributions of complex amplitudes and boundedness
of the laser pulse propagation distance, let us state the following additional conditions:
2
A,
or?

e Y (54)
(%) €Q, x Q,

Using the transforms (53) and condition (54), GNLSE set (42) can be written as follows (see
detailed derivation in Appendix [A]):

0A, . J°A, D it\ & ([ in
E+ZD21W+2_~/6XP 2_’)) % /0A1(27x,17)exp —2—’)) d’] +

+iot <1 + 2iy %) (A3A,) exp (iAkz) = 0,

0A, 0A, . O°A, D it\ o ! in
6Z +V at +1D22 atz +2,)) eXp V 8x2 /UAQ(Z,X77’])CXP ,y d’? +

+iot (1 + iy %)Af exp (—iAkz) = 0.

(55)

(56)

It should be stressed that these equations will be also used for writing the conservation laws.
For further reduction of the equations, let us introduce the functions:

paxi) = [ Alxner ( ;’;) dj=1,2 (57)

0
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or

e Y (58)
(z,x) €Q, xQ,

—J— A - .
ot A; exp ( 2y> B

Keeping in mind the relations (53) and (58), the set of Eqs (55) and (56) can be written as

follows
oP, LOPA, < ir/) D ['O°P,(z,x,1)
—— +iD —lexp|—=|dn+— | —""dn—
0z ), On? P 2y 2 Jo 8x2' (59)
—201y exp <— 21—:;) AZA, exp (iAkz) = 0,
oP, /faA2 < in> , /fa?A2 ( ir/)
—2+v | —=exp|—— |dn+iD.. —=exp | —— |dn+
az o at p y n 22 0 anz P Y n (60)

2 ta2p2(zvxan)

it
2y Jo Ox? y

dn — oy exp ( /)A? exp (—iAkz) = 0.

Further, let us introduce the new functions Ej(z, x, t), j = 1, 2 in accordance with a rule:

E(z,x,t) = /OtAj(z7 X, 1) exp (W) dn, (61)

and the functions I~:"j(z7 x,t),j=1,2as

- ijt) /‘(/’7 < ijr> )
E = exp|=— A(z,x,7T)exp | — = |dt |dn =
; p(2y av; i( ) exp 2 n

) (62)
gty
= exp <2_y> J, Pi(z, x,n)dn.
Then, (59) and (60) can be written in the following manner:
OE, . O°E, DOOE . .
Bz tiPnga * 2y Gy~ 2vAiA exp (ibkz) = 0, )
OE OE OE, DOIE
2 4v_24iD 2 ———2 — oAl exp (—iAkz) = 0,

0z ot 20 2y Ox?

(2,%,1) €eQ=0Q, xQ,.

These equations should be solved together with the relaxation equations with respect to the
functions E(z, , t), Ej(z, x,t), Aj(z, x, 1):

0 . j
(5— 12iy>Ej — A, (64)

0 _JNg_(2_;1
— ~4: — = .= A. i = . 65
(8t 12y> E, <8t le)EJ A, j=1,2 (65)

Taking into account the BCs (43) or (43'), and initial conditions (45) for the functions

Aj,j= 1,2, we obtain the following BCs with respect to the functions Ej, E ;on time
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coordinate:
‘ OE, ~ OE, 0
I ol R | N T R (66)
(z,x) € Q. xQ, (z,x) €Q, xQ, (z,x) € Q. x Q, (z,x) €Q, x Q,
OE. i
i L)
(&’m) o, 70 (67)

(z,x) €Q, xQ,

As consequence of BCs (43), we obtain the following conditions:

PE,
81-2 =0 = O’ (68)
(z.x) €Q, xQ,
O’E, i OE,
i 7 -
(81’2 12,)) 61’) ‘ -1, 07 (69)
(z,x) €Q, xQ,

if we solve the problem with BCs (43").
Obviously, the BCs for these functions on x-coordinate are

T x=or, W x=or,
(1) €Q, xQ, (1) €Q, xQ,

E‘ —E’ = 0. (70)

The initial conditions for the functions E; E s j=1,2are

E =E,(x,t) = /0 [Ajo(x, n) exp <l(t]%)> dn, (71)

J

n

z=0
() eQ xQ

B0 [ Eenes (D) )

(1) €Q, xQ,

E.

J

All conditions written above will be used at the construction of the conservation laws.

Problem invariants

Using new variables, some conservation laws can be derived.

The conservation law of energy

Theorem 1. The problem (42) with BCs (43) and initial conditions (45) possesses the conserva-
tion law of energy

L pL
I.(2) = / / (JA,|* + |A,|*)dxdt = const. (73)
0 0

Proof. Let us suppose that the functions A; satisfy the conditions (43) and (54). Then, we
multiply (55) and (56) by Af, and the equations, conjugated to (55) and (56),—by A;. Then, we

sum the obtained equations and integrate the resulted equation with respect to x, t coordinates
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in the domain Q,. Thus, we obtain the following equation in Appendix [B]:

d Ly L, ) )
S oA ar -
0 0

D [ []|dP,
2y Jo 0x

> (74)
dx = 0.

2

oP,

t=1, 8}( t=1,
(z,%) € Q. x Q, (2,x) €Q, x Q,

For the validity of the invariant (73) one has to show that the last integrals in (74) are equal

LX
/o

In fact, from (55) and (56) at the time moment ¢ = L, and from the BCs (54), it follows that

to zero:

P, |° ,
|l o &=0i=12 (75)
(z,x) €Q, xQ,

2 b ijn O°P(z,x,L,)
A. _\dp | = — 21" _ i—=1.2. 76
pe (/0 ;(z,x,1) exp ( 2y) n) B 0, j=1, (76)
This yields to the relations
Pj|t:Lt = Clj(z) + CQj(z)x, j=1,2. (77)

It means that the Fourier harmonic amplitudes at the frequencies % and Qi vary with x-coor-
dinate growing. This property occurs even if we consider the laser pulse linear propagation (in
(42) the parameter a equals zero). Obviously, the physical reason of such harmonic amplitude
evolution is absent. Therefore, the functions C,;(z), C;j(z) have to be equal zero. If Cy;(2) will
be equal to nonzero constant then the energy of the laser beam will increase with a propagation
distance. Obviously, a physical reason of this is absent for the case under consideration. Conse-
quently, the amplitudes of Fourier harmonics at the frequencies 1 and ;—/ must be equal zero:

Pj‘ - =0. (78)
(2,x) €Q. x Q,

Thus, the invariant (73) is valid. In a case of the laser pulse nonlinear interaction (o # 0),
the same conditions take place.

Corollary 1. The Fourier harmonics at the frequencies 1 and%}‘ must be absent in the incident

pulses spectra the energy conservation law preservation for the set of equations (42):
L ..
/ A, (x,1) exp (— g_n) dn=0,j=1,2. (79)
0 v

Let us note that if the parameter y tends to zero, then the set of equations (42) reduces to
the set of the NLSEs and the energy invariant (73) is valid. If the spectral harmonics % or ;- are

absent in the incident pulse spectrum, then these spectral harmonics will be absent in the pulse
spectrum computed in any section of a medium. This statement validity is stated by the spec-
tral invariants, which are formulated below.

Spectral invariants

Spectral invariants describe an evolution of spectral harmonic amplitudes at the frequencies *

and - along z-coordinate and show that the amplitudes should not increase during the laser
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pulses interaction. For writing of the Spectral invariants, let us introduce the following addi-
tional conditions:

04,

Ox | x=oL
(1) €. xQ,

=0, j=12 (80)

Actually, in laser physics the propagation distance is boundedness and the domain under
consideration can be chosen in such a way that the additional conditions are valid in this
domain. We note that these conditions are important only for the invariant obtaining and they
are not mandatory for the problem statement. The problem could be solved without additional
conditions. Obviously, instead of BCs (80) one can use BCs (52). We stress that the laser
sources generate the finite beam distribution in spatial coordinates. Therefore, the statements
mentioned above are valid with respect to the domain choice.

Theorem 2. The problem (42) with BCs (43) and additional conditions (78) and (80), and
initial conditions (45) possesses the spectral invariants

L, D L
Iy (2) = / E (z,x,L,)dx = exp (%) / E, (x,L,)dx, (81)
0 0

Lx 7 D: : Lx
Iy, (2) = / E,(z,x,L,)dx = exp (% (f — v)) / E, (x,L,)dx. (82)
0 0

Proof. Let us consider (63) at a time moment ¢ = L, and integrate them with respect to x-

coordinate:
/LX 98, _ Doy +282E1 dx=0 (83)
o \0z 427" 2y Ox? -
L (OE, iD,, D J’E.
2 E,+——2\dx=0. 84
‘l <8z 2 2+2y8x2)x (84)

Taking into account the relaxation Eqs (64) and (65) at time moment ¢t = L,

B E 0, j=1,2
E—l?y ' 1, — 7]_ )~y (85)
(z,x) €Q, xQ,
OF _J E 0, j=1,2
TR | A (86)
(z,x) €Q, x Q,
and additional conditions (78) we obtain:
O’E. 7
ot? ‘ t=1, 4y2l%‘ -1, J 1,2 (87)
(z,%) €Q, x Q, (z.x) €Q. x Q,
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It is easy to see that the third terms in (83) and (84) are equal to zero:

L O, iL,\ [" [=0'P
dx = —t Ldxdn =
0 x? re e <2V> ~/o o Ox? e

iL,\ [" in’\ OP,
= exp 5 eXp _2_’)) a
0

The last integral (88) equals zero due to BCs (43). Thus, we obtain the following problems:

L (OE, iD,
—_— E =
/o (52 4y? 1)‘ -, B0 (89)

(z,x) €Q, xQ,

. (88)

0

b (OE, [(iD,, iv
/ (@‘(77)@’ o B0 (%0)

(z,x) €Q, xQ,

with the initial conditions

Ly L,
/ E (0,x,L,)dx = / E, (x,L,)dx, (91)
0 0

I L
/ E,(0,x, L,)dx — / B, (x,L,)dx. (92)
0 0

Therefore, the invariants (81) and (82) can be obtained as the solutions of the problems
(89)-(92).

Hamiltonian of the problem

Let us use the following substitution for the function A,(z, x, 1):

A,(z,x,t) — A,(z,x,t) exp (—iAkz). (93)

Then, the functions E,(z, , t), E,(z, x, t) can be replaced as follows:

E,(z,x,t) — E,(z,x,t) exp (—iAkz), (94)

E,(z,x,t) — E,(z,x,t) exp (—iAkz). (95)
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Using the substitution (93)- (95), the set of equations (42) can be written in the following
form:

9\ 0A 9\ OA A
142y = | =L +iD, ( 1+ 2iy= Ly iD——!
( * ”at> oz ' 21( * ’”at) oe e
8 2
+ioc<1+2iy§) AjA, =0,
o\ 0A, )
<1 + W&t) . zAk(l + zy§>A2+ (96)
+v(1+4i 0 %JF 1+i 0 82AZ+
"ot) ot "ot) “or

iD&A, AN
+7 a_x2 —‘1-10((1—"-1'))&) A1:O,

which does not contain the terms with exp(+iAkz). Consequently, with respect to the substitu-
tions (94) and (95), the set of equations (96) takes the form:

OE, O’E, D E, .
8 + 21 8t2 + 2_ a 2 QO(VALAZ = Oa
OE, OE, &°E, DOOE, .
B2 TV TPe e t 2 Gy~ IAKE; —o9Af = 0. (97)

Theorem 3. The problem (42) with BCs (43) and additional conditions (78), and initial con-
ditions (45) possesses a Hamiltonian

B /Lx /L: A* ' 82 +262 +A* D @—’_BaZEZ +
=L Dugn 2 X 2\ g T e

a*
8t(

(98)

+ — iAKE,) — ayp(A,(AD)? + A’Z‘Af)] dxdt = const.

Proof. Let us multiply (63) by 2 and the equation, conjugated to it,—by 2. Then, we sum
the obtained equations and integrate the resulting expression with respect to x, t coordinates
in the domain Q, under consideration. Then, we write an equation in the form of the sum of
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integrals:
b 4 (OE OA;  OE: 0A,

/0 / (az o )ddt+
O’E, A
+1D21/ / (8t21 azl

+D / / O°E, A

2y Jo Ox* 0z

N / /Lr OE, 0A;

0z Oz

, < (11 (O’E, DA:
+1D22/ / (Bt; 822_

/ / O°E, 0A;
2y ox* 0z
wf [ e
0z

+v/ /Lf OE, 0A4;
ot 6z

3E* 0A,

O°E; 0A,
o2 0z
82E* 0A,
o 0z

>d dt+

)d dt+

B g

0°E; 0A,
% 0% >dxdt+

25 (99)
5‘E 0A, )d dr

0x2 0z

6A
> 0z

| OE,04, )d "

) dxdt+

ot Oz

—w// / <2AA 04} +AA*ai+A28i+( )28A>d dt =

Oz

Oz 0.

) D ) D
=1, +iDyl, + Q_ylzn + Ly + iDyyly, + Q_ylsz_

—iAkI, + vI; — ayl; = 0.

Analysis of the integrals is made in Appendix [C]. On its base, one can obtain the Hamilto-

nian of the problem under consideration.

Corollary 2. Using the inverse transforms for (93)-(95) the Hamiltonian takes the following

form:
&E, DOOE
A* - 1
/ / [ ( e y8x2)+
OE, DOJ’E,\ OE;
“iD,, —= + — 100
+4; (:D22 52 T > W) + 2 (vE, — iAKE,)— (100)
—ay(A, exp (—iAkz)(A?)’ + A% exp (iAkz)A?) | dxdt = const
Discussion

A few words about applicable range of the laser pulse parameters and a medium at which it

is necessary to use the GNLSEs for a description of the process under consideration. It

should be noticed that the first experiment, which demonstrated self-steepening of one
pulse, was made in paper [91] for the pulse with picosecond duration propagating in optical
fiber about 5 km long. The pulse, propagated this distance, possessed non-symmetrical
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spectrum. Therefore, a key role for application of GNLSEs plays a relation between the dis-
persion length of the pulse and the laser pulse propagation distance. However, the pulse self-
steepening appears at short length (about a few centimeters) of a medium if the pulse dura-
tion is about 10-50 fs.

Another case of using GNLSE for the laser pulse propagation description corresponds to
falling of incident laser pulse with sharp intensity distribution on a medium because an
influence of a time derivative of the nonlinear response of the medium enhances many
times in comparison with the Gaussian pulse propagation. However, contrast temporal
nonlinear response can be induced by the laser pulse if an optical bistability occurs. As
is well-known, in this case the explosive changing of the characteristics of a medium
occurs. As a result, the temporal structure with strong gradient appears. Therefore, a time
derivative of the nonlinear response of a medium increases its influence on the phase
modulation.

A detail analysis of SHG describing in the framework of the GNLSEs has to be made using
computer simulation. Nevertheless, one can suppose some characteristics features of the fre-
quency conversion in such conditions. First, the group velocity of each of wave packets will
depend on complex amplitude of another wave packet. Second, obviously that the pulse spec-
tra will distort and become non-symmetrical. Third, the nonlinear length, that defines the dis-
tance at which the energy of base wave transfers to the energy of the wave with doubled
frequency, will differ for front of the pulse and its trailing part. Fourth, because of the presence
of mixed derivatives, the optical beam diffraction will depend on time moment of propagating
pulse.

Conclusions

In the framework of the SEWA approximation, we derived the GNLSEs, describing the SHG
in a medium with a quadratic nonlinear response for the pulses, containing a few cycles. The
main feature of the equations set concludes in a presence of the second order time derivative
of the nonlinear response of a medium (dispersion of a medium nonlinear response) as well as
the mixed derivatives on time and spatial coordinate.

We proposed the equations transform, which reduced these equations to the other ones,
containing neither mixed derivatives of complex amplitudes nor time derivatives of the non-
linear response. These equations are more convenient for the computer simulation and for
theoretical analysis of the frequency doubling process of the optical pulses, containing a few
cycles.

Based on this transform we derived some conservation laws (invariants) for the SHG prob-
lem. We showed an existence of two specific frequencies (singularities in the Fourier space)
inherent to the problem. They may cause an appearance of non-physical absolute instability of
the problem solution if the spectral invariants are not taken into account. It should be men-
tioned that a presence of such singularities was also discussed in [32] at analysis of the modula-
tion instability occurring in y*-medium. We showed that the energy conservation law is valid
at certain conditions on the incident pulse spectra: the spectra must not contain non-zero
spectral amplitudes at two specific frequencies. Their zero-value amplitudes at the pulse propa-
gation are provided by the spectral invariants. We derived also the Hamiltonian (the third
invariant) of the problem.

All invariants mentioned above should be taken into account at least for developing of
the conservative finite-difference schemes at computer simulation of the problem under
consideration.
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Appendix
A Equation transform derivation

Taking into account the transforms (53), one can write

it\ 0 (0 —it
e (5) 3 o ( (w))%
+iD,, - 2iye 0 82 Le _ +iD82A1+
2 2P\ 9 ) o o P\ Ty 02 (101)
it
+io - 2iyexp | — — +2iy§ AJA, exp (iAkz)| =
Y ot
— for the first equation of the set (42), and
it\ 0 (0 —it 0 (0A, it
iy exp 22 \ ot A, exp 7 + ivy exp %\ o exp —; +
d (9°A it DO’A
__ 102
P ’yexP( >8t<8t2 exP( 7))>+ 200 (102)

+io - iy exp ( t) gt [exp ( l:) <1 - zyaa)Az exp (— zAkz)] =0,

— for the second equation of the set (42).
Then, multiplying (101) by exp (— z%) (2iy) ', and (102) by exp (— ’7‘) (iy) "', and integrat-

ing them with respect to t-coordinate, we obtain:
t=0

o) it  0’A, it OA, it
gz (e (-3;) ) + ot om (- 35) - Gt e (- 5)
(z,x) € Q. x Q,

D & ' in (103)
+5@ (/0 A, (z,x,n) exp <— 2_V>d">+

i exp ( 21—;) (1 + 2iy %) (AzA, exp (iAkz)) =

d it A it DA, it
gz (e (-5)) o5 em (-5) + 0 T e (=)
 OA it
—iDy, 8t22 €xXp <_ V) . +
(z,x) €Q, x Q, (104)

D & ! in
+2—V@ (/0 Ay(z,x,1) exp (—;>d'1>+

+ioexp <— %) (1 + iy %) (A? exp (—iAkz)) =

correspondingly.
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Due to a boundedness of the initial distribution and boundedness of the laser pulse propa-
gation distance, let us state the following additional type of the conditions:

O A,
ot? (=0

(2.) €Q, x Q,

=0,j=1,2 (105)

Then, (103) and (104) become the following ones:

0 it . O’A, it
g2 (1o () - G ()

D& ! in
_ 106
9 o (/0 Al(z,x,n)eXp< 2y>dn>+ (106)

o) it 0A, it\ . 0°A, it
g (e (-5)) 25w (-5) +0a T e (=)
D& ! in
29 _ 107
i (] A (F)an)s )

sinep (=) (145 ) (4t exp (k) =0

which contain the first derivative of the quadratic nonlinearity. Multiplying (106) by exp (%),

and (107) by exp (’—’) , we obtain the following equations:

oA, . 9A, D it\ o ' in
1D A —
82 +1i 21 atg + QV €xp 2,}) axz ‘/0 1(25 X, ’1) exp 2)’ d’/] +

; (108)
+iot (1 + 2iy &) (A}A, exp (iAkz)) = 0,

0A, 0A, . OA,
T e ip T2
5z Vot T P2

D it\ o ‘ in
+2—y exp <;) E (/0 A,(z,x,n) exp <— ?) dr/)—i— (109)

+iot (1 + iy %) (A? exp (—iAkz)) = 0.

+

Let us stress that these equations are used also for writing of conservation laws.
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B Energy invariant derivation

Using (55) and (56) we obtain the equations for the functions A; and Aj*, j=1,2, which can be
re-written as a sum of integrals:

DA, 8A* OA, . OA;
A* t
/ / ( 9z o Bz >dxd +
+ /LX/Lt 8A2A*+%A dxdt+
' o Jo \ Ot ar 2) ™"
, DA, . A
+1D21/0 /U (81‘2 A; _—8t21A1> dxdt+

L (OPA, A

*

at2 ;= 3—t;A2> dxdt+

D [~ M t in it
= o A _in LAYY
+2y/0 A [axg (/0 1(Z,x,17)exp( 2y>d’1> exp (2)2) +
x> ; 12, X, 1) €Xp % n | exp % 1| dx
2 [ ([ emnen(-a)en()
+50 o A (z,x,n)exp | —— |dn | exp | — |Ai+ (110)
2y[/(,ax202(’7)1’y'7py2
L4 in it
T Az(z,x,n)eXP o dn | exp - A, | dxdt+
. Ly L .0 2 )
+io [y Jy 1"'21“/5 ((A1)°A,) exp (iAkz)—
.0 2 A4 ;
- 1_217’& (A2A3) exp (—iAkz)+
.0 )
+ 1—&-1)}& (A2A;) exp (—iAkz)—
0
_(1 — iy 6t> ((AD)°A )exp(zAkz)} dxdt =
=1, + VI, +iDy I3 + iDyls + —

141 + = I42 + i

2y 2y

Below we discuss transforms of the integrals mentioned above. The first one contains the
exact differential of functions A;, A, intensities. Therefore, it is easy to see that the integral I;
transforms to the following expression:

d (b " 2 2
:E/ / (|1A,]" + |A,|") dxdt. (111)
0 0

Also, the integral I, contains the time derivative of function A, intensity:

g |A|

=

dxdt, (112)
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which equals zero, due to BCs (43). As a consequence of the integration by parts, the equalities

I;=0, j=1,2,

take place under the conditions (43) validity.
Let us show, that the integral of the nonlinear terms I5 equals zero. The terms in integral I5
without the parameter y cancel each other and integral I5 can be written as

I, = 31))/ / 81‘ )?A, exp (iAkz) + A’A; exp (—iAkz))dxdt = (113)

For the integrals I4;, I4,, taking into account the functions P;, j = 1, 2 definitions (57) and
the BC (43), we obtain:

&P, OP; 82P* P, e
/ / Ox2 at 8x2 5‘1‘ xat =
Ly 8P* o (0P 8P;
= — 114
//bt( ) at(@)@x}d’“” (1)

OB = OB, d
/ / at ~ B 0 8X t=1, x
(z,x) €Q, xQ,
Thus, (110) transforms to the following equation:
d Ly L
S| iar e iaraan-
dz |, Jo
D [l P, 2 oP, 2 (115)
e — + (=2 dx=0
2')) 0 Ox =1, Ox t=1,
(2x) €Q. x Q, (z,x) €Q, x Q,

C Hamiltonian derivation

As mentioned in (99), we obtain a sum of the integrals. Let us transform them. First, taking
into account (64) and (78) and integrating of the I;; by parts we obtain:

OE; i OE
/ / 828t+y 0z +

L5 82E]. §OE\\ . _ ("] : p
o \dmor 2702 ) |® ’/0 || . *T (116)
(z,%) €Q, x Q,
L |op |?
= - =0, j=1,2.
/0 82 t=1, dx 0, J ’
(2x) €Q. x Q,
The integrals I; are transformed into the following expression:
O’E,0'E;  O°E; O
12 _/ / J J +
! or 8z8t ot 0z0t
(117)

ij (O°E,0E, O’E; O, e ij
o\ ae o T oE oz | | A =Tt ey
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It is easy to see that the integrals J,;; and J,,; are transformed into the following integrals:

_ [ [0 (0B dxd, 118
]2”*/0/0& or at (118)
L 9 2
J oo
o = / / ( o E >dxdt. (119)
Thus, the integrals I; take the form:
Lt
121_/ / az< : az)dxdt (120)
The integrals I3; can be written in the following way:
E (0°E  ij OF;
/ / 8x2 6z8t+2y Bz +
OE; (O’E,  ij OE,
] J J ]
dxdt =
Ox? (6281‘ 2y 0z x
OE, OE; c’)zE* OE, i
/ / 5% 0208 o dzoe )|
(121)
2 T 2 Tk 2% 02
21]/ / 3Ej3Ej78Ej8Ej edi
2y Jo Ox* 0z0t  0x? 0zOt
O’E; OF, 62E* OE, et —
/ / Ox? 82 Ox2 Oz x
42
= ]31j ]321 4y 2]33p
where
kg (0°E,0°E;
Ty = / / ] e P (122)
and
Ly (0°E,OF; et L 0'E; OF, p
Ty = / / 92\ o ot |* +/0 o 0z | o T (123)
(z,x) €Q, x Q,

Let us note that multiplying equation, conjugated to (63), by ii;, and taking into account
the BCs (43) and additional conditions (78), we obtain, that the second term in (123) equals

zero. Thus,

Ly Ly a
]321‘—‘/0 /0 &(

62E6 e
Ox? 8t xat.

(124)

PLOS ONE | https://doi.org/10.1371/journal.pone.0226119 December 12, 2019

26/33


https://doi.org/10.1371/journal.pone.0226119

@ PLOS | O N E Generalized nonlinear Schrédinger equations

The integrals J33; can be written as follows

Jyy = / / 0 az< i >dxdt (125)
Also, the integral I, by using (64) and integrating by parts, reduces to the following one:
e
2 1 s
= [ (e 5 e e = (126)

/ /Lt <6E*)dxdt

The integrals in I5 can be written as
" (OE, 0A; 8E* DA,
I = / /(8t 0z 8t8)ddt
/ /Lf OE, 0 8E*+1'E* N
Ot Oz p 2
O, 0 (O, i
+ t@z(@t —; ))dth
/ /Lr OE, O’E; 8E* J’E, di
ot ozot ot azat
4 (0°E;0°E, OE,0'E,
//<8t 0z o oz )ddt
i

=1 - ;Isr

(127)

i
v

Using the condition (78) and integrating by parts, one can transform the integrals Is;, Is, to

we ]
/ / "0 (aE* >dxdt. (129)

Obviously, the integral I can be written as follows:

I —/ / (QAA 0A] +AA*%A+

+Azai+ (A*)28 )d dt =
[ ]

the form

d dt, (128)

and

8 0z

(130)
2 *
, 0A, 0A? 0A; >dxdt

*\2 7772 * 2771 2
(A>8+A6+A5‘

Ly
A A?
/ / 8z ‘4 )dxdt
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Substituting the expressions (116), (120), (121), (126), (127) and (130) into (99), we obtain
the invariant (98).
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