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Abstract
Echo state networks (ESNs) with multi-clustered reservoir topology perform better in reser-

voir computing and robustness than those with random reservoir topology. However, these

ESNs have a complex reservoir topology, which leads to difficulties in reservoir generation.

This study focuses on the reservoir generation problem when ESN is used in environments

with sufficient priori data available. Accordingly, a priori data-driven multi-cluster reservoir

generation algorithm is proposed. The priori data in the proposed algorithm are used to

evaluate reservoirs by calculating the precision and standard deviation of ESNs. The reser-

voirs are produced using the clustering method; only the reservoir with a better evaluation

performance takes the place of a previous one. The final reservoir is obtained when its eval-

uation score reaches the preset requirement. The prediction experiment results obtained

using the Mackey-Glass chaotic time series show that the proposed reservoir generation al-

gorithm provides ESNs with extra prediction precision and increases the structure complexi-

ty of the network. Further experiments also reveal the appropriate values of the number of

clusters and time window size to obtain optimal performance. The information entropy of the

reservoir reaches the maximum when ESN gains the greatest precision.

Introduction
Echo state networks (ESNs), proposed by H. Jaeger in 2004 [1], have attracted a great deal of at-
tention because of its high accuracy, fast learning speed, and global convergence [2]. ESNs have
been widely applied to practical applications, such as time series prediction [3, 4], classification
[5, 9], and anomaly detection [6]. These superiorities are attributed to a large and fixed dynam-
ical system called dynamical reservoir (DR). Adaptation is treated as a simple linear regression
problem because of the sufficient richness of DR. Calculation is also greatly simplified.

The reservoir, being a key part of ESN, is always a focus of research. Various network topol-
ogies of DR have been investigated [7–9] because of the performance of ESN being mainly de-
termined by the DR structures [10]. The construction of DR with complex structure has been
widely investigated based on the complex network theory [11–15]. Among these structures, the
multi-cluster structure has attracted significant attention because of its rich dynamics and
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bionic characteristics, such as small-world reservoir [16], critical reservoir [17], and modular
reservoir [7]. However, the corresponding ESNs are affected by complicated structure factors
although networks with this structure have a powerful calculating ability. These factors include
cluster number and size and connection form of the intra- and inter-cluster [11]. The perfor-
mance of an inappropriate multi-cluster structure is worse compared with that of conventional
ESN. Researchers have started to study the establishment of an ideal multi-cluster reservoir to
solve the preceding problem (i.e., generating problem of multi-cluster reservoir). Two methods
are currently employed to construct the multi-cluster reservoir. The first method is a simple
spatial growth algorithm [18], where the probability for edge formation depends on the spatial
distance between nodes. However, the model parameters could not control the cluster size;
even multiple clusters are not guaranteed [17]. The second algorithm is a cortex-like network
generation method based on the spatial distance between nodes and the associated time win-
dow [19], which overcomes the preceding deficiencies. However, the existence of randomness
in this generating algorithm leads to a very limited precision improvement and a largely fluctu-
ating performance [11].

Finding a universal solution for reservoir generating problems is difficult because the net-
work cannot be evaluated before application. However, sufficient priori data exist in some ap-
plication areas (e.g., International Road Traffic and Accident Database [20], Electricity Data
Browser [21], and Global Financial Development Database [22]). These data can be used to de-
sign an analog application in advance to evaluate and construct a multi-cluster reservoir. Fur-
thermore, a novel iterative generating algorithm for a multi-cluster reservoir can be designed
to guarantee the final reservoir performance to some extent. These priori data are perfor-
mance-oriented with regard to reservoir construction. This generation algorithm is called a pri-
ori data-driven generation algorithm. The reservoir is established by repeated evaluations of
the priori data. The corresponding ESN should exhibit an excellent performance because these
data are the recognized authority in this application field.

This study proposes a novel ESN based on the priori data-driven multi-cluster reservoir
generation algorithm (DDMCESN). A benchmark prediction task (i.e., Mackey-Glass chaotic
time series (MGS) prediction) is employed as the network performance-testing platform with-
out loss of generality. The comparison experiment of the network performances based on this
platform confirms the advantages of the DDMCESN over the ordinary multi-cluster ESN
(MCESN) and the traditional random ESN. The results prove the effectiveness of the proposed
network generation algorithm. The effects of some structure parameters on the network perfor-
mance are also discussed.

Section 2 briefly presents the ESN principle and describes the DDMCESN. Section 3 exam-
ines the prediction of the Mackey-Glass time series to analyze the characters and performances
of the ESN with a modified cluster structure. Section 4 presents the discussion and
the conclusion.

Reservoir Construction of DDMCESN

Network Structure of ESN
The architecture of ESN comprises an input layer, dynamical reservoir, and readout neuron.
The conventional ESN has a randomly connected reservoir with large-scale neurons Fig 1(a).
The DDMCESN has a reservoir with a multi-cluster topology unlike the conventional ESN Fig
1(b). The ESNs are assumed to have K input neurons, N reservoir neurons, and L readout neu-
rons. The connection weights from the reservoir neurons to the readout neurons are given in a
N�KmatrixWin. The reservoir connection weights are collected in a N�N weight matrixW.
The connection weights from the reservoir neurons to the readout neurons are given in a L�(K
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+N+L)matrixWout. Furthermore, the connection weights projected back from the readout
neurons to the reservoir neurons are given in aN�LmatrixWfb. The reservoir is updated ac-
cording to the following equations given a training sequence of yd(n), n = 1, 2. . .T

xðnþ 1Þ ¼ fðWinuðnÞ þWxðnÞ þWfbydðnÞÞ� ð1Þ

yðnþ 1Þ ¼ f outðWoutðuðnþ 1Þ;xðnþ 1Þ;yðnÞÞÞ; ð2Þ
where x(n) represents the state variables in the reservoir; u(n) and y(n) are the input and the
output of ESNs, respectively; f and fout are the hyperbolic tangent function
applied componentwise.

Weight matricesWin andWfb are drawn from a uniform distribution over [−1, 1].Wout is
the only one trained by the ESN training algorithm. Furthermore, the weights are arbitrary val-
ues usually initialized by 0.Wout is computed via pseudo-inverse as follows:

P ¼ E½xðnÞ�;T ¼ E½dðnÞ�; ð3Þ

Wout ¼ TPþ; ð4Þ

where x(n) represents the internal states of the reservoir at time n, and d(n) is the desired out-
put signal at time n.

The priori data-driven strategy for multi-cluster construction
A priori data-driven multi-cluster reservoir generation algorithm is proposed to establish a
suitable multi-cluster reservoir. The algorithm strategy comprises three steps: generation of an
initial multi-cluster reservoir, evaluation and update of reservoirs, and termination conditions
of the reservoir update. These three procedures are discussed as follows:

1) Generation: A multi-cluster reservoir is generated according to Kaiser’s clustering algo-
rithm [19]. Two growth mechanisms, namely, spatial distance between nodes and associated
time windows, manage the generating process. A connection between neurons U and Vmade
on time step t is established with probability as follows:

P ¼ Pdistðdðu; vÞÞ�Pmu
timeðtÞ�Pmv

timeðtÞ; ð5Þ

Fig 1. System architecture: (a) scheme diagrams of the conventional randomESN and (b) DDMCESNmodels.

doi:10.1371/journal.pone.0120750.g001

A Data-Driven Multi-Clustered Reservoir Generation Algorithm for ESN

PLOSONE | DOI:10.1371/journal.pone.0120750 April 13, 2015 3 / 15



where Pdist(d(u, v))) = βe−αd(u, v) is the distance-dependent probability; d(u, v) is the Euclidean
distance between neurons U and V; and α and β are the scaling coefficients shaping the connec-
tion probability (i.e., α = 6 and β = 6). The time window-dependent probability is computed as
follows:

Pmi
timeðtÞ ¼ Pðt; i;φðmi;oÞÞ ¼

1

16
ðt2lðtl � 1Þ2Þ1=φðmi;oÞ� ð6Þ

where t = j/N, j = 1, 2, . . .N; μi = i/n+1, i = 1, 2, . . .n, where n is the number of pioneer nodes; ω
is the time window integral value; λ = −(log(2)/log(μi)); and φ(μi, ω) is a numerically deter-
mined scaling factor used to compute the desired ω value.

2) Evaluation and update: Further adjustments are made to the structure based on the pre-
liminarily obtained multi-cluster reservoir. These adjustments are necessary to improve the
performance. The priori data during the reservoir update process used to be performance-ori-
ented. Moreover, only the current reservoir with a better evaluation performance takes the
place of the former. The prediction precision with a normalized root mean square error
(NRMSE) and its standard deviation δ used as performance evaluations is employed to im-
prove the calculating ability of the ESN. The updated reservoir is reserved if it has a smaller
NRMSE or δ. The reservoir should be skipped and recovered to the former, otherwise.

3) Termination. The final reservoir is decided when the NRMSE reaches the preset require-
ment. The terminal condition is not simply set as a certain NRMSE value because the value is
difficult to determine and varies with tasks and parameter settings. The reservoir update of the
DDMCESN in this paper is terminated when the sum of the latest ten NRMSEs is smaller than
the value of three-tenths of the sum of the previous ten NRMSEs.

Multi-cluster reservoir generation algorithm based on priori data-driven
strategy
The reservoir processing of the DDMCESN is implemented by the following steps based on the
priori data-driven strategy in Section 2.2:

Step 1: The reservoir is generated from a small number of pioneer neural units, n. A 1�1
plane area is selected, in which the n pioneer nodes are uniformly arranged. These n pioneer
nodes are bidirectionally all-to-all connected to each other. The coordinates of unit i are de-
scribed in Eq (7) as follows:

xi ¼
i

nþ 1
; yi ¼ 1� i

nþ 1
ð7Þ

Step 2: The new node U is randomly placed. This node corresponds to the nearest pioneer
node. This node is also connected to the existent nodes according to Eq (5). A new node, which
fails to establish a connection, is given up. Step 2 is repeated until the number of existing nodes
reaches N.

Step 3 Each node connects itself with the self-connecting probability Ps after the network
is created.

Step 4: The nodes of the generated network are mapped to obtain a multi-cluster reservoir.
MatrixW reflects the connection strength between nodes. The nodes belonging to the same
clusters are distributed together to simplify the analysis. The form of reservoir matrixW is
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rewritten as follows:

W ¼

W1 L1

. . . . . .

L2 Wn

0
BBB@

1
CCCA ð8Þ

whereWn is the connection matrix of the nth cluster; and L1 and L2 are the connecting matri-
ces among different clusters.W theoretically presents the intensive diagonal because the con-
nections among different clusters are relatively sparse.

Step 5: A stack with a length of 20 (S[20]) is defined, and a maximum iteration is deter-
mined using Q/10, where Q is the number of non-zero values inW.

Step 6: Accordingly, ten connections are randomly selected among the reservoir neurons.
These connections are broken to product new internal weight matrixW. Subsequently, 10 re-
peated trials using the priori data are conducted to calculate the average NRMSE and δ. The
current average NRMSE is then placed at the top of stack (S(1)) with the previous values
moved backward.

Step 7: The updatedW is compared with the previous one. Internal weight matrixW is pre-
served if its average NRMSE or δ is smaller than that of the previous one. The newW is unde-
sirable, and the broken connections in Step 6 are recovered, otherwise.

Step 8: Whether current internal weight matrixW is ideal is determined. The reservoir net-
work is generated and currentW is maintained as the internal weight matrix of the DDMCESN
if [S(1)+S(2)+. . .+S(10)]/3< [S(11)+S(12)+. . .+S(20)]/10. Notably, the current prediction re-
sult cannot only be compared with the previous one because of the existing fluctuation. Step 7
is repeated until the terminal condition mentioned above is met or the iterations reach to
the maximum.

Experiment design and result analysis
This section examines the performance of the DDMCESN for a benchmark prediction task,
that is, the 84-step prediction of the MGS. The effects of the cluster number and time window
size on the performance of the DDMCESN are initially investigated. Comparison experiments
are then designed to verify the effectiveness of the proposed algorithm. The performances are
evaluated using prediction accuracy, information entropy, average shortest path, and
clustering coefficient.

Experiment design
The 84-step MGS prediction has become a benchmark prediction task for neural networks be-
cause of the richness of the MGS structure [23]. This study designs an 84-step MGS prediction
experiment to analyze the network performances. The Mackey-Glass function is given in the
following form:

y½nþ 1� ¼ y½n� þ d
0:2y n� t

d

h i
1þ y n� t

d

h i10 � 0:1y½n�

0
B@

1
CA; ð9Þ

Where δ is the step size arising from the discretization of the original continuous-time
Mackey-Glass equation. τ is a delay parameter influencing the chaotic degree of the MGS. A
bias input of the same length is still created even though the MGS output does not depend on
any input sequence. This bias input is simply used in the network state update procedure in
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Ref.[24]. The experiments comprise two stages, namely, reservoir establishment and MGS pre-
diction by DDMCESNs. The MGS time series with chaotic dynamics is introduced as the priori
data to guide the reservoir generation of the DDMCESN Fig 2(a). The system is chaotic when τ
> 16.8, hence τ = [17, 18, 19, 20, 21, 22, 23, 24, 25] is chosen. The sample length of each case is
1000, and the total MGS length is up to 9000. The MGS with a 9000 length is created as the
forecast target when the generated DDMCESN is applied to the MGS prediction task. A mildly
chaotic behavior is produced when τ = 17 Fig 2(b). Accordingly, δ = 0.1 is always set with sub-
sequent subsampling by 10. These MGSs are distributed in 4000 training and 5000 test se-
quences. The top 1000 samples are discarded to remove the initial transients.

The ESNs in the experiments have one input neuron with a fixed input u = 0.02 and a feed-
back (MGS) from the output sequence. The exact number of the reservoir neuronsN, which
are set to 400, is task-dependent. ρ stands for the spectral radius of the reservoirs. The ρ value
should be smaller than 1 to ensure the echo state property (i.e., ρ = 0.8) [25]. Table 1 presents
the other parameters.

Fig 2. MGSs with 9000 sequences. (a) Prior data MGS for reservoir generation and (b) prediction target.

doi:10.1371/journal.pone.0120750.g002
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Two test criteria are employed as the performance measurements in this simulation: predic-
tion accuracy and its standard deviation. The prediction performance is measured using the
normalized RMSE at the 84th time step(NRMSE84) and its standard deviation. The NRMSE84
is computed as follows:

NRMSE84 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPltest

i¼1 ðytest½iþ 84� � dtest½iþ 84�Þ2
ltest � s2

s
; ð10Þ

where ytest[n] is the network output during the testing phase; dtest[n] is the desired output dur-
ing the testing phase; and σ2 is the variance of the desired output. The standard deviation of
NRMSE84 (δ) is defined as follows:

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXi¼k

i¼1

ðNRMSE84ðiÞ � NRMSEavÞ2=k
s

; ð11Þ

where NRMSEav ¼
Pi¼k

i¼1ðNRMSE84ðiÞÞ=k, k denotes the number of independent trails.
NRMSE84 and δ are calculated according to the priori data-driven multi-cluster reservoir

generation algorithm described in Section 2.3 to guide the reservoir updating process and as-
sess the current reservoir. The log10 NRMSE84 and δ values in this process are illustrated in
Fig 3. The curves of both NRMSE84 and δ exhibit a decreased trend during the updating process
(Fig 3), which indicates that the modeling capabilities of the reservoir tend to be enhanced. The
connectivity structure of the DDMCESN reservoir is illustrated in Fig 4(b). The figure shows a
scatter diagram of 400�400 connection matrixW with n = 5 and ω = 0.3. The inter-cluster con-
nections are represented by black spots, whereas the intra-cluster connections are described by
colored dots. A clustering structure is obvious in Fig 4(b) unlike the random connectivity of
the conventional ESN (Fig 4(a)). The intra-cluster connections are clearly more intensive than
the inter-cluster connections. Moreover, the inter-cluster connections between the adjacent
clusters are more concentrated than those between far clusters. A series of outputs is obtained
using this reservoir matrix (Fig 5).

The number of clusters for the DDMCESN is controlled using the number of pioneer nodes
n. The cluster size is varied by changing the width of the time window ω. The relationships be-
tween the prediction performance of the DDMCESN and the factors (n and ω) are investigated.
The performances of the DDMCESNs compared with that of the MCESNs and the convention-
al ESNs are evaluated from three aspects. These aspects are the 1) prediction accuracy and its
standard deviation; 2) information entropy of reservoir; and 3) average shortest path and
clustering coefficient.

Table 1. Parameter settings in the experiments.

Parameter values

α 6

β 6

Ps 0.5

N 400

ρ 0.8

doi:10.1371/journal.pone.0120750.t001
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Fig 3. Prediction performance during the reservoir update.NRMSE84: normalized RMSE at the 84th time
step. δ: standard deviation.

doi:10.1371/journal.pone.0120750.g003

Fig 4. Structure matrix of the reservoir network for: (a) conventional ESN and (b) DDMCESN.

doi:10.1371/journal.pone.0120750.g004
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Analysis of prediction accuracy
Prediction accuracy is an externally direct evaluation of the prediction problems, which reflects
the calculating ability of the DDMCESN and affected by some parameters of the generating
method. The relationship between the NRMSE and the clustering parameters (i.e., number of
clusters and time window size) is first analyzed. Each case independently runs for 20 times.
The NRMSE84 s reach the minimum values when the number of clusters is 5 and the time win-
dow size is 0.3 (Fig 6). A comparison of the prediction performances between the traditional
ESNs, MCESNs, and DDMCESNs is performed in this case. As shown in Fig 7, MCESNs with
multi-clustered reservoir show higher prediction accuracy than the conventional ESNs. Fur-
thermore, due to the off-line refinement of the multi-clustered structure, DDMCESNs perform
much better computing capabilities than the original MCESNs. The average values calculated
through 30 independent and repeated trials are recorded in Table 2. The comparisons show
that the DDMCESNs are significantly more excellent than the MCESNs and the conventional
ESNs, indicating the effectiveness of proposed reservoir generation algorithm.

Structure Complexity
Information entropy (H) is used to characterize the complexity of the synaptic connectivity
distribution of the DDMCESN reservoir. Information theory states that entropy is a measure-
ment of the uncertainty in a random variable [8, 26]. Entropy is defined as follows:

H ¼ �
X

i

PðxiÞ log ðPðxiÞ; ð12Þ

Where P(xi) is the probability that the average value of the synaptic strength wi (normalized)
lies within bin k (k* (0, 1) with a step of 0.005).

Fig 5. DDMCESN output in the test.

doi:10.1371/journal.pone.0120750.g005
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Fig 7. Comparison of the NRMSEs of ESN, MCESN, and DDMCESNwith a cluster size of n = 5 and a
time window size ofω = 0.3.

doi:10.1371/journal.pone.0120750.g007

Fig 6. (a) Prediction accuracy of the DDMCESN influenced by the cluster size. (b) Prediction accuracy of the DDMCESN influenced by the time window size.

doi:10.1371/journal.pone.0120750.g006
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The information entropy of the network weight matrix during the reservoir update is re-
corded in Fig 8. The entropy gradually increases and ultimately remains unchanged when the
weight matrix update becomes stable. The proposed generating method increases the structure
complexity of the reservoir network. How the information entropy is influenced by the cluster-
ing parameters (i.e., n and ω) is illustrated in Fig 9. Accordingly, the entropy reaches the maxi-
mum in the case of n = 5 or ω = 0.3, where the DDMCESN has optimal accuracy (Fig 6). The
results indicate that the highly complex structure of the reservoir network contributes to the
computational capacity of the corresponding ESN network.

Table 3 presents the entropy of the three networks obtained by repeating the corresponding
simulations for 30 times. The DDMCESN has a larger information entropy value than the oth-
ers, which indicates that the reservoir network of the DDMCESN has the highest structure
complexity. This complexity benefits from the computational performance of the
reservoir computing.

Average Shortest Path and Clustering Coefficient
The proposed DDMCESN networks with multi-cluster structure exhibit different topological
properties from the conventional random network. We can investigate the inherent structure
and dynamical characteristics of DDMCESNs reservoir in terms of the complex network theo-
ry. In particular, the average shortest path (ASP) [27] and the clustering coefficient (CC) [28]

Fig 8. Entropy of the DDMCESN during the reservoir update.

doi:10.1371/journal.pone.0120750.g008

Table 2. Prediction performance of the three networks.

Network NRMSE84 δ

ESN 1.5�10−3 0.0105

MCESN 9.7�10−4 0.0017

DDMCESN 3.035�10−4 0.00029

doi:10.1371/journal.pone.0120750.t002
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are introduced to characterize the small-world property of network with complex structure.
ASP is the average number of links that have to be crossed to go from one node to another.
ASP is calculated as follows:

ASP ¼ 1

NðN � 1Þ
X
i;j6¼i

dði; jÞ; ð13Þ

where d(i, j) is the length of the shortest path between nodes i and j. The clustering coefficient
(CC) of each node is the proportion of the direct links between the neighbors, quantifying the
degree of its neighbors belonging to the same cluster [29].

Ci ¼
k EðGiÞ k

ki

2

 ! ;CC ¼ 1

N

X
i

Ci; ð14Þ

where jE(i)j is the number of edges in the i neighborhood, and
ki

2

 !
is the number of possible

edges of i.
ASP and CC, which effectively reflect the network connectivity structure, are the basic geo-

metric quantities based on the complex network theory [30]. Fig 10 shows the distributions of
ASP and CC for the proposed DDMCESN’s network with the increasing number of pioneer
nodes. Note that low ASP and large CC indicate the high level of clustering [27]. When the

Table 3. Entropy of ESN, MCESN, and DDMCESN.

Network DDMCESN MCESN ESN

Entropy 0.220 0.213 0.179

doi:10.1371/journal.pone.0120750.t003

Fig 9. (a) Entropy of the DDMCESN reservoir influenced by the cluster size. (b) Entropy of the DDMCESN reservoir influenced by the time window size.

doi:10.1371/journal.pone.0120750.g009
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number of pioneer nodes is in around of 5 ASP reaches the minimum, and CC reaches the
maximum. Meanwhile the DDMCESN show the optimal performance of computational capa-
bility (Fig 6). Table 4 illustrates the comparisons of the conventional ESN, MCESN, and
DDMCESN. The DDMCESN and the MCESN exhibit more obvious small-network properties
(i.e., a lower ASP length and a higher CC) compared to the random network. Furthermore, the
DDMCESN exhibits the shortest ASP and the highest CC, which contribute to the enhance-
ment of the system computational capability.

Conclusion
This study proposes a priori data-driven multi-cluster reservoir generation algorithm for the
ESN, which is examined using the Mackey-Glass time series prediction test. The simulation re-
sults show that the proposed algorithm effectively improves the network computational capa-
bility. The prediction precision is specifically advanced during the reservoir update of the
DDMCESN because of the increase of the connectivity complexity of the reservoir network.
The proposed DDMCESN maintains a multi-cluster structure and possesses small-world prop-
erties. The comparative experiments show that the enhancement of the prediction precision of
the DDMCESN and its standard deviation is more excellent than the traditional ESN and
MCESN. The DDMCESN also has the most complex reservoir structure. Further experiments

Fig 10. (a) ASP and (b) CC with various cluster sizes.

doi:10.1371/journal.pone.0120750.g010

Table 4. Entropy of ESN, MCESN, and DDMCESN.

Network ASP CC

ESN 2.6902 0.037

MCESN 2.373 0.546

DDMCESN 2.359 0.562

doi:10.1371/journal.pone.0120750.t004
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reveal that the particular configuration of the parameters of the network generation algorithm
yields an optimal performance of the reservoir computing. The DDMCESN shows the best pre-
diction performance and the largest information entropy when the number of clusters is 5 and
the time window size is 0.3. The main contribution or advantage of the proposed reservoir gen-
eration algorithm is to generate an efficient multi-clustered reservoir network which can obvi-
ously promote the computing abilities of corresponding Echo state networks by an off-line
updating algorithm instead of complex parameter designing.
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