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Abstract

Deer overabundance is a contributing factor in the degradation of plant communities and

ecosystems worldwide. The management and conservation of the deer-affected ecosys-

tems requires us to urgently grasp deer population trends and to identify the factors that

affect them. In this study, we developed a Bayesian state–space model to estimate the pop-

ulation dynamics of sika deer (Cervus nippon) in a cool-temperate forest in Japan, where

wolves (Canis lupus hodophilax) are extinct. The model was based on field data collected

from block count surveys, road count surveys by vehicles, mortality surveys during the win-

ter, and nuisance control for 12 years (2007–2018). We clarified the seasonal and annual

fluctuation of the deer population. We found a peak of deer abundance (2010) over 12

years. In 2011 the estimated deer abundance decreased drastically and has remained at a

low level then. The deer abundance gradually increased from April to December during

2013–2018. The seasonal fluctuation we detected could reflect the seasonal migration pat-

tern of deer and the population recruitment through fawn births in early summer. In our

model, snowfall accumulation, which can be a lethal factor for deer, may have slightly

affected their mortality during the winter. Although we could not detect a direct effect of

snow on population dynamics, snowfall decrease due to global warming may decelerate the

winter migration of deer; subsequently, deer staying on-site may intensively forage ever-

green perennial plants during the winter season. The nuisance control affected population

dynamics. Even in wildlife protection areas and national parks where hunting is regulated,

nuisance control could be effective in buffering the effect of deer browsing on forest

ecosystems.
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Introduction

In the past few decades, deer have become increasingly abundant worldwide [1, 2]; this popu-

lation increases have contributed to the degradation of plant communities and ecosystems [3–

6]. In general, the population dynamics of animals are affected by birth, mortality, and migra-

tion rates. Large ungulates are able to breed under low food availability [7], therefore, the birth

rate of deer would not largely decrease even in a degraded forest; however, the density-depen-

dent decline in the birth rate of deer occurs at a later period of the outbreak stage [8]. Further-

more, the survival rate of adult deer was high even in a poor nutritional environment [9].

Thus, deer is a species that can live in high densities and low-nutrient environments. If preda-

tors (e.g. wolves) are absent, hunting is one options to control deer populations under these

conditions [10, 11].

In snow-covered area and, in particular, during heavy snowfall, the survival rate of sika

deer (Cervus nippon) decreases [9, 12]. Kawase et al. (2014) [13] projected that winter precipi-

tation including snowfall would decrease in broad regions of Japan due to the ongoing climate

change. This climate change may mitigate the mortality of deer and cause further increases in

deer populations in the future. Therefore, it is indispensable to estimate the effect of snow on

the dynamics of deer populations. While some of the effects of global warming on population

dynamics of ungulates have already been reported [14–16], models constructed in recent stud-

ies to describe deer population dynamics have not yet explicitly considered the effects of snow.

From the viewpoint of plant communities and ecosystems, it is important to clarify not

only annual trends but also seasonal trends in the deer population density. Plant fitness could

be affected differently depending on whether deer browse on them before or after they have

reproduced sexually. The timing of browsing could also affect the fitness of pollinators such as

bumblebees. Therefore, in order to assess the effects of deer browsing on ecosystem levels it is

important to, at least, estimate the seasonal deer abundance. However, in many areas, the

annual census of ungulates is held during a season that, although offers good visibility to track

ungulates, is not suitable for plant growth [10, 15, 17].

In recent years, generalized linear models [18], generalized additive mixed models

(GAMM, [19]), density surface models [20], and Bayesian state-space models [10, 16] were

used to estimate deer abundance based on field data. Among these models, the Bayesian state-

space model can be a powerful tool for estimating deer population dynamics because it can

easily handle time series data with temporal autocorrelation and can explicitly distinguish

errors following measurement of data with uncertainty about population dynamics [10, 21].

However, there are still limited applications of this model when it comes to the effect of snow

and seasonal fluctuations on deer population dynamics.

In this study, we estimated deer population dynamics in a cool-temperate forest in Japan

using a Bayesian state-space model. The model was based on data collected from block count

surveys, road count surveys by vehicles, mortality surveys during the winter, and nuisance

control over 12 years. The seasonal and annual fluctuation of the sika deer population and the

effects of snowfall and nuisance control on population dynamics are discussed based on the

results we obtained by the model and the parameters estimated in the model, respectively.

Materials and methods

Study site

The study site was located at the Ashiu Forest Research Station, Field Science Education and

Research Center, Kyoto University, Japan (35˚200N, 135˚450E; 355–959 m a.s.l., 41.86 km2)

and the surrounding area (46.12 km2 in total, Fig 1). The mean annual temperature and
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precipitation in this area are 13.1 C and 2,333 mm, respectively [22]. The maximum snowfall

during each winter at 356 m elevation was 31.0–141.7 cm between 2007 and 2018 (Table 1).

The forest is usually closed from January to early April because the roads in the forest must be

blocked with snow. This forest is located in the transition part between the temperate decid-

uous forest zone and the warm temperate forest zone. This area is well known for being highly

diverse in plant species and existing phylogeographically important populations of some spe-

cies in the forest [22]. Though the forest is one of the wildlife protection areas in Japan, forest

vegetation has been steadily degraded by the browsing of C. nippon [23, 24]; thus, nuisance

control started in 2008 using guns, traps, and cages (Table 2). The last known Japanese wolf

(Canis lupus hodophilax) was caught in the Nara prefecture in 1905 and there have been no

Fig 1. Topographic map of Ashiu Forest Station and the surrounding area. Red, blue, and green lines denote the location of the selected route sectors,

A, B, and E, respectively. The parts surrounded by solid lines denote the area of Ashiu Forest Station and the area surrounding. The parts surrounded by

broken lines denote survey area by block count.

https://doi.org/10.1371/journal.pone.0225872.g001
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sightings of it in Japan since. Thus, we considered that potent predators of deer such as wolves

had been extinct all over Japan, including in our study site.

Road count

We selected three route sectors (A: 4.7 km, B: 3.3 km, E: 0.7 km; Fig 1) to record the numbers

of deer sighted. The investigators of this study were mainly researchers and technical staff

employed by the Forest Research Station, including non-specialists in deer. They recorded the

date, weather, sector name, and time when they began driving through each sector, whenever

they drove through a whole sector by vehicle during the period from May 1, 2007 to December

31, 2018. Then, they recorded the number of deer in each sector. If they found no deer, they

recorded the number as zero. The details of the survey are described in a previous study [19].

Table 1. The numbers of deer carcasses in winter and winter climate.

Year Carcassesa Distance (km)b SD50c (days) MaxSd (cm)

Nov 2007—Mar 2008 30 78.5 52 132

Nov 2008—Mar 2009 0 85.0 40 130

Nov 2009—Mar 2010 0 98.5 0 36.7

Nov 2010—Mar 2011 25 88.5 76 141.7

Nov 2011—Mar 2012 4 83.5 87 138.3

Nov 2012—Mar 2013 7 101.5 21 90.7

Nov 2013—Mar 2014 6 83.5 70 114

Nov 2014—Mar 2015 38 100.0 71 113

Nov 2015—Mar 2016 2 92.5 0 31

Nov 2016—Mar 2017 30 86.5 61 135

Nov 2017—Mar 2018 0 93.0 7 87

aNumber of deer carcasses
bDistance of the total survey area during spring thaw
cSnow cover >50 cm duration
dMaximum snow depth at 356 m elevation at the Ashiu Forest Station.

https://doi.org/10.1371/journal.pone.0225872.t001

Table 2. The numbers of deer hunted by nuisance control.

May-June July-Aug. Sep.-Oct. Nov.-Dec. Total

2007 0 0 0 0 0

2008 0 0 0(6) 10(24) 10(30)

2009 0(6) 0 0(6) 3(20) 3(32)

2010 0 0 0 7(6) 7(6)

2011 0 0 4(8) 1(8) 5(16)

2012 0 0 5(13) 3(6) 8(19)

2013 15(25) 0 3(14) 4(11) 22(50)

2014 17(12) 1(2) 4(8) 10(4) 32(26)

2015 6(14) 2(4) 2(19) 2(6) 12(43)

2016 8(19) 2(6) 2(10) 5(16) 17(51)

2017 1(14) 0 0 4(20) 5(34)

2018 4(4) 0 2(20) 0 6(24)

In parentheses indicates hunting effort (the product of the number of hunters and days for hunting).

https://doi.org/10.1371/journal.pone.0225872.t002
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We excluded records that lacked information about the number of deer sighted, sector

name, year, and date. We also excluded records from January to April because few records

were available from these periods due to snow accumulation and driving speed was different

from other seasons. Furthermore, data within 15 minutes before and after were excluded from

later analysis because data independence could not be guaranteed. After this data cleaning, we

used 8,616 records for later analysis.

Block count

Block counts were conducted in two sites (north: 86.9 ha, south: 111.7 ha) of the Ashiu Forest

Research Station in December, from 2001 to 2018 except for 2017 (Fig 1). The sites were

divided into 14 and 19 blocks (5–7 ha per block depending on the terrain), respectively. Each

block was thoroughly surveyed by an observer walking in a zig-zag motion along the terrain in

order to guarantee good visibility. When an observer spotted deer, they informed the observers

of adjacent blocks using transceivers to avoid duplicate counting. Occasionally, we did not sur-

vey some blocks due to sudden snowfall and lack of observers; however, the total surveyed area

was 181.27 ha in most years. Because it was a missing value only in 2017 and values did not

change so much in the previous (2016) and next year (2018), we used the mean of 2016 and

2018 as the value of 2017 in the model described later.

Number of deer carcasses at spring thaw

We counted the number of deer carcasses found in forest during the thawing period from

April to early July, for the years 2005–2018. We needed to find deer carcasses emerging from

the snow before animals preyed on them. However, we could not distinguish their age and sex

because the parts of carcasses bodies were sometimes scattered around. We covered a 1–21 km

distance per survey and repeated the procedure for 10–18 times per year to look for deer car-

casses across the forest (Table 1 and S1 Fig). In addition to looking for dead deer, we also relied

on our sense of smell and detected carcasses based on the odor they emitted.

State–space model

We analyzed field observation data of relative abundance indices of deer with state–space

models, based on a hierarchical Bayesian framework [10, 25, 26]. The state–space model

divided the observation data into a system model, representing “true” but unknown popula-

tion size, and an observation model that accounts for error in counts caused by ability of

observers [25, 26]. Because most observers were not specialists for animals, they sometimes

missed the count. The state–space models allowed us to permit potential errors in the count

data. In most past studies in deer population dynamics, the analysis was performed on a yearly

basis. However, we set the time interval to 2 months, excluding the period from January to

April (t = 1 in May and June 2007, t = 2 in July and August 2007, t = 3 in September and Octo-

ber 2007, t = 4 in November and December 2007, t = 5 in May and June 2008, etc.). This was

because we were able to use the road count data from all year round except from January to

April (when the forest was covered by snow). We wanted to know the seasonal in addition to

the annual fluctuation.

System models. Expected deer abundance at time t (Nt) in the forest depended on

expected deer abundance at time t −1 (Nt−1); the number varied with the effect of population

growth (rt) including birth, natural mortality, immigration, migration at time t (rt did not

include the effects of hunting and mortality due to snowfall), and the effect of hunting at time t
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(hunting rate: ht). It can be expressed as follows:

Nt ¼ Nt � 1 � rt � ð1 � htÞ ð1Þ

During the season when the forest was covered by snow (January to April), the deer some-

times got stuck or starved, due to lack of food as a result of the heavy snow. We defined the

mortality rate during the seasons when the forest was covered by snow, just before the time t,
as d t. Then, Nt (t = 5, 9, 13, . . .45) can be expressed as follows:

Nt ¼ Nt � 1 � rt
2 � ð1 � htÞ � ð1 � dtÞ ð2Þ

Although we set the time interval to two months during May to December, we set it to 4

months during January to April. Thus we squared rt in (2).

If we calculate the logarithm of the two aforementioned equations, then the process follows

a linear structure. Then, Eqs (1) and (2) can be re-written as follows:

NLt ¼ NLt � 1 þ rlt þ logð1 � htÞ ðt ¼ 2; 3; 4; 6; 7; . . . ; 48Þ ð3Þ

NLt ¼ NLt � 1 þ 2� rlt þ logð1 � htÞ þ logð1 � dtÞ ðt ¼ 5; 9; 13; . . . ; 45Þ ð4Þ

We introduced stochasticity into the deer population dynamics. Then, Eq (3) can be

expressed as follows:

NLt � Normalðmt; s1
2Þ ðt ¼ 2; 3; 4; 6; 7; . . . ; 48Þ

mt ¼ NLt� 1 þ rlt þ logð1 � htÞ

Eq (4) can be expressed as follows:

NLt � Normalðmt; s2
2Þ ðt ¼ 5; 9; 13; . . . ; 45Þ

mt ¼ NLt� 1 þ 2� rlt þ logð1 � htÞ þ logð1 � dtÞ

For the time interval we skipped four months every eight months, because we did not use

the data collected from road count surveys by vehicles from the winter season (January to

April). Thus, we defined different standard deviations of posterior distribution for deer abun-

dance in the logarithmic scale (σ1 and σ2).

The prior probability distribution of the log of expected deer abundance in the first year

(NL1) was determined as follows:

NL1 � Normalð0; 1002Þ

Because time interval was short, the population growth rate (logarithmic scale) at time t
(rlt) depended on those at time t -1 (rlt − 1). Thus it modeled as follows:

rlt � Normalðrlt� 1; s3
2Þ

We did not include a density-dependence parameter in the population growth rate. The

density dependence in population growth of sika deer within only 25.3 km2 in open ecosystem

(4,465 km2) was found [27]. However, it was largely depended on the habitat environment.

Because our study sites were small (46.12 km2), we did not consider habitat heterogeneity in

the model. Therefore, we did not consider the density-dependence parameter in this study.
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The hunting rate (ht) was the inverse logit transform of the hunting rate in logit scale (hlt).
hlt modeled as follows:

hlt � Normalðφ; s4
2Þ

φ ¼ hmþ rho� Eft

where φ is the mean hunting rate (logit scale) and σ4 is the standard deviation of posterior dis-

tribution of the logit hunting rate, and hm is the hunting rate at the forest. Because hunting

rate was assumed to increase when the hunting effort (Eft: the product of the number of hunt-

ers and days for hunting in time t) increases, we considered the effect of hunting effort on

hunting rate in logit scale (rho).

The prior probability distribution of hm and rho was determined as follows:

hm � Normalð0; 1002Þ

rho � Normalð0; 1002Þ

The mortality rate during the seasons when the forest was covered by snow (dt) was the

inverse logit transform of the mortality rate in logit scale (dlt). dlt was modeled as follows:

dlt � Normalðεt; s5
2Þ ðt ¼ 5; 9; 13; . . . ; 45Þ

εt ¼ bþ a� Snt

Where εt is the mean mortality during the winter with severe snowfall in time t at logit

scale and σ5 is the standard deviation of the posterior distribution of mortality during the win-

ter with snowfall, in the logit scale. Because the mortality may increase in severe snowfall con-

ditions, it was assumed to increase linearly with the number of days with a snow depth of> 50

cm (Sn) before time t. To consider the different effects of snowfall, we also used the maximum

snow depth instead of the number of days with snow depth of> 50 cm (S2 Table). The b and a
were the intercept and coefficient, respectively. The prior probability distributions of b and a
were as follows:

b � Normalð0; 1002Þ

a � Normalð0; 1002Þ

We assigned weakly informative priors for scale parameters, σ1 to σ5 as Cauchy(0, 10).

Observation models. We modeled the number of deer seen in road count surveys (Ct,m)

in time t in routem (m = a, b, e) as follows:

Ct;m � Poissonðdt;mÞ

dt;m ¼ Nt � Rm � rSt � Ot;m � Ac;m

where Rm is the observation rate per survey in routem that converts Nt to δt,m, rSt is the sea-

sonal observation rate per survey in time t, Ot,m is the number of survey occasions conducted

over two months for each route, and Ac,m is the ratio of the study area in each drive count

route (we assumed the census width to be 15m) per that of forest (a: 0.153%, b:0.107%, c:

0.023%). We assumed Ct,m followed a Poisson distribution. More precisely, the probability dis-

tribution of Ct,m is a Poisson/log-normal mixture because Nt is assumed to follow a log-normal
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distribution. Ideally, Ct,m should be modeled to follow a binomial distribution with the popula-

tion size and the observation rate for each route and time. However, replicated measurements

are typically required to estimate these parameters explicitly [28]. Unfortunately, our data did

not have such a structure, so we only estimated the expected population size in this model.

This was the same for Bt,Ht, and Dt, mentioned below. The prior probability distribution of

Rm were as follows:

Rm � Uniformð0; 1Þ

The seasonal observation rate (rSt) was the inverse logit transform of the seasonal observa-

tion rate in logit scale (rslt). rslt would be affected by leaf phenology of understory vegetation

and braches of trees and deer activity including their lactation, mating and so on. The fluctua-

tion of this seasonality in observation rate would have periodicity and the sum of them would

be small [29]. Thus, we modeled these seasonal effects as follows;

rslt ¼ �
P3

ðl¼1Þ
rslðt� lÞ þ ot ðt ¼ 4; 5; 6; . . . ; 48Þ

ot � Normalð0; s6
2Þ

where ωt is the noise term and σ6 is the standard deviation of posterior distribution of ωt. We

assigned weakly informative priors for scale parameters, σ6 as Cauchy(0, 10).

We modeled the number of deer seen by block count (Bt) as follows:

Bt � PoissonðytÞ ðt ¼ 5; 9; 13; . . . ; 45Þ

yt ¼ Nt � bc� Ab;t

where θt is the mean number of deer seen by block count in time t, bc is the observation rate

per unit area that converts Nt to θt, and Ab,t is the survey area of the block count in time t. We

assumed Bt followed a Poisson distribution, although Poisson/log-normal mixture is more

accurate description we have already mentioned. The prior probability distribution of bc was

as follows:

bc � Uniformð0; 1Þ

We modeled the number of deer hunted by nuisance control (Ht) as follows:

Ht � PoissonðltÞ ðt ¼ 2; 3; 4; . . . ; 48Þ

lt ¼ Nt � ht

where λt is the mean number of deer hunted in time t. We assumedHt followed a Poisson dis-

tribution, although Poisson/log-normal mixture is more accurate description we have already

mentioned.

We modeled the number of deer carcasses found after thawing (Dt) as follows:

Dt � PoissonðZtÞ ðt ¼ 5; 9; 13; � � � ; 45Þ

Zt ¼ Nt � dt � rD� Ad;t

where ηt is the number of dead deer found after thawing in time t, rD is the detection rate per

unit area that converts Nt to ηt, and Ad,t is the survey area of dead deer surveyed after thawing

in time t. We assumed Dt followed a Poisson distribution, although Poisson/log-normal
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mixture is more accurate description we have already mentioned. The parameter estimation

was performed by the Markov Chain Monte Carlo (MCMC; [30]) calculation using RStan

2.18.2 [31]. We ran four parallel MCMC chains and retained 60,000 iterations after an initial

burn-in of 30,000 iterations. We thinned sampled values to 1.0%. Convergence of MCMC

sampling was judged by the criterion that the potential scale reduction factor on split chains, R̂
was smaller than 1.1 [32] and by a check of the MCMC trace.

The predicted total deer abundance for each time was drawn from a Poisson distribution

with the mean as Nt. To evaluate our models, we compared observed data to simulated data

from the posterior predictive distribution [33]. We generated 1,000 data used for posterior pre-

dictive checks which we simulate from the posterior predictive distribution.

Results

The R̂ values of our estimated parameters were all under 1.1. The estimated deer abundance

had a sharp peak (September–October 2010, Fig 2) during the 12-year period. From 2011 to

2018, the estimated deer abundance was stable compared to the other periods. The models

indicated seasonal patterns in deer abundance; deer abundance gradually increased from April

to December during 2013 and 2018. The mean of observation rates in route E was higher than

that in routes A and B (Table 3). The 95% credible interval (CI) of hm and rho was −8.20 to

−6.80 and 0.01 to 0.15, respectively. On the other hand, the 95% CI of a included 0. Even when

maximum snow depth was used instead of the number of days with snow depth of> 50 cm,

the 95% CI of a included 0 (S3 Table).

The models was able to simulate new data that was similar to the observed values of number

of deer seen in road count surveys in route A and B (Ca, Cb, respectively) and number of deer

seen by block count (B) (Fig 3 and Fig 4). Compared to them, models were less able to simulate

Fig 2. Estimated deer abundances that were obtained from the state–space model from 2007 to 2018. The black line

denotes the mean of estimated deer abundance. The 50% and 95% credible intervals are denoted the dark and light gray,

respectively.

https://doi.org/10.1371/journal.pone.0225872.g002
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Table 3. Data and parameters designed to estimate deer abundances from multiple abundance indices and posterior summaries of coefficients from the model.

Parameter Definition Mean Lower bound of 95% CI Upper bound of 95% CI

System model

Nt expected deer abundance in time t
NLt log(Nt)
μt mean of logNt
rt population growth rate in time t
rlt log(rt)
dt winter mortality in time t
dl logit of winter mortality

ht hunting rate in time t
hl logit of hunting rate

φ mean of hl
hm logit of hunting rate at the forest −6.06 −7.21 −5.06

Eft hunting effort (the product of the number of hunters and days for hunting in time t)
rho effect of hunting effort on hunting rate in logit scale 0.08 0.01 0.15

εt mean of dl
b intercept of snow effect on the winter mortality −4.97 −10.30 −1.30

a coefficient of snow effect on the winter mortality 0.06 −0.01 0.15

Sn numbers of days with snow depth of > 50 cm

σ1 Scale parameter of a Normal distribution that is a prior of μt at t = 2,3,4,6,7, . . ., 48 0.29 0.04 0.59

σ2 Scale parameter of a Normal distribution that is a prior of μt at t = 5,9,13, . . .., 45 0.69 0.14 1.43

σ3 Scale parameter of a Normal distribution that is a prior of rlt 0.06 0.01 0.17

σ4 Scale parameter of a Normal distribution that is a prior of hl 0.99 0.62 1.51

σ5 Scale parameter of a Normal distribution that is a prior of εt 3.03 1.42 6.37

σ6 Scale parameter of a Normal distribution that is a prior of ωt 0.77 0.40 1.29

Observation model

Ct,m number of deer seen in time t in routem by road count surveys

δt,m mean of Ct,m
rslt seasonal observation rate in logit scale in time t
rSt inverse logit of rslt
ωt noise term of rslt
Ot,m number of road count survey occasions during two months in time t in routem
Ac,m ratio of surveyed area by road count surveys in route m per forest area

Ra observation rate at drive count at route A 0.10 0.05 0.15

Rb observation rate at drive count at route B 0.13 0.06 0.20

Re observation rate at drive count at route E 0.75 0.35 0.99

Bt number of deer seen in time t by block count surveys (t = 5,9,13, . . .,45)

θt mean of Bt
bc observation rate at block count 0.21 0.06 0.31

Areab,t ratio of surveyed area by block count per forest area in time t
Ht number of hunted deer in time t by nuisance control

λt mean of Ht
Dt number of deer carcasses in time t (t = 5,9,13, . . .,45)

ηt mean of Dt
rD detection rate at deer carcasses survey 0.77 0.40 0.99

Ad,t ratio of surveyed area by deer carcasses survey after thawing per forest area in time t

https://doi.org/10.1371/journal.pone.0225872.t003
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new data that are similar to the observed value of number of deer seen in road count surveys

in route C (Ce).

Discussion

Using a Bayesian state–space model, we were able to estimate annual and seasonal fluctuations

of deer abundance with data collected from block count surveys, road count surveys by vehi-

cles, mortality surveys during the winter, and nuisance control. The models was able to simu-

late new data that was similar to the observed values of Ca, Cb, and B, though they were less

able to simulate new data that was similar to the observed value of Ce (Fig 3 and Fig 4). It sug-

gested that our model was evaluated as good fit. However, we did not measure detectability of

each survey though the distinction of abundance and detectability is very important in the

Fig 3. Kernel density estimate of the observed data set (dark blue lines) with density estimates for 1000 simulated data sets

drawn from the posterior predictive distribution (light blue lines). (a) Ca, (b) Cb, (c) Ce, (d) B.

https://doi.org/10.1371/journal.pone.0225872.g003
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estimation of wildlife abundance [34]. Therefore, we need to adopt the robust design [35] to

estimate detection probability in future study. However, to improve the accuracy of the estima-

tion, we tried to combine the multiple surveys because the uncertainty can be mitigated by

using multiple indicators [10, 36, 37].

We found a sharp peak of deer abundance during the 12-year study period (September–

October, 2010, Fig 2). The estimated deer abundance at the autumn of 2010, in particular, was

the highest (71.0 individuals per km2). The peak in 2010 could be considered an outbreak; this

is also reported in other populations and deer species [17, 38]. In 2011, the estimated deer

abundance decreased drastically, and has remained at a low level since then. By 2003, most

shrubs, herbs, and dwarf bamboo in the forest had already been overgrazed [23, 39, 40]. There-

fore, the 2010 irruption and the 2011 decrease could not be due to food shortage of the under-

story vegetation. When the understory vegetation was poor, deer may have been depending

Fig 4. Mean and standard deviation of value of the test statistic computed from the observed values (dark blue dot)

and those from the estimated values for 1000 simulated data sets drawn from the posterior predictive distribution

(light blue dots). (a) Ca, (b) Cb, (c) Ce, (d) B.

https://doi.org/10.1371/journal.pone.0225872.g004
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strongly on nuts from canopy and sub-canopy species as food sources during the autumn. In

the autumn of 2009, nut production was synchronously very high in three dominant masting

Fagaceae species (Fagus crenata, Quercus crispula and Quercus serrata) in the Hyogo prefec-

ture that lies next to the prefecture the study forest belongs to; then, nut production was syn-

chronously very low in the autumn of 2010 [41]. Although we did not collect any masting data

from our study site, a nut shortage may have affected the drastic deer population decrease of

2011. From 2011, the aforementioned three tree species did not produce nuts synchronously.

This asynchronous nut production might have led to low deer population stability starting

from 2011 onwards. The carrying capacity of deer might change not only spatial heterogeneity

of habitat (the ratio of grassland, deciduous forest, and evergreen forest), which was reported

in [27], but also temporal heterogeneity of habitats.

The estimated deer abundance was 4.4 to 71.0 individuals per km2 in this study. It is within

the range of the estimated carrying capacity of sika deer (1.34 to 98.4 individuals per km2) in

Yamanashi Prefecture in central Japan [27]. Even in the open ecosystems, they found density

dependent decline in the population growth rate. Therefore, in 2010, the density dependence

in the population growth rate might occur in the study forest. We also need to consider the

density-dependence in the population growth rate based on the habitat environment in future.

In this study, the seasonal fluctuation of deer abundance was obscure. It is a little bit differ-

ent from the past results obtained from road count surveys by vehicles [42]. In the model, we

considered the seasonal observation rate. It would be affected by leaf phenology of understory

vegetation and braches of trees and deer activity including their lactation, mating and so on. It

would purge the apparent seasonal fluctuation. However, the seasonal fluctuation of deer

abundance gradually increased from April to December during 2013 and 2018. Though some

deer exist in forests even during the winter [40], they migrate seasonally to avoid snow accu-

mulation in heavy snow-covered areas [43, 44]. Therefore, the seasonal variation we detected

may be due to the seasonal migration pattern in addition to the population recruitment

through fawn births in early summer. The potential browsing pressure increase in the plant

community during the summer may have negative effects on herbaceous plants, especially the

one that grow in the summer and flowered in the autumn. In this area, as the plants that flower

after midsummer are herbaceous and are more severely browsed compared to trees [45], the

fitness of pollinators working from summer to autumn may critically decrease due to a short-

age in their flower resources.

The 95% credible interval (CI) of hm and rho ranged from −8.20 to −6.80 and 0.01 to 0.15,

respectively (Table 3). These results suggest that nuisance control could be useful in decreasing

deer populations and are similar to past results [10]. On the other hand, a previous study [10]

pointed out the difficulties of increasing hunting pressures because Japanese hunters were get-

ting older. To establish an effective deer abundance management program under this circum-

stance, the development of simple and inexpensive capture methods is urgent.

Late snowfall substantially affects the mortality of C. nippon [12]. In Cervus elaphus in Nor-

way, winter harshness affects first-year survival but not the survival of adults [46]. In this

study, the 95% CI of a included 0. This suggests that snowfall may have slightly affected deer

mortality during the winter in the present study. This is similar to results obtained from study-

ing the alpine ungulate Rupicapra rupicapra [15], though their population dynamics are largely

affected by summer temperature. At first glance, our results seem to suggest that the mortality

rate during the winter will not change even if snowfall decreases due to global warming. How-

ever, as we mentioned earlier, deer inhabiting regions with heavy snowfall, migrate to safe

areas during the winter and go back to their initial habitats after snowmelt. Thus, snowfall

decrease due to global warming may decelerate the winter migration of deer and,
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subsequently, deer that remain on-site may intensively forage evergreen perennial plants dur-

ing the winter season.

In route E, the observation rate was higher than that in routes A and B (Table 3). In this

study, we did not consider the spatial pattern of deer. While route A is close to a village, route

E is remote and located deep in montane forest. Therefore, human activity may have affected

the observation rate. The topographic pattern could have affected route visibility, though we

uniform ranges of observation 15 m width in all routes. Landscape characteristics such as ever-

green forests and artificial grasslands affect deer abundance in local areas [10]. As shown in

Fig 1, this study site consists of steep slopes and deep valleys. The differences in observation

rates among routes may also be due to the differences in landscape characteristics in a local

scale in the forest. However, our model did not fit well in road counts at route E. We need to

treat the results carefully.

In conclusion, we clarified the population dynamics of deer not only annually but also sea-

sonally. Snowfall accumulations did not affect population dynamics of deer in this study irre-

spective of higher mortality of deer during the winter [9, 12]. However, we need to pay

attention to the effect the winter migration of deer has on plant communities because many

deer migrated to another area during the winter and came back before the summer. Although

we could not grasp the population dynamics during the snow accumulation season, in warmer

winters, more deer may remain in the forest. Thus, a warmer winter may lead to degradation

of evergreen perennial plant communities during the winter and early spring. Additional

investigation on evergreen perennial plants could help examine the effect of deer browsing

during the winter. In contrast to snowfall accumulations, nuisance control had an effect on the

population dynamics of deer. Even in wildlife protection areas and national parks where hunt-

ing is regulated, nuisance control could be effective in buffering the effects of excessive deer

browsing on forest ecosystems as well as plant communities, under the absence of potent

predators.
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Visualization: Michimasa Yamasaki.

Writing – original draft: Inoue Mizuki.
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