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Abstract: Various lifestyle factors, including diet, physical activity, and sleep, have been studied in
the context of children’s health. However, how these lifestyle factors contribute to the development
of cognitive abilities, including spatial cognition, remains vastly understudied. One landmark in
spatial cognitive development occurs between 2.5 and 3 years of age. For spatial orientation at that
age, children learn to use allocentric reference frames (using spatial relations between objects as the
primary reference frame) in addition to, the already acquired, egocentric reference frames (using
one’s own body as the primary reference frame). In the current virtual reality study in a sample of
30–36-month-old toddlers (N = 57), we first demonstrated a marginally significant developmental
shift in spatial orientation. Specifically, task performance with allocentric performance increased
relative to egocentric performance (ηp

2 = 0.06). Next, we explored a variety of lifestyle factors,
including diet, in relation to task performance, to explain individual differences. Screen time and
gestational weight gain of the mother were negatively associated with spatial task performance. The
findings presented here can be used to guide future confirmatory studies about the role of lifestyle
factors in the development of spatial cognition.

Keywords: lifestyle; cognition; development; toddlers; egocentric; allocentric; virtual reality; screen
time; gestational weight gain

1. Introduction

In the past decades, there has been a dramatic rise of overweight and obesity amongst
children worldwide [1]. Modifiable lifestyle factors, such as what children eat, and how
much they sleep and exercise or spend time watching television, have an impact on
children’s physical well-being, and this includes brain and cognitive development [2].
Research on the relative contribution of these factors to cognitive development is imperative
for children to reach their full potential, which in turn is beneficial for society as a whole.

One brain structure that is especially prone to external influences, such as the aforemen-
tioned lifestyle factors, is the hippocampus [3]. A possible explanation for this sensitivity of
the hippocampus is its susceptibility to neuroinflammation [3] and its neuroplasticity, which
plays a crucial role in cognitive development [4]. The hippocampus is also the key brain
hub for spatial cognition [5]. Spatial cognition can be defined as the knowledge and cogni-
tive representation of the structure, entities, and relations of space [6]. It is a multifaceted
construct, including, amongst other subdomains, spatial orientation and navigation.

Given the hippocampus’ sensitivity to external influences and its key role in spatial
cognition, lifestyle factors may have a pronounced effect on spatial cognitive development.
However, evidence for this hypothesis stems mainly from rodent studies. For example, one
study reported that rodents consuming a high-fat diet for 8–10 weeks showed impairments
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in spatial navigation abilities later in life, compared with chow-fed littermates [7]. The
high-fat diet also promoted an exaggerated inflammatory response to immune challenge,
particularly in the hippocampus [7]. Importantly, these marked impairments were only
visible in juvenile exposure to a high-fat diet, and not in adult exposure. This study
highlighted the particular sensitivity of the hippocampus to diet-induced changes early in
life that impact spatial cognition.

There is also evidence for an association between higher intakes of saturated fat and
poorer hippocampal-dependent abilities in prepubescent children [8]. Another diet con-
stituent that might play a role is dietary fiber, which is important for the gut microbiota [9],
which in turn can affect inflammation [10]. Accounting for both dietary quality and quantity
is important, given that malnutrition due to either suboptimal caloric intake or subop-
timal nutrient levels, or both, has been related to impaired cognitive development [11].
Moreover, both underweight and overweight/obese children showed diminished cognitive
development [11,12].

Other lifestyle factors affecting inflammatory processes are related to physical ac-
tivity [13]. Emerging evidence indicates that physical activity is beneficial to cognitive
development, even in early childhood (<5 years of age) [14]. A related lifestyle factor,
contributing to sedentary behavior, is screen time. Excessive screen time was already found
to be associated with reduced cognitive abilities in children below 36 months of age [15].

In addition to diet and physical activity, sleep is a modifiable lifestyle factor that
may contribute to children’s cognitive functioning, due to its large impact on the immune
system [16]. One study showed that sleep duration in infancy was associated with bet-
ter executive functioning at 4 years of age [17]. Moreover, shorter sleep duration has
been demonstrated to be related to lower cognitive performance in school-aged children,
including visuo-spatial abilities (see [18] for a review).

Some lifestyle factors may already impact cognitive development before a child is
born, or shortly thereafter. For example, gestational weight gain of the mother either below
or above the recommended weight gain has been related to reduced cognitive performance
in the offspring [19]. Moreover, longer breastfeeding duration is generally found to be
associated with better cognitive abilities, including spatial skills, later in life [20].

Related to cognitive development, successful spatial orientation and navigation can
be supported by adopting two fundamental reference frames to represent location [21].
In an egocentric reference frame, locations are represented in relation to the observer,
whereas in an allocentric reference frame, locations are coded independently from the
observer’s position and are instead coded based on inter-object relations [22]. From a
developmental perspective, egocentric coding is acquired earlier than allocentric coding.
Twelve-month-old infants can rudimentarily use egocentric orientation for coding object
locations [23]. Egocentric orientation is mostly subserved by the precuneus, inferior and
superior parietal cortices, and the frontal cortex [24]. Allocentric orientation is often
considered a more advanced orientation strategy, and it is mostly prevalent in the later
stages of development [25]. During development, younger toddlers have been shown to
primarily use egocentric-related spatial cues for orientation, whereas older toddlers also
incorporate allocentric information [25]. In particular, Bremner and colleagues report an
improvement in the efficiency of spatial cue use for orientation between the ages of 24 and
36 months [26]. Preferential choice of the allocentric orientation strategy begins only during
early school age [27]. Allocentric orientation is mostly subserved by the hippocampus [28],
the region in which neurons with allocentric properties have been found, both in rats [29]
and monkeys [30]. In humans, hippocampal maturity has been associated with increased
allocentric memory abilities [31].

Given the presented evidence of a sensitive period between 24 and 36 months for the
development of spatial cue use for orientation [26], the orientation abilities in a younger
(30 months old) and an older (35 months old) group of toddlers were investigated using
an on-screen VR paradigm [32]. Participants had to locate a target after a rotational trans-
formation. Using visual spatial cues for maintaining orientation was more successful in
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35- vs. 30-month-old children. Moreover, older children could use allocentric orientation
to perform the task when needed, whereas younger children relied solely on egocen-
tric coding [32]. Of note, individual differences in daily living skills (assessed through
the Vineland-Screener questionnaire) predicted orientation success. Together, this study
demonstrated that the developmental period between 30 and 35 months is highly sensitive
for spatial cue use and that ability to use allocentric cues is present in older vs. younger
children. Importantly, the results also highlight that, on top of chronological age, individual
differences exist that contribute to determining successful use of visual cues for orientation.

We hypothesize that modifiable lifestyle factors could add to individual differences in
spatial task performance in children, given the role of the hippocampus in spatial cognition
and its sensitivity to neuroinflammation. However, most research in this area has focused
on lifestyle factors in the context of children’s health, as opposed to children’s cognition [2].
The relation between lifestyle factors and the shift of egocentric to allocentric coding in
toddlers has not been explored. Therefore, the aim of the current study was twofold. First,
we aimed to confirm the development of egocentric and allocentric orientation abilities in
a group of toddlers ranging from 30- to 36-months of age. We used an adjusted version
of the on-screen VR task mentioned above to assess spatial abilities [32]. Differently
from Van der Brink and Janzen’s study [32], we used age as a continuous rather than
dichotomous variable, to obtain a more nuanced understanding of the role of age in spatial
cognitive abilities, e.g., allowing us to investigate whether spatial cognition develops more
linearly or stepwise within this age range. In line with previous findings, we hypothesized
that performance would be better in trials that require egocentric orientation, compared
with trials that require allocentric orientation, and we expected performance to generally
increase with age. Additionally, we hypothesized that with age, allocentric orientation
abilities increase relative to egocentric orientation abilities. Secondly, we aimed to explore
various lifestyle factors, to explain individual differences in spatial task performance
using variables derived from three parent questionnaires (Food Frequency Questionnaire,
Vineland-Screener, and an additional lifestyle questionnaire). Lifestyle factors included
dietary quality, caloric intake, saturated fat ratio, fiber intake, body mass index (BMI), sleep
duration, exercise, screen time, gestational weight gain of the mother, and breastfeeding
duration. This second aim was exploratory, and therefore no specific hypotheses regarding
this part were formulated at the study outset.

2. Materials and Methods
2.1. Participants

A total of fifty-seven toddlers (31 girls, 26 boys), between 30 and 36 months of age
(Mage = 33.05 SDage = 1.87) completed the study. Parents were invited from the Baby
and Child Research Center of the Radboud University Nijmegen in The Netherlands to
participate in the study. Both over-the-phone and in-person screening were carried out to
ensure participants met the inclusion criteria (born within 37 and 42 gestational weeks; no
deafness, blindness, or other senso-motoric handicaps or reduced hand-eye coordination;
no diabetes; no chronic inflammatory diseases (e.g., asthma, Crohn’s disease); no epilepsy;
no brain surgery; no drastic changes in the diet in the past year; no daily usage of ibuprofen,
aspirin, or other form of medication (except from homeopathy or vitamin supplements); no
tooth extractions in the past month; no vaccinations in the past month; no antibiotics in the
past three months). The education level of our sample (i.e., highest education obtained by
either one of the parents) was 1.8 percent low, 10.9 percent middle, and 87.3 percent high.
For context, the average education level in 2018 in the Netherlands was 29 percent low,
40 percent middle, and 30 percent high [33]. The sample was generally homogeneously
highly educated, and therefore control for education level in our analyses could not be
done. The consequences of this for the generalizability of the results will be elaborated on
in the discussion. Participation in the study was voluntarily, and parents received 20 euros
as reimbursement for their time. Written informed consent was obtained from the parents.
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The study was approved by the local ethical committee of Social Sciences of the Radboud
University and the local ethical committee for human research of Arnhem and Nijmegen.

To answer our primary research question, an analysis of the interaction between
a within-subject factor (Condition: congruent, incongruent) and a covariate (Age) was
required. This design is similar to that of a regression analysis with one predictor (Age),
using the difference scores (congruent–incongruent) as the outcome variable; a design that
can be used for a power analysis in G*Power. We based the effect size on the study by
Van den Brink and Janzen [32], which used the same task, in the same age group. Thus,
the a priori power analysis for a regression analysis with one predictor, an effect size of
0.23, an alpha of 0.05, and a desired power of 80 yielded a minimum sample size of 37. A
power calculation with the same settings but using three predictors (Condition, Age, and
Condition × Age) yielded a minimum sample size of 52.

2.2. Materials and Procedure
2.2.1. BMI

Body mass index (BMI) is an internationally used measure that can be used from two
years of age to assess healthy weight for height, through the following formula:

BMI = weight (kg)/height2 (m)

Alternatively, BMI z-scores can be calculated accounting for sex and age. We calculated
BMI z-scores using the calculator from the World Health’s Organization. The correlation
between the BMI z-scores and the normal BMI scores calculated using the formula above
was r = 0.99, p < 0.001. Given the high correlation between both measures, we decided to
include the more frequently used normal BMI scores in the exploratory analysis.

The experimenter measured the height and weight of the participating child and
the accompanying parent at the research facility after the testing session. In addition,
parents self-reported the height and weight of the participating child, of both parents
and of siblings (if applicable) in the additional questionnaire (described below). For the
exploratory analysis, we included the BMI of the child based on the measurement obtained
during the test session.

For the current maternal BMI, we calculated the correlation between the data obtained
by the experimenter and the self-reported data from the questionnaire based on the avail-
able data (n = 31, for mothers who accompanied their child to the test session), and the
correlation was r = 0.99 (p < 0.001). For the mothers that did not accompany their child to
the test session, half of the mothers (n = 13) self-reported a BMI in the questionnaire and
the other half (n = 13) had missing data for this variable.

2.2.2. Questionnaires
FFQ

To assess dietary quality, parents were asked to complete a Food Frequency Ques-
tionnaire (FFQ) in an online portal from their home computer. The FFQ for adults [34]
was adapted by The University of Wageningen to meet specific dietary requirements for
toddlers and extended to allow quantitative analyses about total energy consumption and
macronutrients (see below). The FFQ assesses dietary intake, by querying the frequency
of consumption of listed food items over a specified period of time (here, over the past
month). Completion of the FFQ lasted approximately 25 min.

Data from the FFQ was pre-processed by the University of Wageningen, yielding index
scores reflecting adherence to the Dutch Healthy Diet (DHD) guidelines [35] on eleven
subcomponents (vegetables, fruit, whole wheat products, legumes, nuts, dairy, fish, fat
and oils, highly processed meat (mirrored), sugary beverages (mirrored), and unhealthy
food choices (mirrored)) on which a maximum of 10 points per subcomponent could be
obtained. Thus, the total DHD-index scores used in the exploratory analysis, presented
below could range between 0 and 110, with a higher score meaning better adherence to the
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Dutch guidelines for a healthy diet [35]. This measure was used to assess dietary quality. In
addition to the DHD-index scores, total energy consumption, macronutrient composition
of the diet, and fiber intake were calculated.

For the exploratory analysis, we used the total DHD-index scores, average energy
consumption per day in kilo calories (kcals), the percentage of total kcals derived from
average daily saturated fat intake, and average daily fiber intake in grams.

Vineland Screener

The second parent-completed questionnaire via a home computer was the Dutch
Vineland Screener 0-6 (Vineland-S) [36], which was also applied in the previous study
to explore individual differences in task performance. The Vineland-S is a behavioral
questionnaire used to assess the adaptive developmental age of children under 6 years
of age. Parents score their child’s everyday behavior across 72 items divided across four
domains: communication skills, social skills, daily living skills, and motor skills [36].
The Vineland-S takes approximately 15 min to complete. Total scores are provided as
age-equivalent scores for each domain, and a composite age-equivalent score per child.
To prevent issues with multicollinearity, we did not include the composite scores in the
exploratory regression analyses, and instead focused on the four separate domains.

Additional Lifestyle Questionnaire

The third parent-completed questionnaire via a home computer was a lifestyle ques-
tionnaire. The questionnaire included questions about the child’s habitual sleep and exer-
cise, questions about the pregnancy period, feeding practices, general health and mouth
hygiene of the child, and demographics of the family. In addition, parents were asked to
measure the height, weight, and waist circumference of themselves and any siblings (if
applicable). The duration of completing this questionnaire was approximately 15 min.

The demographic section included questions about the highest education level of either
of the parents. Scores ranged from 1 to 5, indicating primary school level to university
level, respectively. We used the maximum of these two scores to calculate maximum
education level of the parents as a proxy of socioeconomic status. The education level of
the parents was too homogeneous and high to be able to control for socioeconomic status
in our analyses (see Participants section above).

Additionally, we derived a set of variables of interest from this questionnaire, to be
included in the exploratory analysis. For Sleep, the average actual hours of sleep during
the night and the average hours of sleep during the day were added. For Exercise, the
average hours of outside play and sports per week were included. For Screen time, the
total hours per week that a child watched television and used a computer, laptop, tablet,
or smartphone were captured. For Gestational weight gain the total weight gain during
pregnancy in kilograms was used. We did not ask pre-pregnancy BMI, although we did
assess current maternal BMI. However, it should be noted that the latter may not be a good
representation of normal BMI for the mothers, since many of them were currently pregnant,
breastfeeding, or had just given birth. For Breastfeeding duration, the number of months the
child was breastfed was used (0 if the child was never breastfed), irrespective of whether a
child also received formula.

2.2.3. Spatial Cognition Assessment
Stimuli

Spatial cognition was assessed with a virtual reality game using the same stimuli as
employed by van den Brink and Janzen [32]. However, no trials containing landmarks were
included, as they were shown in the original experiment to be distracting to participants.
Stimuli consisted of 8 movies featuring a purple animated bird (target) appearing to
the front of the screen, turning around and flying to hide in one of two identical trees.
The trees were situated, at different distances, into one of four different types of 3D
environments. All stimuli were designed using Blender, an open-source animation suite
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(www.blender.org). Stimuli were presented using a Dell computer running Presentation
software (Neurobehavioral Systems, Inc., Berkeley, CA, USA).

Once the bird had hidden itself in the tree, a camera shift mimicked a self-motion path
(duration: 4 s). This led to a perspective change of 90◦, to the left or the right of the center
of the visual scene (see Figure 1). During the camera rotation, all objects in the environment
temporarily disappeared from sight, preventing toddlers from keeping their eyes fixed
on the target’s hiding position. Position of the hiding tree (left/right and front/back) and
turn (90◦ left/right) were fully counterbalanced. For further details regarding the camera
movements please refer to the stimuli section in Van den Brink and Janzen [32].
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Figure 1. Camera path for an example trial. Panel (a) shows the top view of the camera path,
indicating camera angle and position at five points. Panels (b,d) show the initial and final position of
the camera, resulting in a 90◦ turn to the left of the center of the visual scene. After the initial image
(b), Pico the bird appears (c) and hides in one of the two trees. Next, the camera shifts, resulting in
the final image (d). Finally, children are asked to indicate in which tree Pico is hidden by pressing the
correct tree on the touchscreen. (Image and caption adapted from [32]).

In total, the experiment contained 32 trials. In half of the trials, the tree in which the
bird was hidden was on the same side of the participant’s body before and after the camera
rotation; these were labelled side congruent trials (SCon, Figure 2a). Correct performance
on SCon trials could be achieved either by egocentric or allocentric spatial coding. In the
other half of the trials, labelled side incongruent trials (SInc, Figure 2b), the final hiding
position was on the opposite side of the participants’ body compared to the hiding position
before the camera turn. Correct performance on the SInc trials could only be achieved by

www.blender.org
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allocentric spatial coding. Reliance on egocentric coding to respond on SInc trials would
result in below-chance performance on these trials.
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Figure 2. Experimental conditions of the spatial cognition task. The stills from the experimental
movie depict the two trial types included in the present study. In side-congruent trials (SCon, panel a)
the initial and final target position are on the same side of the participant’s body. In side-incongruent
trials (SInc, panel b), the initial and final target position are on the opposite side of the participant’s
body. Reliance on egocentric coding to respond on SInc trials results in below chance performance.
(Image and caption adapted from [32]).

Procedure

All procedures were carried out in accordance with the regulations of the Baby Re-
search Center of the Radboud University (Nijmegen, The Netherlands). Parental informed
consent was collected, and exclusion criteria checked prior to starting the experiment. Upon
visit to the research center, toddlers were seated on a highchair, or on their parents’ lap,
depending on the child’s preference, in front of a touch screen monitor (Hewlett-Packard
23-inch LCD). A web cam (LG) was fixed on top of the monitor to record the child’s face
and eye movements for the purpose of excluding non-attended trials (on average 10.5%
of all trials). Throughout the experiment, the experimenter was seated on the left side of
the child.

Participants were informed that the game they were about to play involved a bird
named Pico, which they watched fly and hide behind one of the two trees present on the
screen. Upon hiding, a camera shift led to a change in perspective of 90◦ either to the left or
the right of the center of the visual scene (see Stimuli). Thereafter the child had to indicate,
by touching the monitor, which tree the bird was hidden in. Cartesian coordinates of the
touch were recorded, to store information about correct and incorrect responses.

Following the touch response, Pico would fly out of the correct tree providing the
child with feedback on the correct hiding position. If the participant had chosen the correct
tree, the bird chirped while flying toward the camera; otherwise, the bird made no sound.
The first trial was always an example trial completed by the experimenter, to clarify the
procedure for participants. In between each trial, as an incentive, children were allowed to
stamp an offline paper sheet. After every 4 trials, children got to choose a sticker and place
it on the sheet. In total, participants could complete up to 32 trials (M = 17.38 completed
trials, SD = 4.41).

At completion of the experiment, the height and weight of children and the present
parent were measured to later calculate BMI. Afterwards, several biological samples were
collected from the child (buccal swab, saliva for proteomics and volatiles, and a stool kit
for collection at home). Results regarding the biological data falls beyond the scope of
this research paper and will be discussed elsewhere. Finally, parents were explained the
procedure to complete the questionnaires at home and received compensation for their
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child’s participation in the study. The overall experimental procedure lasted for around
one hour.

The setup for this experiment originally also involved functional near-infrared spectog-
raphy (fNIRS). Measurements of the first 5 children therefore also included neuroimaging
data. However, due to technical issues during the measurements and restrictions related
to COVID-19, fNIRS measurements were terminated, and the experiment continued behav-
iorally. Data of the subset of children that received fNIRS did not differ substantially from the
rest of the dataset and was therefore included in the dataset used for behavioral analyses.

2.3. Data Analyses

For our first aim, we performed a repeated-measures ANCOVA, to test for a devel-
opmental shift in performance, as found by Van den Brink and Janzen (2013), using age
as a continuous variable. For this analysis, we used Congruency (side congruent, side
incongruent; qualitative) as a within-subject factor and standardized Age (as a fraction of a
year; quantitative) as a moderator or covariate of interest. Percentage correct was used as the
dependent variable.

For our second aim, we explored whether lifestyle factors were related to individual
differences in task performance. We performed a regression analysis using Mean percentage
correct on both trial types as the outcome variable, and with the following variables as pre-
dictors: Age, Sex, the standard scores on the four domains of the Vineland-S (Communication
skills, Daily living skills, Socialization skills, and Motor skills), Sleep, Exercise, Screen time,
Dutch Healthy Diet (DHD) total score, Caloric intake, Saturated fat ratio, Fiber intake, Child BMI,
Breastfeeding time, and Gestational weight gain of the mother. Sex was added as a dummy
variable and all other predictors were quantitative.

Given the exploratory nature of this analysis, p-values were of less importance here
and were added for completeness. Instead, standardized regression weights (β) are often
used to determine relative predictor importance. However, β-weights are highly sensitive
to multicollinearity [37]. Due to this limitation, some authors have argued that structure
coefficients should be added to results, to allow for correct interpretation [37]. Structure
coefficients are the Pearson’s correlations between the predicted criterion score (Yhat, Ŷ)
and each of the predictors. In the current study, there were no issues with multicollinearity
(all tolerances > 0.35 and all VIFs < 2.83). Nonetheless, to allow for better interpretation of
the results, we also included the structure coefficients for each of the predictors. Due to the
limited sample size for the number of predictors used in the model, we will focus on those
predictors that are of relevance based on both the β-weights and the structure coefficients.

Cohen’s conventions were used to evaluate the magnitude of the effect sizes. Thus, a
correlation of 0.1 was considered small, 0.3 medium, and 0.5 large, and a partial eta-squared
of 0.01 was considered small, 0.06 medium, and 0.14 large [38]. Differences of p < 0.05 were
considered significant and p = [0.05–0.1] marginally significant.

We used R Studio and R version 3.5.1 with the following packages to process and
visualize the data: Tidyverse version 1.2.1, Ggplot2 version2.2.1, Foreign version 0.8–71,
and Haven version 1.1.2. We used IBM SPSS Statistics version 23 for the statistical analyses.

3. Results
3.1. Spatial Cognition Task Performance and Age

First, we confirmed that our data met the assumptions of normality, homogeneity,
and linearity. The first aim of this study was to investigate the development of allocentric
orientation abilities in toddlers between 30 and 36 months of age. We expected allocentric
performance (reflected by performance on the incongruent trials) to increase with age
relative to egocentric performance (reflected by performance on the congruent trials), which
would be reflected in a significant Congruency × Age interaction effect. The results of the
repeated-measures ANCOVA showed a significant main effect of Congruency (multivariate
F(1,56) = 20.74, p < 0.001). This effect was large in size (multivariate ηp

2 = 0.27). Estimated
marginal means indicated that the percentage correct was higher for the side congruent
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trials (M = 74.61%) than for the side incongruent trials (M = 56.02%). This means that
egocentric performance was better developed in the toddlers than allocentric performance,
as expected.

In addition, we observed a marginally significant Congruency × Age interaction (mul-
tivariate F(1,56) = 3.76, p = 0.058), reflecting a developmental change across congruency
conditions and , thus, consistent with the earlier findings of Van den Brink and Janzen [32].
This effect was medium in size (multivariate ηp

2 = 0.06). Parameter estimates indicated
that the b-weight for side congruent trials was negative (b = −2.71), whereas the b-weight
for the side incongruent trials was positive (b = 5.28), although both b-weights were not
significantly different from zero (p = 0.33, and p = 0.11, respectively). A visual overview of
these results is displayed in Figure 3.
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The main effect of Age was not significant (F(1,56) = 94.06, p = 0.55).

3.2. Relation between Spatial Cognition Task Performance and Lifestyle Factors

After confirming similar developmental effects with age, as described earlier [32],
we wanted to assess what factors, in addition to age, contributed to performance on this
task, by exploring the dataset in a regression analysis. See Table 1, for the description of
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all variables and their correlations. The combination of lifestyle factors explained a good
proportion of the variability in spatial cognition task performance (R2 = 0.45), resulting in a
significant model (F(16,38) = 1.97, p = 0.04). An overview of all corresponding β-weights,
p-values, and structure coefficients (r) can be found in Table 2. Based on a combined
evaluation of β-weight and structure coefficient, the most important predictor for overall
task performance (% correct) was Screen time (β = −0.69, p <.001; r = −0.58, p < 0.001), with
more screen time being associated with decreased task performance (see Figure 4). The
second most important predictor was Gestational weight gain (β = −0.31, p = 0.03; −0.38,
p = 0.005), showing that a lower weight gain of the mother during pregnancy was associated
with increased task performance of their child (see Figure 5). For further interpretation of
the results, we correlated gestational weight gain with current maternal BMI, as far as data
was available (n = 44). The correlation was r = −0.27 and marginally significant (p = 0.07).
This effect was of medium size and indicated that mothers that generally gained more
weight during pregnancy had a lower current BMI. All other predictors were of relevance
on the structure coefficients only and not on the β-weights, or not relevant on either, and
we will therefore not further discuss these, given their limited statistical power.
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Table 1. Means, standard deviations, and Pearson’s correlations of the variables included in the exploratory regression analysis to investigate individual differences
in task performance.

Predictor M SD 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1. Age 2.77 0.12
2. Sex 0.47 0.50 0.31 *

3. Communication
skills 41.44 6.15 0.32 * 0.22

4. Social skills 41.91 9.15 0.27 * −0.05 0.45 **
5. Daily living

skills 36.15 8.57 0.12 −0.24 0.42 ** 0.55 **

6. Motor skills 41.02 6.13 0.09 0.12 0.45 ** 0.56 ** 0.48 **
7. Sleep 12.21 1.05 −0.05 −0.04 −0.30 −0.29 * −0.26 −0.05

8. Exercise 8.91 5.55 0.07 0.18 −0.01 0.02 −0.03 0.12 −0.05
9. Screen time

(h/week) 7.51 4.82 0.24 0.006 0.03 0.32 * −0.15 0.22 −0.01 0.40 **

10. Dutch Healthy
Diet score 64.80 14.12 −0.02 0.09 −0.01 0.01 0.14 −0.01 −0.01 −0.21 −0.38

**
11. Caloric intake 1111.50 287.03 0.25 0.35 ** 0.03 0.08 −0.14 −0.008 0.03 0.19 0.11 0.13
12. Saturated fat

ratio 12.12 2.44 0.12 0.09 0.004 −0.09 −0.23 −0.12 0.24 −0.10 −0.07 −0.18 0.16

13. Fiber intake 14.77 3.86 0.13 0.13 0.04 0.07 0.04 −0.007 0.02 0.02 −0.13 0.44 ** 0.63 ** −0.10
14. Child BMI 16.34 1.39 −0.04 0.005 −0.001 −0.20 −0.20 −0.13 0.16 −0.02 −0.23 −0.02 −0.18 0.23 0.02

15. Breastfeeding
time 8.65 8.71 −0.21 −0.38 −0.02 −0.05 0.13 −0.10 −0.02 −0.19 −0.25 0.19 −0.32 * −0.22 −0.04 0.11

16. Gestational
weight gain 12.95 5.88 −0.01 0.12 −0.24 0.02 −0.03 0.08 −0.06 0.17 0.07 0.09 0.26 −0.11 0.18 −0.21 −0.15

Note. M and SD are used to represent mean and standard deviation, respectively. * indicates p < 0.05 and ** indicates p < 0.01 significance of correlation between the predictors (the
numbers in the first row are explained in the first column). The highest correlation was r = 0.63 (between predictors 13 and 11).
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Table 2. Significance of the lifestyle factors in the exploratory regression analysis predicting perfor-
mance in the spatial cognition task (i.e., Mean percentage correct as the dependent variable).

Predictor β p r p

Age 0.05 0.75 0.05 0.72
Sex −0.26 0.13 0.003 0.98

Communication skills 0.22 0.21 0.42 0.001 **
Social skills 0.18 0.35 0.15 0.28

Daily living skills −0.21 0.31 0.28 0.04 *
Motor skills 0.12 0.49 0.11 0.41

Sleep 0.01 0.93 −0.07 0.59
Exercise 0.22 0.14 −0.08 0.58

Screen time −0.69 <0.001 *** −0.58 <0.001 ***
Dutch Healthy Diet

total score −0.006 0.97 0.21 0.12

Caloric intake 0.30 0.14 0.33 0.02*
Saturated fat ratio 0.009 0.95 0.16 0.25

Fiber intake −0.02 0.92 0.29 0.03 *
Child BMI −0.17 0.24 −0.04 0.77

Breastfeeding time −0.10 0.48 −0.01 0.94
Gestational weight gain −0.31 0.03 * −0.38 0.005 **

Note. * indicates p < 0.05. ** indicates p < 0.01. *** indicates p < 0.001. β = standardized Beta-weight, r = struc-
ture coefficient.

Figure 5. The relation between gestational weight gain and task performance (mean percentage correct).
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4. Discussion

The aim of the current study was twofold: (1) to investigate the spatial orientation
abilities in toddlers as a developmental milestone with increasing age, and (2) to explore a
variety of lifestyle factors that could possibly explain individual differences in spatial abilities.

To investigate the development of egocentric and allocentric orientation abilities in
toddlers, we used an adjusted version of an on-screen VR task to assess spatial abilities [32].
Differently from Van der Brink and Janzen’s [32] study, we used age as a continuous rather
than dichotomous variable, to allow a more nuanced understanding of the role of age in
spatial cognitive abilities in this age range (30–36 months of age). We hypothesized that
performance on the congruent trials would generally be better than on the incongruent trials.
Additionally, we expected performance on the incongruent trials, for which allocentric
processing is required, to increase with age relative to performance on congruent trials, for
which egocentric processing alone would be sufficient. Indeed, we found that performance
on the congruent trials was generally superior to that on incongruent trials, confirming our
first hypothesis. The interaction between condition and age was marginally significant,
and the effect size was medium, providing some evidence in the direction of our second
hypothesis. These findings are generally in line with the results of the study by Van den
Brink and Janzen [32]. However, contrary to the findings in that study, we did not find a
significant main effect of age, despite having a large enough sample according to the a priori
power calculation. One possible explanation for this difference is that we included children
in the age range of 30–36 months, as opposed to including only the extreme age groups
(30 months versus 35 months). The latter approach generally has more power [39] and is
perhaps more successful in finding an effect when the shift is gradual or when a sudden
shift happens more towards the beginning or the end of the age range. Future studies
should elucidate whether this development is more gradual or at a sudden moment in time
between 30 and 35 months of age. Cognitive neuroimaging might be able to link these
developmental steps to stages in brain maturation, such as that of the hippocampus [28].

For exploring lifestyle factors in relation to spatial task performance, we used an
exploratory regression analysis using a variety of demographic (Age, Sex) and lifestyle
factors (Sleep, Exercise, Screen time, Dutch Healthy Diet (DHD) total score, Caloric intake,
Saturated fat ratio, Fiber intake, Child BMI, Breastfeeding time, and Gestational weight gain
of the mother) as well as the standard scores on the four domains of the Vineland-S (Com-
munication skills, Daily living skills, Socialization skills, and Motor skills) as predictors. Of
the factors explored here, only Screen time and Gestational weight gain were negatively
associated with spatial task performance in toddlers. The null results of the remaining
factors included in the sample will not be further discussed, because the lack of an effect
could also have been due to insufficient power, given the limited sample size. Future
studies using larger samples could further explore these factors and their interactions, to
obtain a better insight into the more subtle relations between lifestyle factors and spatial
task performance in toddlers.

In most previous studies, clear negative associations between screen time and cognitive
development in young children only became apparent for extremely high exposure (i.e.,
more than 7 h per day in some studies) [40]. The average screen time use in our study
was relatively low (M = 7.51 h/week, SD = 1.07), and within the general guidelines for
children this age (i.e., <2 h/day). Nevertheless, we still observed a negative correlation with
spatial task performance. Screen time in our study also included playing games on a laptop
or tablet. One might expect this gaming experience to be beneficial for playing a spatial
cognition game on a touch screen computer, but the pattern observed here suggests the
opposite. The negative correlation found in the current study could possibly be explained
by a negative association between screen time and cognitive stimulation in the home
environment. Indeed, one study in 24–36 month old toddlers found such a negative
association for television viewing [41]. Screen time could have come at the expense of real-
life play and associated spatial experiences, resulting in a negative association with spatial
cognition. However, we did not assess real-life play duration in our study. Additionally,
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we only focused on screen exposure duration, and we did not specifically assess the type of
content toddlers engaged with. Some studies have found that the type of media content
(i.e., educational or non-educational; violent or non-violent) determines the impact on
cognitive abilities [42]. Therefore, future studies could also include questions on the type
of content, to further unravel this association.

The current findings with respect to gestational weight gain are not exactly in line with
a longitudinal study using a large sample (N > 5000 children), which found a small positive
association between gestational weight gain and offspring cognitive development [19].
An older study found that general cognitive ability (measured with the Raven Coloured
Progressive Matrices) was higher for children of which the mother gained more than
2.27 kg (5lb) and less than 13.15 kg (29lb) [43], which suggests an inverted U-shaped
relation between gestational weight gain and cognitive ability of the offspring. In our
modest sample, gestational weight gain was relatively high (M = 12.98 kg, SD = 5.88), with
very few (n = 3) mothers falling below the lower threshold, which could explain why we
found a negative linear association, in line with these older findings. A more recent study
using a large sample (N = 31,968), indeed, found an inverted U-shaped association [44].
However, comparing these results to those from a different model that accounted for sibling
pairs in their data revealed that almost all observed associations could be explained by
familial factors. Our sample size (N = 57) and composition did not allow us to control for
possible confounders, other than those factors already included in the regression analysis,
and should therefore be interpreted with caution. We encourage future confirmatory
studies using larger samples to investigate the association observed here, including possible
confounders such as socio-economic status, and using analyses that account for non-
normally distributed data, such as generalized estimating equations (GEEs). Such studies
are warranted, since the limited amount of studies to date on gestational weight gain and
cognitive abilities of the offspring have led to inconclusive results (see [45] for a recent
review and meta-analysis), and studies investigating spatial cognition specifically are
currently lacking. One mechanism that could potentially explain the association between
gestational weight gain and cognition of the offspring are inflammatory processes. Indeed,
excessive gestational weight gain was found to be associated with higher concentrations of
inflammatory markers in the mothers [46]. Inflammation during pregnancy may impact
inflammatory profiles in the offspring, but evidence for this hypothesis mainly stems
from rodent studies and more research in humans, investigating the causal mechanisms,
is warranted [47]. Given the key role of the hippocampus in spatial cognition, and the
sensitivity of this brain region to external influences and inflammation [3], spatial cognition
could be a very suitable candidate to further investigate the consequences of heightened
inflammatory factors during pregnancy on the cognitive abilities of the offspring.

The two lifestyle factors found to be (negatively) associated with spatial cognitive
task performance in toddlers in the current study—screen time and gestational weight
gain of the mother—are both modifiable. Although we cannot claim causality based on
our correlational analyses in this observational study, future studies that use lifestyle
intervention designs might show an impact on children’s cognitive abilities. By increasing
awareness through education of (future) parents, the risk of negative consequences could
be reduced. Helping children reach their full potential is particularly important when
it comes to spatial cognitive abilities, because spatial orientation allows them to locate
what they need [32]. Moreover, spatial abilities are linked to quantitative reasoning skills.
Indeed, longitudinal studies have shown that increased spatial abilities are associated with
proficiency in mathematics and science [48]. These skills are highly relevant for today’s
society, where numeracy, the ability to analyze and interpret data, and critically assess
complex problems are increasingly requested abilities.

One important limitation, particularly for the exploratory regression analysis with
the lifestyle factors, is the limited sample size and homogenous study population. Results
should therefore be validated in larger, more heterogenous cohorts. The vast majority
(87 percent) of the parents of the toddlers in the current study sample were highly educated,
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which could be interpreted as a proxy of socioeconomic status. A more heterogeneous
sample would increase the generalizability of the findings, especially since characteristics
of the home environment have the potential to affect cognitive development [49]. As
this observational study does not allow any causal inference, intervention studies in a
randomized controlled design would allow for conclusions regarding the causal role of
screen time or gestational weight gain in affecting spatial cognition in toddlers.

5. Conclusions

Using an existing touch-screen task for spatial cognition, we confirmed that egocentric
orientation abilities are better developed in toddlers than allocentric abilities. We also
found that allocentric versus egocentric performance tended to increase with increasing age
between 30 and 36 months (medium effect size), in line with previous findings comparing
groups of toddlers aged 30 versus 35 months. Regarding the role of various lifestyle factors
in explaining individual variability in spatial cognition, a negative correlation for both
screen time and gestational weight gain with performance on the spatial cognition task was
found. These results need to be confirmed in larger studies, preferably using intervention
designs, to claim causality.
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