
J. Cell. Mol. Med. Vol 10, No 2, 2006 pp. 470-479

Introduction

The phosphoinositide-specific phospholipase C
(PLC) isozymes are considered to play a central role
in activating intracellular signal transduction path-
ways, during early key events in the regulation of
various cell functions [1–4]. The most common sub-
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were chamber specific and time-dependent upon inducing cardiac hypertrophy due to AV shunt. Furthermore, partial atten-
uation of the increased gene expression for some of the PLC isozymes and no effect of losartan on others indicate that both
RAS dependent and independent mechanisms may be involved in hypertrophied hearts due to volume overload.
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strate, phosphatidylinositol 4, 5-bisphosphate is
converted by the action of PLC isozymes into two
messenger molecules, inositol 1,4,5-trisphosphate
and 1,2-diacylglycerol, which have been shown to
participate in many different physiological process-
es via downstream signaling mechanisms including
the activation of protein kinase C (PKC) [5–10]. The
role of PLC in the development of some types of
cardiac hypertrophy has been well documented. In
this regard, PLC activity was found to be increased
in cardiac hypertrophy in cardiomyopathic (BIO
14.6) hamster [11]. In other studies the development
of cardiac concentric hypertrophy in stroke-prone
spontaneously hypertensive rats, was observed to
involve an increase in the PLC signaling pathway
[12, 13]. Also, the activation of PLC has been shown
to be associated with the hypertrophic response of
isolated cardiomyocytes exposed to different agents
[14–16]. In an earlier study, we have reported an
increase in PLC isozyme gene and protein expres-
sion as well as activities in the hypertrophied left
ventricle (LV), due to volume overload induced by
an arteriovenous (AV) shunt in the rat [17]. 

Although it is generally assumed that the mech-
anisms such as increased wall stress and stretch
are involved in the development of hypertrophy in
all chambers of the heart, we have recently shown
that there are differential changes in the expres-
sion of PKC isozymes between the volume over-
loaded LV and right ventricle (RV) [18]. In addi-
tion, the β-adrenergic mediated signal transduc-
tion in the LV and RV was found to be differen-
tially regulated in congestive heart failure due to
myocardial infarction [19]. While these studies
focused on the hypertrophied LV and RV; it is
important to note that in the volume overload
model the atria also undergo significant hypertro-
phy. Therefore, we sought to determine whether
there are differential changes in PLC isozyme
gene expression between the three cardiac cham-
bers. Since the renin-angiotensin system (RAS) is
activated in cardiac hypertrophy due to volume
overload [20, 21], the role of RAS in the PLC
isozyme gene expression was examined by testing
if blockade of the angiotensin II (Ang II) type 1
receptor (AT1) with losartan attenuates the
changes in PLC isozyme gene expression due to
volume overload induced by AV shunt. This study
is the first to report the time-dependent increases
in PLC isozyme expression in the atria and ventri-

cles of volume-overloaded hearts and that early
initiation of losartan treatment partially attenuates
alterations in gene expression for only some of the
PLC isozymes.

Material and methods

Experimental model

All experimental protocols for animal studies were
approved by the Animal Care Committee of the
University of Manitoba, following the guidelines estab-
lished by the Canadian Council on Animal Care. An AV
shunt was performed in male Sprague-Dawley rats
(weighing 150–200 g) [17, 18, 20–22]. Briefly, the ani-
mals were anesthetized with 5% isoflurane with a flow
rate of oxygen (2 l/min). After the abdominal fur was
shaved, an abdominal laparotomy was performed.
Following exposure of the abdominal aorta and inferior
vena cava between the renal arteries and ileac bifurca-
tion, the descending aorta and the ileac bifurcation was
temporarily occluded proximal to the intended puncture
site. An 18-gauge needle was inserted and withdrawn
across the medial wall of the descending aorta three
times to ensure the size and presence of the shunt and
finally withdrawn. The puncture site was then immedi-
ately sealed with a drop of isocynate (Krazy glue). The
creation of the shunt was visualized by the pulsatile flow
of oxygenated blood into the vena cava from the abdom-
inal aorta. Throughout the operative procedure, the rats
were maintained on 2.5% isoflurane in 2 l/min of oxy-
gen. Age-matched, sham operated animals served as con-
trols and were treated similarly, except that the puncture
into the descending aorta was not performed. The ani-
mals were allowed to recover and were maintained on
food and water ad libitum. The circulation system was
only occluded for 25 s–1 min and the entire procedure
was finished within 10 min. It is pointed out that the
mortality rate of the control group was 0% and the mor-
tality rate of the AV shunt animals operated on in this
manner was less than 4% during 6 hrs after the surgery;
thereafter no mortality was seen in either group as a
result of the surgical procedure. The AT1 receptor antag-
onist, losartan was administered (20 mg/kg body weight
[20, 21], immediately after the surgery by oral gavage
and was then given daily for the duration of the study) to
some randomly chosen animals that had been induced
with volume overload. 
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RNA isolation and semi-quantitative PCR

Total RNA was isolated from atrial, RV and LV tissues
using an RNA isolation kit (Life Technologies, ON,
Canada) according to the manufacturer’s procedures.
Reverse transcription (RT) was conducted for 45 min at
48°C using the Superscript Preamplification System for
First Strand cDNA Synthesis (Life Technology, ON,
Canada) as previously described [17]. Primers used for
amplification were synthesized as follows: PLC β1: 5’-
AATAAGGAGACGGAGCTGTTAG-3’ (forward) and
5’-ATGGAAGACAAGCCTCTAGCG-3’(reverse), PLC
β3: 5’-TTGGAAATCTTCGAGCGGTT-3’ (forward) and
5’-AGGAACTGTTTGTTCGGCTCAT-3’ (reverse),
PLC γ1: 5’- CCTCTATGGAATGGAATTCCG-3’ (for-
ward) and 5’- CTAGGGAGGACTCGCTGGAGAACT-
3’ (reverse) and PLC δ1: 5’- AGGATCGATGCTTCTC-
CATTGT-3’ (forward), 5’-TTATCAGCCTTTCG-
CAAGCA -3’ (reverse). Amplification of cDNAs of PLC
isozyme genes was performed using specific primers and
the Superscript Preamplification System (Life

Technology, ON, Canada). Temperatures used for PCR
were as follows: denaturation at 94°C for 30 s, annealing
at 62°C for 60 s, and extension at 68°C for 120 s, with a
final extension for 7 min; 25 amplification cycles for
each individual primer sets was carried out. For the pur-
pose of normalization of the data, glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) primers, 5’-
TGAAGGTCGGTGTCAACGGATTTGGC-3’ (for-
ward) and 5’-GCATGTCAGATCCACAACGGATAC-3’
(reverse) were used to amplify GAPDH gene as a multi-
plex with the target genes. It is pointed out that in previ-
ous studies [16, 17] we have established that 25 amplifi-
cation cycles with the same amount of cDNA for each
PLC isozyme and GAPDH primer is within the linearity
range of RT-PCR. The RT-PCR products were analyzed
by electrophoresis in 2% agarose gels. Staining of nucle-
ic acids was performed with Vistra Green, which is up to
10 times more sensitive than ethidium bromide on a UV
transilluminator with high signal-to-noise ratio and per-
mits detection of < 20 pg/band. The intensity of the
bands was photographed and quantified using a
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BW
g

RVW
mg

Atria wt
mg

LVW
mg

RVW/BW
mg/100g

Atria/BW
mg/100g

LVW/BW
mg/100g

3 day
Sham
AV
AV + LOS

263 ± 5
258 ± 4
288 ± 4

191 ± 8
225 ± 10
225 ± 9

123 ± 9
159 ± 9*
150 ± 13

593 ± 12
655 ± 14*
631 ± 9

73 ± 3
87 ± 2*
78 ± 3

47 ± 3
62 ± 6*
52 ± 4 

225 ± 3
253 ± 5*
219 ± 3#

1 wk
Sham
AV
AV + LOS

267 ± 8
251 ± 10
242 ± 3

186 ± 10
233 ± 14 *
196 ± 9 #

169 ± 23
218 ± 35 *
121 ± 10 #

581 ± 12
721 ± 13 *
640 ± 15 #

70 ± 9
93 ± 12 *
81 ± 4

63 ± 16
87 ± 23 * 
50 ± 4 #

218 ± 10
287 ± 10 *
264 ± 6 #

2 wks
Sham
AV
AV + LOS

358 ± 12
344 ± 20
339 ± 5 

191 ± 8 
283 ± 27 *
237 ± 9 #

186 ± 12
270 ± 10 *
166 ± 11 #

694 ± 12
1027 ± 14 *
840 ± 13 #

54 ± 10
83 ± 14 *
74 ± 4

52 ± 12
79 ± 15 *
52 ± 4 #

194 ± 10
299 ± 10 *
248 ± 15 #

4 wks
Sham
AV
AV + LOS

440 ± 21
442 ± 11
436 ± 8

249 ± 9
360 ± 20 *
337 ± 11 #

194 ± 18
313 ± 23 *
185 ± 14 #

875 ± 23
1350 ± 31 *
1065 ± 25 #

57 ± 15
82 ± 16 *
77 ± 5

44 ± 10
71 ± 17 *
42 ± 3 #

199 ± 10
305 ± 20 *
244 ± 5 #

Table 1   General characteristics of sham control and AV shunt rats with or without losartan treatment for 
different time intervals.

Data are mean ± S.E. of 12–14 animals for each group. BW, body weight; RVW, right ventricular weight; LVW, left ventricu-
lar weight; AV, arteriovenous; LOS, losartan. * P < 0.05 vs. sham control. # P < 0.05 vs. AV shunt.



Molecular Dynamics STORM scanning system
(Amersham Biosciences Corp., PQ, Canada) as a ratio of
a target gene over GAPDH.

Statistical analysis

All values are expressed as mean ± SEM. The differ-
ences between two groups were evaluated by Student’s t-
test. The data from more than two groups were evaluat-
ed by one-way analysis of variance (ANOVA) followed
by Duncan’s multiple comparison tests. A probability of
95% or more (P<0.05) was considered significant.

Results

General characteristics 

The time course of changes in the general char-
acteristics of the control animals and animals
with AV shunt treated with or without losartan
are shown in Table 1. Although there was no sig-
nificant difference in body weight among the
sham, AV shunt and treatment groups at each
time interval, both atrial and RV weights in the
experimental group increased progressively dur-
ing the 3 day to 4 weeks. Consistent with our ear-

lier study [17], LV mass was also observed to
increase progressively during these time points.
Hypertrophy of heart chambers was evident by an
increase in the atrial, RV and LV weights to body
weight ratios. Treatment with losartan (20 mg/kg
body weight, daily) partially attenuated the atrial,
RV and LV hypertrophy in this volume overload
experimental model.

PLC isozyme mRNA levels in
hypertrophied atria, RV and LV from
volume-overloaded hearts

The data in Figs. 1 to 4 show differential and time-
dependent changes in PLC β1, β3, γ1 and δ1
isozyme gene expression in atrial and RV hypertro-
phy due to volume overload. Biphasic changes in
the expression of PLC β1 isozyme were seen in the
atria and RV. In this regard, while an early increase
(3 day) in the PLC β1 mRNA expression level was
seen in both the atria and RV, a second peak of
increased PLC β1 mRNA level was seen at 2 weeks,
post-AV shunt in the atria, whereas it was at 4
weeks in the RV. In contrast, increased PLC β3
mRNA levels were seen in the atria and RV at 3
days after the induction of the AV shunt. While PLC
β3 gene expression was increased at this time point
in the atria, the peak in the increase in the RV PLC
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Fig. 1 PLC β1 gene
expression in Atria
(A) and RV (B).
Representative blots
of atrial (C) and RV
(D) PLC β1 isozyme
mRNA levels in
hearts of rats after
induction of volume
overload with or with-
out treatment with
losartan; LOS, losar-
tan, * significantly
different (P<0.05)
from sham control. #
significantly different
(P<0.05) from AV
shunt. Quantified data
are means ± SEM of 5
different experiments.



β3 gene expression was observed at 1 week. A
biphasic increase in the PLC γ1 mRNA levels was
also detected in the atria, where an early increase
occurred at 3 days followed by a second peak at 4
weeks post-surgery. On the other hand, a sustained
increase in the PLC γ1 gene expression at 2 and 4
weeks was seen in the RV. Interestingly, while no
changes in PLC δ1 mRNA levels were detected in
the atria, a significant decrease in PLC δ1 mRNA

levels was detected in the RV only at 3 days post-
AV shunt. Consistent with our earlier findings [17],
an increase in PLC β1 mRNA levels was seen in the
LV at 4 weeks after the induction of the AV shunt.
In the present study, we also determined the PLC β3
mRNA level in the LV, which was also found to be
significantly elevated early at 3 days, and then
again at 4 weeks after the induction of the AV shunt.
On the other hand, while a delayed increase in the
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Fig. 2 PLC β3 gene expres-
sion in Atria (A) and RV (B).
Representative blots of atrial
(C) and RV (D) PLC β3
isozyme mRNA levels in
hearts of rats after induction
of volume overload with or
without treatment with losar-
tan; LOS, losartan, * signifi-
cantly different (P<0.05) from
sham control. # significantly
different (P<0.05) from AV
shunt. Quantified data are
means ± SEM of 5 different
experiments.

Fig. 3 PLC γ1 gene expres-
sion in Atria (A) and RV (B).
Representative blots of atrial
(C) and RV (D) PLC γ1
isozyme mRNA levels in
hearts of rats after induction
of volume overload with or
without treatment with losar-
tan; LOS, losartan, * signifi-
cantly different (P<0.05) from
sham control. # significantly
different (P<0.05) from AV
shunt. Quantified data are
means ± SEM of 5 different
experiments.



PLC γ1 mRNA level occurred at 2 and 4 weeks, an
early (3 day) upregulation of PLC δ1, gene expres-
sion was detected in the LV.

Although losartan either prevented or partially
attenuated most of the alterations in PLC isozyme
mRNA expression levels in the atria and ventricles,
some anomalies were also observed. In this regard,
while the early increase in atrial PLC γ1 expression
was unaffected by losartan treatment, the 4 week
increase in PLC γ1 was prevented. Furthermore,
losartan did not prevent the increases in the RV
PLC γ1 mRNA levels (at 2 and 4 weeks) as well as
the PLC γ1 mRNA levels in the LV (4 weeks). Also,
treatment with losartan did not correct the decrease
in RV PLC δ1 mRNA levels seen in the RV at 3 days
after AV shunt.

Discussion

The needle technique used in this study to induce
volume overload produces a reproducible animal
model of eccentric cardiac hypertrophy of the LV
[17, 18, 20–22], as well as significant atrial and RV
hypertrophy resembling that occurring in humans
during hyperthyroidism, anemia, and bundle branch

block [22]. Although cardiac hypertrophy may ini-
tially be a beneficial response, it can also be viewed
as a stepping-stone or precursor to the development
of heart failure [17, 23–26]. In the myocardium,
PLC is considered to play a role in the development
of myocardial hypertrophy [15, 17]. In fact, we have
previously demonstrated that inhibition of PLC
activities with U73122 attenuates norepinephrine-
induced increases in atrial natriuretic factor gene
expression and protein synthesis in isolated adult rat
cardiomyocytes [16]. We have also shown earlier
that hypertrophy of the LV due to volume overload
is associated with increases in PLC isozyme gene
and protein expression as well as activities [17].
Since the atria and RV also undergo significant
hypertrophy in this model, it was decided to exam-
ine the time-dependent status of PLC isozyme gene
expression in the atria and RV. These data provide
information on whether the increases in PLC
isozyme gene expression are generalized phenome-
na in all cardiac chambers during cardiac hypertro-
phy due to volume overload or if the increases in
PLC isozyme mRNA levels are specific to the LV.
Since RAS is activated in cardiac hypertrophy due
to volume overload [20, 21], the role of RAS in PLC
isozyme gene expression was examined by testing
whether losartan attenuates the changes in PLC
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Fig. 4 PLC δ1 gene
expression in Atria
(A) and RV (B).
Representative blots
of atrial (C) and RV
(D) PLC δ1 isozyme
mRNA levels in
hearts of rats after
induction of volume
overload with or
without treatment
with losartan; LOS,
losartan, * signifi-
cantly different
(P<0.05) from sham
control. # significant-
ly different (P<0.05)
from AV shunt.
Quantified data are
means ± SEM of 5
different experiments.



isozyme gene expression with a resultant attenua-
tion in cardiac hypertrophy due to volume overload
induced by AV shunt. This is the first study to show
that an AT1 receptor antagonist, losartan, attenuates
PLC isozyme gene expression and is correlated to
regression of cardiac hypertrophy. Furthermore, this
study has shown that PLC isozymes may have a sig-
nificant role in hypertrophy of the atria and ventri-
cles due to volume overload. 

PLC β1, β3, γ1 and δ1 isozyme gene expression
was examined at 3 days, 1, 2 and 4 weeks post-AV
shunt to determine whether there is a time-depen-
dent effect on PLC isozyme gene expression after
the induction of volume overload. It is conceived
that there are specific alterations in the PLC
isozyme gene expression depending on the expo-
sure time to volume overload. For example, PLC
isozyme gene expression may be increased or
decreased at the initiation (3 day) of cardiac hyper-
trophy and/or increased or decreased during the
development (1–4 weeks) of cardiac hypertrophy.
In addition to examining the time-dependent effect
on PLC gene expression in the atria, RV and LV, we
also sought to determine whether there are differ-
ences in PLC isozyme expression between the car-
diac chambers. Our findings demonstrate an early
(3 days after induction of AV shunt) increase in
PLC β1 and β3 isozyme mRNA levels in the atria

and RV, whereas an increase in PLC β3 and δ1 was
seen in the LV at the same time point. Also, the
increase in PLC β1 expression in the atria and RV
were biphasic in nature, which was different to the
profile of the expression of PLC β1 in LV, which
occurred at 2 and 4 weeks. On the other hand, a spe-
cific early activation of PLC γ1 was seen only in the
atria which, coupled to the increase in PLC β
isozyme mRNA expression, may reflect the greater
degree of hemodynamic overload and thus stretch
encountered by the atria. Another notable difference
is that while the atrial PLC δ1 expression was unal-
tered, its expression was significantly decreased in
the RV and increased in the LV at 3 days after AV
shunt. It is pointed out that while the RV expression
of PLC δ1 was decreased only at 3 days after the
induction of AV shunt, it was elevated in the LV at
the same time point; however, the significance of
this change is presently unclear. Although the pro-
file of the increases in PLC isozyme gene expres-
sion are chamber specific and time-dependent when
inducing cardiac hypertrophy due to AV shunt, it
appears that the increase in PLC isozyme mRNA
levels may indeed be a common feature occurring
in atrial, RV and LV hypertrophy due to volume
overload. A limitation of our work is that the PLC
isozyme protein contents have not been measured
in the hypertrophied RV and atria, however; in our
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Fig. 5 Respective
LV PLC isozyme
gene expression after
the induction of vol-
ume overload with or
without treatment
with losartan (A-D).
LOS, losartan, * sig-
nificantly different
(P<0.05) from sham
control. # significantly
different (P<0.05)
from AV shunt.
Quantified data are
means ± SEM of 5
different experiments.



earlier study with this model [17] the changes in LV
PLC isozyme mRNA level did not always correlate
with their encoding protein levels. In view of the
small changes in PLC isozyme mRNA levels in the
ventricles and atria, it could be suggested that the
synthesis or stability of PLC proteins may play a
predominant role in controlling the AV shunt-
induced regulation of PLC activities. While this is
beyond the scope of the present study, it does war-
rant future investigation.  

In this study, treatment of animals with losar-
tan was found to partially prevent cardiac hyper-
trophy, which is in agreement with other investi-
gators as well as with other AT1 receptor antago-
nists [27–32] using this model. While some of
these investigators [27, 28] also reported attenua-
tion of the increased expression of a number of
cardiac genes including atrial natriuretic peptide
and collagen types I and III in volume overloaded
hearts, the attenuation of cardiac hypertrophy
may be related to partial attenuation of some of
the PLC isozyme gene expression by the action of
losartan. This indicates that RAS is partially
involved in inducing cardiac hypertrophy and
increases in specific PLC isozyme gene expres-
sion. It should be noted, however, that losartan
had no effect on the early and late increases in
atrial and RV PLC γ1 as well as the early increase
in LV PLC β3 expression levels suggesting that
the sympathetic nervous system and/or other
hypertrophic stimuli may be involved in regulat-
ing PLC isozymes gene expression.

Since changes in some of the PLC isozymes
were affected partially while others were unaffect-
ed by losartan treatment in hypertrophied hearts, it
appears that both RAS dependent and independent
mechanisms may be involved in inducing changes
in PLC isozyme gene expression in this experi-
ment model. Although the exact mechanism for
changes in cardiac PLC isozyme gene expression
remains to be defined, increased RAS and sympa-
thetic nervous system activities and subsequent
alterations in signal transduction mechanisms
have been suggested to play an important role in
the genesis of these molecular changes [33, 34].
An early increase in angiotensinogen mRNA lev-
els as well as that Ang II is the first growth factor
produced in volume overloaded hearts has been
reported [35]. In addition, both growth hormone
and insulin-like growth factor-1 (IGF-1) both have

been shown to induce a substantial increase in
PLC β3 mRNA expression [15]. Interestingly,
growth hormone and IGF-1 are both increased in
the volume overloaded heart [35, 36] and therefore
may also be involved in the increased expression
of PLC β isozymes seen in the present study.
Because PLC is documented to play a role in car-
diac hypertrophy [11–17], this study has shown
that the chamber specific and time-dependent
increases in PLC isozyme gene expression may be
part of the amplification of the PLC mediated sig-
nal transduction processes involved in cardiac
hypertrophy. It should be noted that the regression
of cardiac hypertrophy in experimental animals
may indicate a causal relationship between PLC
function and losartan therapy. However, it remains
to be established if PLC correction is due to an
attenuation of the effects of Ang II or to the hemo-
dynamic effects following losartan treatment. In
view of the fact that the AT1 receptor is coupled to
the α-subunit of the heterotrimeric Gq family and
known to transduce its signal to PLC β isozymes
as well as the fact that Ang II can activate PLC β
and γ isozymes [4, 37–39], it is conceivable that
PLC isozymes could constitute a mechanism of
action of losartan. Furthermore, it is important to
mention that we have recently reported that PLC
activities may regulate their own gene expression
through a PKC and ERK 1/2 –dependent pathway
[40], which could represent a cycle that perpetu-
ates the hypertrophic response.

Conclusion

Although it is known that LV PLC isozyme mRNA
levels are increased in the initiation of volume over-
load induced hypertrophy of the LV, the present
study has demonstrated that there is also an
increased expression of PLC β and γ isozymes in
the initiation of atrial and RV hypertrophy. Since
the increases in PLC isozyme mRNA levels occurs,
in part, in response to the activation of RAS and
were partially attenuated by losartan, it can be sug-
gested that the pharmacological modulation of the
PLC signal transduction pathway may constitute
novel therapeutic targets for the prevention of car-
diac hypertrophy and subsequent progression to
heart failure. 
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