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Introduction: Uremic toxins contributing to increased risk of death remain largely unknown. We used

untargeted metabolomics to identify plasma metabolites associated with mortality in patients receiving

maintenance hemodialysis.

Methods: Wemeasured metabolites in serum samples from 522 Longitudinal US/Canada Incident Dialysis

(LUCID) study participants. We assessed the association between metabolites and 1-year mortality,

adjusting for age, sex, race, cardiovascular disease, diabetes, body mass index, serum albumin, Kt/Vurea,

dialysis duration, and country. We modeled these associations using limma, a metabolite-wise linear

model with empirical Bayesian inference, and 2 machine learning (ML) models: Least absolute shrinkage

and selection operator (LASSO) and random forest (RF). We accounted for multiple testing using a false

discovery rate (pFDR) adjustment. We defined significant mortality-metabolite associations as pFDR < 0.1

in the limma model and metabolites of at least medium importance in both ML models.

Results: The mean age of the participants was 64 years, the mean dialysis duration was 35 days, and there

were 44 deaths (8.4%) during a 1-year follow-up period. Two metabolites were significantly associated

with 1-year mortality. Quinolinate levels (a kynurenine pathway metabolite) were 1.72-fold higher in pa-

tients who died within year 1 compared with those who did not (pFDR, 0.009), wheras mesaconate levels

(an emerging immunometabolite) were 1.57-fold higher (pFDR, 0.002). An additional 42 metabolites had

high importance as per LASSO, 46 per RF, and 9 per both ML models but were not significant per limma.

Conclusion: Quinolinate and mesaconate were significantly associated with a 1-year risk of death in

incident patients receiving maintenance hemodialysis. External validation of our findings is needed.
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T
he prevalence of patients with kidney failure
treated with dialysis is increasing worldwide,

with the majority treated with hemodialysis.1 Patients
who undergo hemodialysis are at substantial mortality
risk, with a 20% mortality rate in the first year of
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dialysis and a staggering 60% mortality rate over 5
years.2 Currently, the main causes of mortality in pa-
tients undergoing hemodialysis are cardiovascular
(53%), infections (18%), and withdrawal from dialysis
(16%).2 Despite notable advances in dialysis treatment
technologies and strategies to manage kidney failure
related conditions such as anemia and bone mineral
disorder, there have been limited improvements in
survival for dialysis patients.2 The factors contributing
to this persistently high mortality are complex, multi-
dimensional and remain unkown.3-5 Among these
Kidney International Reports (2024) 9, 2718–2726
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Figure 1. Consort diagram of evaluated patients. LUCID, Longitudinal US/Canada Incident Dialysis.
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factors, the accumulation of uremic toxins, solutes that
accumulate in the body due to impaired kidney func-
tion, may play an important role.6-8 However, the
identification of specific uremic toxins that impact
mortality in patients receiving maintenance hemodial-
ysis has not yet been systematically examined.

Metabolomics enables extensive profiling of small
molecules in biological specimens, providing an unbi-
ased snapshot of the metabolic landscape for an indi-
vidual.9,10 Metabolomics has been applied to identify
markers associated with chronic kidney disease (CKD)
and CKD progression,11-14 as well as to describe the
uremic milieu and the effect of the hemodialysis pro-
cedure.15-18 Two previous studies examined the asso-
ciation between serum metabolites and subsequent
mortality in patients with kidney failure, however,
they only focused on cardiovascular mortality.19,20

Our study aimed to determine the association be-
tween plasma metabolite levels measured using a well-
established liquid chromatography-mass spectrometry-
based metabolomics platform and 1-year all-cause
mortality in patients undergoing hemodialysis. We
used stored samples from 522 incident patients with
kidney failure treated with hemodialysis in the United
States and Canada participating in the LUCID and
Kidney International Reports (2024) 9, 2718–2726
evaluated the association between 498 plasma metabo-
lites and 1-year mortality using state-of-the-art high-
dimensional prognostic data methods.
METHODS

Study Population

We used registry data from the LUCID study, which
was a prospective, multicenter observational study of
patients initiating hemodialysis and peritoneal dial-
ysis in the United States and Canada. A total of
823participants were enrolled in 3 centers in the US
(New England, Washington, and Indiana) and Canada
between May 2011 and December 2017.21 Eligibility
criteria were initiation of maintenance dialysis within
6 months, age >18 years, and ability to provide
informed consent. For this study, we profiled a
subset of 700 participants and analyzed 522 patients
on maintenance hemodialysis (3 times per week) who
had available stored samples and information on all-
cause mortality at one year after dialysis initiation
(Figure 1).

The LUCID study was approved by the human
subjects’ review boards of the participating institutions
and all participants provided informed consent.
2719
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Samples

Samples from the LUCID participants were obtained
immediately predialysis at each individual’s outpatient
hemodialysis facility at the time of enrollment. Date of
the samples was only available for the US participants,
and 58% of samples were collected after a long intra-
dialytic interval (Monday or Tuesday). The samples
were collected in red and lavender top- tubes and
centrifuged at 3000 revolutions per minute for 10 mi-
nutes. They were aliquoted on the same day and then
stored at �80 �C at each site. Aliquoted samples were
shipped to the Broad Institute on dry ice for analysis.

Metabolomics

Detailed methods, including characterization of tech-
nical and intraindividual analyte variation among in-
dividuals with CKD for the Broad Institute
Metabolomics Platform have been published.22 In brief,
3 liquid chromatography-tandem mass spectrometry
(LC-MS) injections were used to profile blood samples.
The LC-MS systems consist of Q Exactive/Exactive Plus
orbitrap mass spectrometers (Themo Fisher Scientific)
and Nexera X2 U-HPLC systems (Shimadzu Scientific
Instruments). Measurements of positively charged po-
lar metabolites were performed in samples extracted
with acetonitrile/methanol/formic acid and separated
by hydrophilic interaction LC (HILIC). Positive ion
mode electrospray ionization (ESI) was used for mass
spectrometry (MS) analyses. Measurements of posi-
tively charged lipids were performed in samples
extracted with isopropanol and separated on a C8 col-
umn. Similarly, positive ion mode electrospray ioniza-
tion (ESI) was used for MS analyses. Measurements of
negatively charged polar metabolites were performed
in samples extracted with methanol and separated by
an NH2 column. Negative ion mode ESI was used for
MS analyses. Raw metabolomics data were processed
using TraceFinder (Thermo Fisher Scientific). Metabo-
lite peaks were identified by matching observed
retention times and masses to reference metabolites
tested in each batch, and to an internal database of
previously identified compounds.12

The analytical performance of the LC-MS systems and
the quality of metabolomics data were assured using
several strategies. A mixture of synthetic reference
standards was analyzed periodically during the analysis
queue to assure reproducibility of chromatographic
retention times, quality of peak shapes, and the sensi-
tivity of the MS system. Further, internal standard sig-
nals were monitored in each sample to ensure that each
sample was injected properly and to monitor MS sensi-
tivity. Last, reference samples were inserted in the
analysis queue after sets of 20 study samples to deter-
mine the reproducibility for all metabolites over the run.
2720
Metabolite profiling identified 507 known metabo-
lites in 522 participants. Metabolites below the level of
detection in 95% of samples (n ¼ 9) were excluded,
leaving 498 metabolites for evaluation.

Statistical Analysis

We summarized participant characteristics at baseline
using medians and interquartile ranges for continuous
variables and frequencies for categorical variables. We
used STROBE (Strengthening the reporting of obser-
vational studies in epidemiology) guidelines for
reporting (Supplementary Table S8).23

Metabolite Data Processing

Two key elements of processing high dimensional
data are addressing the variability and missingness in
the metabolomics data. The potential sources of
variability can be preanalytical, for example, due to
sample collection, processing, storage, and trans-
portation methods. The variability can also be
analytical (instrument drift), induced by the tech-
nique used and reflected by retention time and signal
intensity drifts.24,25 To assess instrument drift, we
evaluated correlations between the quality control
samples and performed principal components analysis
(PCA) on the metabolite abundances (Supplementary
Methods S1, Supplementary Table S1, and
Supplementary Figure S1). We then adjusted for in-
strument drift using the removal of unwanted vari-
ation (RUV) method (Supplementary Methods and
Supplementary Figure S2).26 In sensitivity analyses
we explored the impact of eliminating the RUV
correction.

The missing data in metabolomics studies are often
because of limit of detection issues (a type of left
censoring), which we addressed by using the quantile
regression imputation of left-censored data (QRILC)
method.27 We evaluated the quality of metabolomics
imputation by first manually left censoring the
metabolomics data, dropping the 20 lowest abundances
for metabolites that did not already have a high rate of
missingness (<60% missing values) and then using
root mean squared error to quantify imputation error
(See Supplementary Methods and Supplementary
Figure S3). We tested additional imputation methods
such as half-minimum (uniformly distributed random
values from 0 to half of the minimum observed abun-
dance) and k-nearest neighbors’ methods.28 QRILC
showed the lowest imputation error of all methods and
was used for the subsequent analysis.

Covariates

A priori, we determined covariates to be included in
adjusted models based on biological plausibility, and
Kidney International Reports (2024) 9, 2718–2726
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included age, sex, race, cardiovascular disease, dia-
betes, body mass index (BMI), albumin, Kt/Vurea (K
represents urea clearance by the dialyzer, t represents
treatment time, and V represents urea distribution
volume), dialysis duration, and country (USA and
Canada). We excluded 57 patients with missing infor-
mation on race, BMI, cardiovascular disease, and dial-
ysis duration. To account for missing albumin (n ¼
208) and Kt/Vurea (n ¼ 215), we used a RF imputation
approach as implemented in the missForest R pack-
age.29 RF imputation has been found to have good
performance for categorical variables following a
missing at random mechanism but poorer performance
for continuous variables that are skewed.30 To address
this limitation of RF imputation, we imputed log-
transformed versions of albumin and Kt/V (See
Supplementary methods and Supplementary Table S2).
Analyses that used imputed albumin and Kt/V had a
sample size of 465 patients. Additionally, we performed
sensitivity analyses where we repeated our analyses on
the 251 patients with complete records on all
covariates.

Outcome

The primary outcome of the study was all-cause mor-
tality within one year of dialysis initiation. The infor-
mation on mortality was ascertained from the electronic
health records of the dialysis providers for the US
participants and by research physician adjudication for
the Canadian participants.

Because there is no single best statistical method to
analyze high dimensional metabolomic data,31,32 we a
priori assumed that metabolites identified by >1 sta-
tistical model would be more likely associated with the
study outcome. We applied 3 statistical methods to
identify metabolites associated with one-year all-cause
mortality: linear models with empirical Bayesian
inference, ML models using LASSO, and random
forests.

Linear models with empirical Bayesian inference use
a differential analysis framework modeling strategy,
which shrinks a sample’s variance towards a pooled
estimate.33 The advantage over the standard linear
regression estimator is that Bayesian Linear Regression
determines a probability distribution instead of a single
“best” value.34 This leads to a more powerful and
stable inference to detect significant changes in
metabolite abundance and association with outcomes.35

To study the association between metabolite abundance
and mortality, we regressed log2-metabolite levels as
the dependent variable on mortality (yes/no) and
covariates as the independent variables using the
limma software package.36 We used metabolite levels as
the dependent variable instead of mortality because the
Kidney International Reports (2024) 9, 2718–2726
theory underlying the limma method makes assump-
tions about the distribution of the biological measure-
ment (metabolite levels) rather than assumptions about
the grouping variable (mortality).33 The covariates
were determined a priori and included baseline age,
sex, race, cardiovascular disease, diabetes, BMI, albu-
min, Kt/Vurea, and dialysis duration. BMI, albumin,
Kt/Vurea, and dialysis duration were modeled with
natural splines. When estimating moderated variances,
we retained unidentified metabolites to improve esti-
mation accuracy but removed them after completion of
modeling, resulting in 498 metabolites. We adjusted P-
values for multiple testing using the Benjamini-
Hochberg procedure and used a false discovery rate
threshold of 10% (pFDR <0.10) for the association
between mortality and metabolites.37,38 We used the
coefficients on mortality indicators as our measures of
association. These coefficients give the adjusted log2-
fold change in metabolite levels comparing patients
who died within 1 year of dialysis initiation and those
who did not.

In addition to empirical Bayesian inference, we
used LASSO and RF models to crosscheck metabo-
lites predictive of one-year mortality as a binary
variable. In these models, covariates and all known
metabolites were included as predictors, and vari-
able importance measures were used to quantify the
predictive ability of metabolites. In the LASSO
models, variable importance was quantified as the
number of times a variable had a nonzero coefficient
across different values of the regularization param-
eter (lambda). In the RF models, variable importance
was quantified as the mean decrease in Gini index
resulting from splits on that variable, averaged over
the trees in which that variable appeared. We
categorized variable importance as high ($90th
percentile), medium (70th–90th percentile), or low
(<70th percentile). Overall, we considered a metab-
olite significantly associated with mortality if the
pFDR was <0.1 and showed medium or high vari-
able importance by LASSO and RF models. Addi-
tionally, we explored metabolites that were
considered significant by any one of the 3 statistical
models.

Sensitivity Analyses

Our primary analysis included RUV correction and no
covariate imputation. In sensitivity analyses, we
explored the impact of imputing albumin and Kt/V
covariates (imputation ¼ yes) and eliminating RUV
correction (RUV correction ¼ no).

All analyses were done using Stata SE 17.0 (Stata-
Corp, College Station, TX, USA) and R (R Core Team,
2023).
2721



Table 1. Characteristics of 522 Longitudinal US/Canada Incident
Dialysis study participants included in present study
Characteristics Overall

Median age (IQR), yr 64 (54–74)

Male, n (%) 457 (88%)

Race/ethnicity, n (%)

Non-Hispanic White 424 (81)

Non-Hispanic Black 22 (4)

Other 75 (15)

Median BMI (IQR), kg/m2 27 (23–31)

Diabetes, n (%) 280 (54)

Cardiovascular disease, n (%) 248 (48)

Median albumin (IQR), g/dl 3.3 (2.7– 3.7)

Median Kt/Vurea (IQR) 1.4 (1.2–1.7)

Median dialysis duration (IQR), days 35 (15–66)

1-year mortality, n (%) 44 (8.4)

BMI, body mass index; IQR, interquartile range.
Missingness: Race (n ¼ 1), BMI (n ¼ 51), cardiovascular disease (n ¼ 3), albumin (n ¼
208), Kt/Vurea (n ¼ 215), dialysis duration (n ¼ 8).

Table 2. Metabolites associated with one-year posthemodialysis
mortality in Longitudinal US/Canada Incident Dialysis cohort

Analysis Metabolite

1-year mortality

Adjusted
fold

change pFDR LASSO
Random
forest

Primary analysis

RUV correction; no covariate
imputation (n ¼ 251)

Quinolinate 1.72 0.009 High High
Mesaconate 1.57 0.002 High High

Sensitivity analyses

No RUV correction; no covariate
imputation (n ¼ 251)

Quinolinate 1.72 0.008 High High
Mesaconate 1.53 0.003 High High

No RUV correction; covariate
imputation (n ¼ 465)

Quinolinate 1.66 0.001 High High
Mesaconate 1.30 0.073 High High

RUV correction & covariate
imputation (n ¼ 465)

Quinolinate 1.66 0.001 High High
Mesaconate 1.36 0.012 High High

FDR, false discovery rate; LASSO, Least absolute shrinkage and selection operator;
RUV, removal of unwanted variation.
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RESULTS

Descriptive Characteristics

Baseline characteristics of the 522 included patients are
shown in Table 1. The median age (interquartile range,
IQR) was 64 (54–74) years, 88% were men, and 81%
self-identified as White. The median BMI (IQR) was 27
(23–31) kg/m2, 48% of patients had a history of car-
diovascular disease, and 54% of patients had a history
of diabetes mellitus. Median serum albumin was 3.3
(2.7–3.7) g/dl, and median Kt/Vurea was 1.4 (1.2–1.7).
The median dialysis duration was 35 (15–66) days. The
characteristics of all LUCID participants (n ¼ 700),
including those who were excluded from this study
due to lack of mortality information, are shown in
Supplementary Table S6.
Metabolites Associated With Mortality

The cumulative 1-year mortality in the cohort was
8.4%. Two metabolites, quinolinate and mesaconate,
were significantly associated with one-year post-
hemodialysis-initiation mortality (pFDR<0.1 and
ranked high importance using RF and LASSO)
(Table 2). The levels of quinolinate were 1.72-fold
higher in patients who died by year 1 compared with
those who did not (pFDR, 0.009), while the levels of
mesaconate were 1.57-fold higher in those who died
compared to those who did not (pFDR, 0.002).

Other than quinolinate and mesaconate, a total of 42
metabolites were identified as high importance by
LASSO (Supplementary Table S3), 46 by RF
(Supplementary Table S4) and 9 by both these models
(Supplementary Table S5). However, the pFDR was
>0.1 for all. The 9 metabolites included 2-
aminoheptanoate, C22:5 cholesteryl eicosapentaenoic
acid, C54:6 monoarachidonic acid triglyceride, C54:4
2722
monoarachidonic acid triglyceride, citrate/isocitrate,
N1-methyl-2-pyridone-5-carboxamide, C34:2 phospha-
tidylethanolamine, N-acetylornithine, and guanidino-
acetic acid (Supplementary Table S5). Accuracy
measures for the ML models are available
(Supplementary Table S7).

A comprehensive list of all identified metabolites
and their degree of association with one-year mortality
using limma, LASSO and RF is available in
Supplementary Data S2.

Sensitivity and Additional Analyses

Sensitivity analyses showed that quinolinate and
mesaconate remained significantly associated with one-
year mortality under all permutations accounting for
RUV and missing covariate imputation (Table 2). In
exploratory analyses, the associations remained un-
changed after adjusting for indoxyl sulfate, another
protein-bound uremic solute (data not shown).

DISCUSSION

In this cohort of incident patients with kidney failure
treated with hemodialysis in the United States and
Canada, we identified 498 known plasma metabolites
and evaluated their association with 1-year mortality.
Using state-of-the-art high-dimensional data methods,
we found 2 metabolites, quinolinate and mesaconate,
were significantly associated with 1-year mortality.

Quinolinate (HMDB0000232) is a 167 Da metabolite
generated in humans by the kynurenine pathway of
tryptophan metabolism. It is also present in a variety of
foods, including fruits, nuts, and meats.39 Quinolinate
is considered a putative protein-bound uremic toxin,
and its plasma concentrations in patients with kidney
failure are 15 times higher than in people with normal
kidney function.40 More frequent hemodialysis (6 times
per week) compared to conventional thrice-weekly
hemodialysis lowers quinolinate levels by 35%.17 In
Kidney International Reports (2024) 9, 2718–2726
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our study, quinolinate levels were 72% higher in the
patients that died during year 1 compared with those
who survived. However, we did not find an association
between mortality and other metabolites of
the kynurenine pathway, including kynurenic acid
(P ¼ 0.98), tryptophan (P ¼ 0.98), and xanthurenate
(P ¼ 0.98).

Several metabolites of the kynurenine pathway,
including quinolinate, are upregulated with oxidative
stress and are positively associated with inflammatory
markers and carotid intima-media thickness.41 Quino-
linate and other metabolites of the kynurenine pathway
are also positively associated with hypercoagulability
as manifested by elevated fibrinogen, thrombomodulin,
and von Willebrand factor levels in patients on dial-
ysis.42,43 In animal models, quinolinate has a direct,
dose-dependent, inhibitory effect on endogenous
erythropoietin production.44 Although not yet
demonstrated in kidney failure, inhibition of erythro-
poiesis would likely require higher doses of
erythropoiesis-stimulating agents, which are also asso-
ciated with thrombotic events. Thus, the activation of
the kynurenine pathway and accumulation of quino-
linate could contribute to an increased risk of mortality
in patients on dialysis through atherogenic and
thrombotic pathways.45,46 Alternatively, elevations of
blood quinolinate might indicate a bottleneck in the
production of downstream tissue nicotinamide adenine
dinucleotideþ, as has been observed in other contexts,
including acute kidney injury.47-49 In this case, qui-
nolinate would serve as a marker of NADþ depletion
rather than a functional mediator of mortality risk in
kidney failure.

Much less is known about mesaconate, or mesa-
conic acid (HMDB0000749), the second metabolite
associated with mortality in our study. Mesaconate is
a 130 Da methyl-branched fatty acid with an un-
known protein binding. Recently, mesaconate was
shown to be synthesized in inflammatory macrophages
from itaconate, itself a macrophage-derived metabo-
lite.50 Microbial components like lipopolysaccharide
and fungal cell wall sugars, as well as several cyto-
kines, are known to upregulate macrophage aconitate
decarboxylate 1, which synthesizes itaconate from the
Krebs cycle intermediate aconitate. Itaconate has
complex immunomodulatory effects, although the
general view is that it acts as a negative regulator of
innate immunity.51

Mesaconate is structurally very similar to itaco-
nate—it differs in the position of one proton and the
double bond—with similar immunomodulatory effects
in proinflammatory macrophages, including reduced
IL-6 and IL-12 secretion and increased CXCL10 pro-
duction.50 In mice, administration of exogenous
Kidney International Reports (2024) 9, 2718–2726
mesaconate improved survival following intraperito-
neal injection of LPS, a commonly used sepsis model.50

Thus, mesaconate is an emerging “immunometabolite,”
although to our knowledge its levels have not been
associated with outcomes in humans to date. In our
study, mesaconate levels were 57% higher in the pa-
tients who died within 1 year compared to those who
were alive. There was no association with its precursor
aconitate (P ¼ 0.46); our platform did not measure
itaconate. Our findings raise the possibility that, like
itaconate, mesaconate could be a functional mediator of
immunologic dysfunction, thereby increasing the risk
of mortality in kidney failure.52

Two previous studies have used an untargeted
metabolomics approach to identify metabolites asso-
ciated with mortality in patients receiving hemodial-
ysis. Kalim et al.19 found an association between long-
chain carnitines (oleoylcarnitine, linoleylcarnitine,
palmitoleoylcarnitine, stearoylcarnitine), measured on
the Broad platform (the same platform as our study)
and cardiovascular disease mortality in the Acceler-
ated Mortality on Renal Replacement (ArMORR) study
cohort. None of these metabolites were significant in
our analysis. Hu et al.20 evaluated the association of
metabolites, measured on the Metabolon platform, and
cardiovascular mortality in a subsample (n ¼ 94) of the
Hemodialysis (HEMO) Study. None of the metabolites
were associated with mortality using the false dis-
covery threshold of 10%. Using a raw P-value
threshold of <0.005 (unadjusted for multiple com-
parisons), several metabolites were associated with
cardiovascular mortality. Of these metabolites, only
palmitoleoylcarnitine and 2-hydroxybutyrate/2-
hydroxyisobutyrate were detected in our cohort but
were not associated with mortality. This could be due
to differences in sample size and statistical methods
used for inference or biological differences such as
diet, microbiome, variability in dialysis intensity,
timing of sample collection relative to the long inter-
dialytic interval, intradialytic weight gain and resid-
ual renal function, given that our study included
incident dialysis patients with presumably some re-
sidual kidney function. In contrast, ArMORR and
HEMO studies evaluated prevalent patients. This
highlights the need for larger validation studies with
rigorous methodologies.

Our study has several strengths, including an inci-
dent dialysis cohort, a state-of-the-art metabolomics
platform, and our rigorous statistical approach with a
priori selection of covariates and statistical models. The
limitations include a single timepoint measurement of
metabolites and lack of standardization of the day of
the week for sample collection. In addition, the
observational design of the study precludes the
2723
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assessment of causality, and our cohort had a mortality
rate (8%) that was lower than the reported by the
United States Renal Data System (16%), suggesting
selection of healthier patients recruited in the study.
Therefore, the next steps should include external
validation on diverse populations, with a longer
follow-up period, and repeated metabolite measure-
ments. In addition, an exploration of the association of
metabolites with uremic symptoms in patients
receiving maintenance hemodialysis remains lacking
and constitutes an important future direction.

CONCLUSION

We report 2 novel metabolites, quinolinate and
mesaconate, are associated with 1-year mortality in
incident patients receiving maintenance hemodialysis.
Our findings call for further external validation, and if
confirmed, exploration of biological pathways of
toxicity and search for possible therapeutic targets.
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