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A B S T R A C T

Microglia are the resident immune cells of the central nervous system (CNS) parenchyma, which perform
beneficial physiological roles across life. These immune cells actively maintain CNS health by clearing toxic debris
and removing dysfunctional or degenerating cells. They also modify the wiring of neuronal circuits, by acting on
the formation, modification, and elimination of synapses—the connections between neurons. Microglia further-
more recently emerged as highly diverse cells comprising several structural and functional states, indicating a far
more critical involvement in orchestrating brain development, plasticity, behaviour, and cognition. Various
environmental factors, together with the individual genetic predispositions, confer an increased risk for neuro-
developmental and neuropsychiatric disorders, as well as neurodegenerative diseases that include autism spec-
trum disorders, schizophrenia, major depressive disorder, and Alzheimer's disease, across life. Microglia are
highly sensitive to chronic psychological stress, inadequate diet, viral/bacterial infection, pollution, and insuffi-
cient or altered sleep, especially during critical developmental periods, but also throughout life. These environ-
mental challenges can compromise microglial physiological functions, resulting notably in defective neuronal
circuit wiring, altered brain functional connectivity, and the onset of behavioral deficits into adolescence,
adulthood, and aging. This short review provides a historical and technical perspective, notably focused on my
contribution to the field, on how environmental challenges affect microglia, particularly their physiological
functions, and increase their diversity, which provides novel targets for intervention.
1. Introduction: microglial physiological roles

We are experiencing an important paradigm shift in the microglia
field. Microglia are not neurotoxic cells that should be eradicated
(Hellwig et al., 2013), instead they are highly beneficial immune cells
that actively contribute, through their many physiological roles, to
maintaining health. Over the past decade, the beneficial roles of micro-
glia in the healthy brain have started to unravel (Tay et al., 2017b;
Tremblay et al., 2011; Tremblay and Sierra, 2014).

As shown by a Pubmed search withmicroglia in all fields or in the title,
there were only few papers published on the topic before the 1990s, and
then a steady increase until the beginning of our century, followed by an
exponential growthofmicroglial research(Tremblayetal., 2015).There is a
first inflexion point in 2005, with the seminal discovery using non-invasive
two-photon in vivo imaging that microglia—which used to be called
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‘resting’ or ‘quiescent’ in the healthy brain, are extremely dynamic,
continuously surveying the parenchymawith their highly motile processes
(Davalos et al., 2005; Nimmerjahn et al., 2005). The development of
non-invasive methods was a necessary condition for our understanding of
the roles ofmicroglia in the healthy brain (Tremblay, 2011; Tremblay et al.,
2011). There is a second inflexion point in 2010, coincident with the dis-
covery of their exclusive origin from the embryonic yolk sac (Ginhoux et al.,
2010; Gomez Perdiguero et al., 2013). Microglia infiltrate the brain during
embryonic development and they stay there throughout life, maintaining
themselves through local self-renewal (Ajami et al., 2007; Huang et al.,
2018;Tayetal., 2017b).Theother immunecells that can transit through the
brain, in different contexts of health and disease, instead come from the
bone marrow (Mildner et al., 2007; Simard et al., 2006; Wohleb et al.,
2013).

Also, in 2010, my postdoctoral work revealed that microglia respond
ada.
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to the changes in sensory experience during normal physiological con-
ditions. For instance, a reduced microglial surveillance was observed in
the mouse visual cortex after dark adaptation, induced by housing the
animals in complete darkness for one week, from the beginning to the
peak of the critical period for visual plasticity, and found to be reversed
by re-exposure to circadian light for two days (Tremblay et al., 2010). In
vivo, dynamic interactions between microglial processes and synaptic
structures (axon terminals, dendritic spines) were frequently observed in
the somatosensory and visual cortices (Tremblay et al., 2010; Wake et al.,
2009). A combination of two-photon in vivo imaging and electron mi-
croscopy with immunostaining also revealed, in a non-invasive manner,
that microglia frequently interact with pre-synaptic axon terminals,
synaptic clefts, post-synaptic dendritic spines, and perisynaptic astrocytic
processes during normal physiological conditions, increasing their con-
tacts (phagocytic and non-phagocytic) with pre- and post-synaptic ele-
ments during dark adaptation and the subsequent re-exposure to
circadian light (Tremblay et al., 2010). Chronic two-photon in vivo im-
aging over two days further revealed that dendritic spines contacted by
microglia were more frequently eliminated than spines remaining
non-contacted, which first suggested that microglia could be involved in
their elimination (Tremblay et al., 2010).

Neuronal circuits are constantly refined, notably through the forma-
tion, modification, and elimination of synaptic structures, which allows
for learning and memory, and adaptation to the ever-changing environ-
ment (Bernardinelli et al., 2014; Christoffel et al., 2011; Holtmaat and
Svoboda, 2009). Based on ultrastructural analyses, different modes of
microglia-mediated synaptic elimination were identified, including (i)
phagocytosis, which is the engulfment of synaptic elements followed by
their digestion within endosomes that fuse with lysosomes, whether it is
complete or partial (i.e., trogocytosis), (ii) remodeling of the extracellular
matrix leading to the collapse of dendritic spines, (iii) exophagy or
extracellular “digestion” of extracellular debris, lipoproteins, and synaptic
elements, aswell as (iv) synaptic stripping,whichwasfirst describedusing
the facial nerve injury model, and refers to the physical separation of pre-
and postsynaptic elements (i.e., neuronal cell bodies, dendrites, dendritic
spines) by intervening microglial processes (Acharjee et al., 2018; Blin-
zinger and Kreutzberg, 1968; Haka et al., 2016; Kettenmann et al., 2013;
Paolicelli et al., 2011; Schafer et al., 2012; Trapp et al., 2007; Tremblay et
al, 2010, 2012; Tremblay and Majewska, 2011; Weinhard et al., 2018).

With these findings and several other studies, microglia are now
considered to be crucial during development for the survival of newborn
neurons and their progenitors, the clearance of apoptotic cells, the for-
mation of dendritic spines via brain-derived neurotrophic factor (BDNF)
signaling, and the pruning of less active synapses through the comple-
ment pathway, fractalkine signaling, the triggering-receptor expressed
on myeloid cells 2 (TREM2), and the neuronal or synaptic exposure of
phosphatidyl serine (Filipello et al., 2018; Gunner et al., 2019; Gy€orffy
et al., 2018; Linnartz et al., 2012; Miyamoto et al., 2016; Paolicelli et al.,
2011; Parkhurst et al., 2013; Schafer et al., 2012; Scott-Hewitt et al.,
2020; Sierra et al., 2010; Tay et al., 2017b; Tremblay and Sierra, 2014).
In adulthood, microglia are important effectors of plasticity, contributing
to neuronal circuit maintenance and remodeling, as well as learning and
memory, and the adaptation to an enriched or stressful environment
(Milior et al., 2016; Parkhurst et al., 2013; Tay et al., 2017b; Tremblay
and Sierra, 2014). Microglia further play physiological roles in axonal
myelination, blood-brain barrier maintenance, vascular remodeling, and
blood flow regulation (Cs�asz�ar et al., 2021; Hughes and Appel, 2020;
Joost et al., 2019). Over the course of aging and upon exposure to various
environmental risk factors for disease across the lifespan, microglia
become more diverse and altered in their crucial physiological functions
(Stratoulias et al., 2019; Tay et al., 2017a).

2. Microglial response to environmental risk factors

The exposure to various environmental risk factors combined with
the individual genetic vulnerabilities results in different
2

neurodevelopmental and neuropsychiatric disorders, as well as neuro-
degenerative diseases, depending on the stage of life. These risk factors
comprise chronic psychological stress, but also inadequate nutrition,
infection, and insufficient or altered sleep (Garofalo et al., 2020;
Hanamsagar and Bilbo, 2017; Knuesel et al., 2014; Tay et al., 2017a).
Prenatal development is a particularly sensitive period. Maternal im-
mune activation, notably caused by chronic stress and viral or bacterial
infection, combined with later environmental challenges, cumulating
over a lifetime, was shown in epidemiological studies to confer an
important risk for (i) autism spectrum disorders during childhood, (ii)
schizophrenia, major depressive disorder, and other mental illnesses
during adolescence and into adulthood, as well as (iii) Alzheimer’ dis-
ease, Parkinson's disease, and other age-related sporadic or late-onset
forms of neurodegenerative diseases with aging (Knuesel et al., 2014;
Tay et al., 2017a). These disorders and diseases arising across life are
similarly associated with microglial phenotypic transformation or reac-
tivity (e.g., proliferation, changes in morphology, increased phagocytic
ability, release of pro-inflammatory mediators) and compromised phys-
iological functions (Tay et al., 2017a).

Early microglial dysfunction during embryonic development due to
genetic vulnerabilities and environmental risk factors (such as chronic
stress, inadequate nutrition, and infection), leading to disturbances of the
gut-brain axis and exacerbated inflammation, can result in impaired
neuronal functions and the emergence of neurodevelopmental disorders
(Bordeleau et al., 2020; Cryan et al., 2019; Knuesel et al., 2014; Tay et al.,
2017a). An aberrant release of pro-inflammatory cytokines and impaired,
mistargeted or exacerbated synaptic pruning can affect the density,
maturation and wiring of neurons, translating into permanent defects of
mature neural networks (Tay et al., 2017a). The imbalance of excitation
to inhibition and an altered functional connectivity between brain re-
gions were associated with neurodevelopmental disorders that include
autism spectrum disorders and schizophrenia, but also attention-defici-
t/hyperactivity disorder (Moreau et al., 2020; Sohal and Rubenstein,
2019). Various environmental challenges such as chronic psychological
stress, inadequate nutrition, and infection, but also pollution, can prime
microglia (Bordeleau et al., 2020; Hanamsagar and Bilbo, 2017). Primed
microglia are more susceptible to subsequent environmental challenges,
leading to an abnormal cytokine secretion or an aberrant synaptic
pruning upon re-exposure to chronic stress, inadequate nutrition, bac-
terial/viral infection, and sleep disturbances, among other challenges,
during later life (Picard et al., 2021). These microglia-mediated changes
in brain structure and function can together lead to the emergence of
psychiatric disorders, such as major depressive disorder and schizo-
phrenia, at puberty or during adulthood (Tay et al., 2017a).

In addition, microglial dystrophy and dysfunction, and perhaps
senescence, during aging can be accelerated by various environmental
risk factors for neurodegenerative diseases, such as chronic stress (Bisht
et al., 2018; Tay et al., 2017a). Aged microglia have a reduced capability
to survey the brain parenchyma and maintain homeostasis, due to their
slower response to injury and impairment of phagocytosis, resulting in an
accumulation of intracellular and extracellular debris (Burns et al., 2020;
Hefendehl et al., 2014; Tay et al., 2017a, 2017b; Tremblay et al., 2012).
The beneficial microglial physiological functions can further become
compromised along the aging trajectory, resulting in (i) synaptic loss,
which is considered one of the best pathological correlates of cognitive
decline across major depressive disorder, schizophrenia, cognitive aging,
and neurodegenerative diseases (Henstridge et al., 2016, p.; Scheff et al.,
1996; �Si�skov�a and Tremblay, 2013; Streit et al., 2021), but also in (ii)
axonal demyelination, (iii) blood-brain barrier dysfunction, and vascular
pathology, increasingly involved in brain disorders and diseases across
the lifespan (Cuddapah et al., 2019; Degenhardt et al., 2020; Haruwaka
et al., 2019; Iii et al., 2016; Ota et al., 2019; Ouellette et al., 2020; Poliani
et al., 2015; Shi et al., 2015; Th�eriault and Rivest, 2016).

In animal models of neuropsychiatric disorder or neurodegenerative
disease, either rodents or non-human primates, microglial modulation or
depletion using inhibitors of colony-stimulating factor 1 receptor
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(CSF1R) (Elmore et al., 2014) revealed—depending on the context and
stage of life: improved outcomes on cognition and social behaviour,
learning-dependent synapse formation, locomotion, anxiety, risk assess-
ment behaviour (in juveniles), as well as spatial memory and male sex
behaviours (in adults), and neurodegenerative disease pathology (in
aging) (Asai et al., 2015; Elmore et al., 2014; Olmos-Alonso et al., 2016;
Spangenberg et al., 2016; Tay et al., 2017a; Torres et al., 2016; VanRyzin
et al., 2016). In human, treatment with the antibiotic minocycline, which
dampens inflammatory responses and normalizes microglial phagocy-
tosis (Mattei et al., 2017), also reduced the rewarding effects of meth-
amphetamine abuse, produced beneficial effects for major depressive
disorder, when added to serotonin-selective reuptake inhibitors, as well
as attenuated positive and negative symptoms in early schizophrenia,
combined with antipsychotics (Comer et al., 2020; Husain et al., 2017;
Hutchinson et al., 2008; Levkovitz et al., 2010; Miyaoka et al, 2008,
2012; Plane et al., 2010; Sofuoglu et al., 2011; Tay et al., 2017a)
(Table 1).

3. Microglial diversity revealing targets for intervention

Recent single-cell transcriptome analyses revealed that in the healthy
brain, microglia are highly diverse during early development, they
mature to adopt a surveillant state into adulthood, and diversify again
over the course of aging (Almanzar et al., 2020; Hammond et al., 2019;
Zheng et al., 2021), possibly based on their lifelong environmental in-
fluences. These findings suggest that the physiological roles of microglia
in the healthy brain, particularly those exerted during early postnatal
development, may rely on specialized subsets of microglial cells (Stra-
toulias et al., 2019). Microglial diversity along the lifespan also displays
sex differences, paralleling brain disorders and diseases (Bordeleau et al.,
2019; Delage et al., 2021; VanRyzin et al., 2020; Villa et al., 2018). For
instance, male microglia are bigger, express higher levels of MHC class I
and II, display enhanced response to adenosine triphosphate, as well as
increased expression of pro-inflammatory NFκB pathway genes, in mice
(Guneykaya et al., 2018). While microglial sex differences remain largely
unclear, there were found to be driven by a combination of gonadal
hormones and sex chromosomes (Bordeleau et al., 2019; Delage et al.,
2021; Kodama and Gan, 2019; VanRyzin et al., 2020). In response to
disease pathology, microglia further diversify, displaying various subsets
(i.e., subtypes, which can also display different phenotypes or ‘states’
when exposed to challenges) that remain to be defined structurally and
functionally (Stratoulias et al., 2019).

Understanding how this microglial heterogeneity contributes to var-
ied physiological and immune functions in health and disease will allow
to design cellular interventions that specifically target (modulate, inhibit,
or stimulate) contextually-relevant microglial functions (Stratoulias
et al., 2019). While the biological relevance of putativemicroglial subsets
inferred by transcriptomics remains elusive, using electron microscopy,
my research team discovered in 2016 a distinct bona fide microglial
subtype based on its unique properties and relationships with the
vasculature and synapses (Bisht et al., 2016b). These pioneering studies
identified ‘dark’ microglia as a specific microglial subset that is nearly
absent from the brain of healthy young adult mice, and instead is
significantly increased (up to 10-fold) in pathological states (including
models of chronic stress-induced depression, aging, Alzheimer's and
Huntington's pathology). These findings showed that dark microglia are
strikingly different from the general microglial population at the ultra-
structural level (Bisht et al., 2016b; Savage et al., 2020), even though the
other (i.e., typical) microglia vary in their accumulation of intracellular
debris and lipidic inclusions during aging (Tremblay et al., 2012). In fact,
dark microglia (i) display unique markers of cellular stress (e.g., electron
dense cytoplasm/nucleoplasm giving them a dark appearance in electron
microscopy, dilation of the Golgi apparatus and endoplasmic reticulum)
(Bisht et al., 2016a), (ii) have hyper-ramified processes that ensheath the
vasculature, contributing to the glia limitans (i.e., glial end-feet layer of
the blood-brain barrier), and (iii) extensively wrap around and engulf
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pre-synaptic and postsynaptic elements, as well as excitatory synaptic
connections (Bisht et al., 2016b) (Fig. 1). These distinctive features
support active, specialized roles of dark microglia in vascular and syn-
aptic remodeling, as well as blood-brain barrier maintenance (St-Pierre
et al., 2020).

Although dark microglia strongly downregulate canonical markers
commonly used to identify microglia (e.g., CX3CR1, IBA1, P2RY12),
which makes them difficult to observe with conventional light or fluo-
rescent antibody-based techniques, we were able to uncover protein
markers strongly expressed by dark microglia: (i) the microglia-specific
4D4, (ii) CD11b subunit of the complement receptor 3, and (iii)
TREM2 (Bisht et al., 2016b), notably involved in phagocytosis and
microglia-mediated synaptic pruning (Filipello et al., 2018; Schafer et al.,
2012). These cells are encountered among several brain regions,
including the hippocampus, amygdala, hypothalamus, striatum, and ce-
rebral cortex (Bisht et al., 2016b; Hui et al., 2018; Savage et al., 2020). In
addition, dark microglia are abundant, not only in adult pathological
states, but also during normal postnatal development, particularly during
the critical period when vascular networks and neuronal circuits are
refined (St-Pierre et al., 2020). We also found that dark microglia's
density significantly increases in adult mouse offspring exposed to
maternal immune activation, using the viral mimic Poly I:C, especially in
the males, which displayed the most pronounced schizophrenia-like
behavioural deficits (Hui et al., 2018) (Fig. 1). Dark microglia are
indeed present in the human brain, notably in the hippocampus, where
they contact the vasculature, neurons and synapses, and in post-mortem
brain samples of schizophrenia patients (St-Pierre et al., 2020).

From these original findings by my research group and others
(St-Pierre et al., 2020), we hypothesize that dark microglia are a unique
microglial subset that performs specialized functions in neuronal circuit
and vascular remodeling, as well as blood-brain barrier maintenance.
These functions would be exerted across normal postnatal development,
maternal immune activation, stress-induced plasticity, cognitive aging,
Alzheimer's and Huntington's disease pathology. They could be beneficial
during normal development, but deleterious in the inflammatory con-
texts of maternal immune activation, chronic stress, aging, and neuro-
degenerative disease, where they may contribute to the pathological
mechanisms (Fig. 1). Determining the molecular signature(s) of dark
microglia, among other emerging microglial subtypes and states, is ex-
pected to provide unprecedented insight into their roles during normal
development and their specific implication in the outcomes of various
environmental risk factors for neurodevelopmental and neuropsychiatric
disorders, as well as neurodegenerative diseases. In addition to the risk
factors mentioned above, it would be particularly relevant from a
translational perspective to further explore outcomes of the diet, urban
and sedentary lifestyles, low socio-economic status, cigarette smoking
and cannabis consumption. Longitudinal two-photon in vivo imaging
approaches using selective molecular markers will be instrumental in
determiningwhether darkmicroglia are a subtype with different intrinsic
properties, which selectively becomes dark upon exposure to challenges
to exert specialized functions, or whether the general microglial popu-
lation can adopt a dark state. In addition, studying interactions between
the peripheral immune cells infiltrating the CNS, which can also be
affected by various environmental risk factors, and the microglial sub-
types/states is an important topic of investigation, considering the
therapeutic potential of these peripheral cells to replace or assist
microglia with their essential functions within the brain parenchyma.

4. Perspectives and conclusion

Overall, these findings propose a new paradigm shift in the microglia
field, from (i) a unique ‘multitasking’ cell type in the brain that responds
to various environmental challenges, including infection, the diet and
other lifestyle factors, as well as disease pathology, by transforming
structurally and functionally, to (ii) a community of cells in which
different subsets perform specialized physiological functions and respond



Table 1
Main microglial targets for therapeutic intervention. Their known mechanisms of action, examples of outcomes in murine models and humans, as well as limitations are
summarized.

Target Mechanisms of action Outcomes in murine models Outcomes in humans Limitations References

Classical
complement
pathway
inhibitors

Antagonists and blocking
antibodies acting on C1q,
C3, C5 or other elements of
the complement cascade

Gene knockouts protect
synapses from elimination and
prevent cognitive decline in
models of aging and
Alzheimer's disease (amyloid
deposition, Tau pathology)

Eculizumab (or Soliris™, an
anti-C5 antibody) already
approved by the US Food and
Drug Administration

Peripheral side effects vary
based on the target

(Alawieh et al., 2018;
Carpanini et al., 2019;
Dalakas et al., 2020; Lee
et al., 2010; Tay et al.,
2017a; Tenner et al., 2018;
Vecchiarelli et al., 2021;
Woodruff et al., 2006;
Zelek et al., 2019)

Modulate microglial state
and their interactions with
synapses

Antibodies reduce disease
progression and increase
survival in models of
amyotrophic lateral sclerosis
and Huntington's disease

Clinical trials for Guillain-
Barre syndrome, amyotrophic
lateral sclerosis and
Huntington's are underway

Tight balance in complement
activity required to prevent
mistargeted synaptic loss
while allowing for learning,
memory and other cognitive
functionsReduce injury and improve

recovery in model of stroke

Fractalkine
signaling
inhibitors

Antagonists or blocking
antibodies of CX3CR1

Gene knockouts delay
microglial brain colonization,
migration and surveillance

No current trial (clinicalt
rials.gov) pertaining to
microglia, although variants
were linked to schizophrenia,
amyotrophic lateral sclerosis,
age-related macular
degeneration, and Alzheimer's
disease, among other
conditions

Cleaved and soluble or
membrane-bound fractalkine
exert different roles, as
notably shown in Alzheimer's
disease pathology (mouse
models)

(Arnoux and Audinat,
2015; Fuhrmann et al.,
2010; Gunner et al., 2019;
Lee et al, 2010, 2014;
Paolicelli et al., 2014; Tay
et al., 2017a; Voronova
et al., 2017)Fractalkine signaling is a

main mode of
communication between
neurons and microglia in
the brain

Influence survival of
developing neurons,
maturation, activity and
plasticity of developing and
mature synapses (e.g., via
synaptic pruning), brain
functional connectivity, adult
hippocampal neurogenesis,
learning, memory and
behavioral outcomes

CX3CR1 is not only expressed
by microglia, also by
peripheral myeloid cells and
by subsets of oligodendrocyte
precursor cells during early
postnatal development in
mice

Regulates various
microglial physiological
properties

Prevent responsiveness of the
brain and behaviour to chronic
psychological stress
Improve amyloid pathology,
reduce neuronal loss, but
worsen Tau pathology in
models of Alzheimer's disease

TREM2
agonists

Different compounds act on
a receptor of the
immunoglobulin
superfamily that regulates
microglial survival,
proliferation, phagocytosis,
and metabolic state

Gene knockouts impair
developmental synaptic
pruning

Variants linked to Alzheimer's
disease

Outcomes of activating
TREM2 on microglial
physiological functions
remain largely undetermined

(Deczkowska et al., 2018;
Filipello et al., 2018;
Keren-Shaul et al., 2017;
Krasemann et al., 2017;
Ulland et al., 2017;
Vecchiarelli et al., 2021)

Result in the emergence of
some microglial subtypes with
exacerbated activity in contexts
of neurodegenerative disease
pathology and neuronal
apoptosis

Several clinical trials
underway, notably in the
contexts of Alzheimer's disease

Possible detrimental
consequences on synaptic loss

Modulate phagocytic clearance
of amyloid

Peripheral myeloid cells
could also be affected

Regulate blood flow

CSF1R
inhibitors

Different compounds act on
a receptor tyrosine kinase
required for the
development, maintenance,
and proliferation of
microglia

Long-term impact on cognition
and social behaviour

Clinical trials underway,
notably in contexts of
amyotrophic lateral sclerosis,
mild cognitive impairment,
Alzheimer's disease,
glioblastoma, and several other
disease conditions

Microglial depletion renews
part of the population

(Elmore et al., 2014; Green
et al., 2020; Lei et al.,
2020, 2020; 2020;
Olmos-Alonso et al., 2016;
Tay et al., 2017a;
VanRyzin et al., 2016)

Depending on the dose, can
modulate or deplete
microglia

Increase locomotion (some subsets are resistant)

Decrease anxiety-like
behaviour

Replacing living microglia by
dead ones can influence
astrocytes and prevents
essential microglial
physiological functions

Increase risk assessment
behaviour

Peripheral immune cells are
also affected

Reverse changes in spatial
memory
Impair male sex behaviours
Reduce inflammatory responses
Delay Alzheimer's disease
pathology without altering
amyloid load

(continued on next page)
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Table 1 (continued )

Target Mechanisms of action Outcomes in murine models Outcomes in humans Limitations References

Supress Tau pathology

Minocycline A tetracycline derived
antibiotic already used in
the clinic, notably for the
treatment of acne

Dampens microglial release of
inflammatory mediators

Decreases reward effects of
methamphetamine

Not microglia specific, also
acts on peripheral myeloid
cells, astrocytes,
oligodendrocytes, neurons,
and endothelial cells, among
other cell types in the brain

(Hui et al., 2019; Mattei et
al, 2014, 2017; Nettis
et al., 2021; Sellgren et al.,
2019; Tay et al., 2017a;
Vecchiarelli et al., 2021)Crosses the blood-brain

barrier
Normalizes phagocytosis Beneficial effects for major

depressive disorder when
added to selective serotonin
reuptake inhibitors

Its mechanisms of action on
microglia remain largely
undetermined

Beneficial outcomes in models
of maternal immune activation
and ventral neonatal
hippocampal lesion (for
schizophrenia)

Reduces positive and negative
symptoms in early
schizophrenia when added to
treatment with antipsychotic
Minocycline treatment for acne
is associated with a reduction
in incident schizophrenia risk

Fig. 1. Summary of the knowledge surrounding dark microglia's roles in health
and disease. Upper panel illustrating the density of dark microglia at different
lifetime stages as seen in mice. In the middle panel, the homeostatic roles of
microglia and suggested roles of dark microglia are shown, as able to perform
synaptic pruning and synaptic stripping, but also contribute to the glia limitans
during normal physiological conditions. Lower panel illustrates the current
hypothesis that upon exposure to environmental risk factors and disease pa-
thology, dark microglia become (i) involved in misguided synaptic pruning via
exacerbated phagocytosis and extracellular digestion, (ii) contribute to the
sustained inflammation within the brain parenchyma through their secretion of
cytokines that may include TNFα, IL-6, IL-1β and CRP, similarly to the general
microglial population (but to a greater extent), and (iii) take part in pathological
vascular remodeling by endothelial cell phagocytosis, thus compromising the
blood-brain barrier. TNFα ¼ tumor necrosis factor alpha; IL-6 ¼ interleukin 6;
IL-1β ¼ interleukin 1 beta; CRP¼C-reactive protein.
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differently to environmental challenges and disease pathology by
adopting different states throughout life. Unraveling the influence of
these challenges on these various emerging microglial subtypes and
states, including the dark microglia, their specialized functions, and
outcomes on disease pathology, promises to provide novel targets for
symptomatic, disease-modifying, prevention or treatment strategies.
These targets (see Table 1 for the main targets currently in clinical trial)
are particularly expected to allow for the modulation, inhibition, or
stimulation of contextually relevant microglial functions, across a wide
range of neurodevelopmental and neuropsychiatric disorders, as well as
neurodegenerative diseases in which microglia are significantly
involved.
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