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Abstract

Background: Increasing affordability of next-generation sequencing (NGS) has created an opportunity for realizing
genomically-informed personalized cancer therapy as a path to precision oncology. However, the complex nature
of genomic information presents a huge challenge for clinicians in interpreting the patient’s genomic alterations
and selecting the optimum approved or investigational therapy. An elaborate and practical information system is
urgently needed to support clinical decision as well as to test clinical hypotheses quickly.

Results: Here, we present an integrated clinical and genomic information system (CGIS) based on NGS data
analyses. Major components include modules for handling clinical data, NGS data processing, variant annotation
and prioritization, drug-target-pathway analysis, and population cohort explorer. We built a comprehensive
knowledgebase of genes, variants, drugs by collecting annotated information from public and in-house resources.
Structured reports for molecular pathology are generated using standardized terminology in order to help clinicians
interpret genomic variants and utilize them for targeted cancer therapy. We also implemented many features useful
for testing hypotheses to develop prognostic markers from mutation and gene expression data.

Conclusions: Our CGIS software is an attempt to provide useful information for both clinicians and scientists who
want to explore genomic information for precision oncology.
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Background
Deep sequencing is about to become a part of clinical
tests, but the probabilistic and complex nature of the re-
sults makes it vastly different from conventional clinical
tests that are deterministic and simple to use without so-
phisticated informatics analysis. Systematic interpretation
of genomic alterations obtained from NGS data remains
challenging especially intended for clinical application. In
particular, determining clinical and biological significance
of each variant in terms of the diagnostic, therapeutic, and

prognostic implications for individual patients poses con-
siderable difficulties due to the inconsistency in biological
annotations on human genome, variations, and therapeu-
tics from various parties [1]. Furthermore, the complexity
in NGS data analysis procedure makes it unrealistic for
practicing oncologists to grasp meanings and uncertainties
of the results easily without ongoing education in genom-
ics and bioinformatics. Thus, a systematic and easy-to-
understand interpretation system with a readily accessible
knowledgebase is urgently needed to identify specific gen-
omic alterations and genotype-matched therapeutic op-
tions with clinical relevance, the most critical step in
implementing precision oncology.
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Recently several groups reported implementation of
CGISs which addressed computational and clinical is-
sues involved. PathOS is a web-based CGIS incorporat-
ing variant filtering, curation and reporting, but it was
mostly for targeted (amplicon) gene sequencing and did
not include variant-level recommendation of targeted
drugs [2]. CVE was developed as an R package to iden-
tify drivers, resistance mechanisms and to assess drugg-
ability, but lacks support for patient cohort population
[3]. Most systems are focused on either NGS data pro-
cessing and annotation, or information management is-
sues relevant to clinical applications. Thus, it would be
desirable to develop a comprehensive information sys-
tem that supports diverse features helpful for cancer
precision medicine not only for clinical service providers
but also for medical scientists. Here, we describe a CGIS
implementation of such features and discuss the key bio-
informatic challenges in software development.

Implementation
Overview of system and features
The aims of our CGIS software are (1) to provide a clin-
ical report of recommended therapies with full variant-
level annotation based on NGS data analysis and (2) to
support medical scientists for exploring patient cohort
data to test hypotheses for developing patient stratifica-
tion schemes, molecular biomarkers, and alternative
treatment options.
Representative features are as follows in the order of

information processing as summarized in Fig. 1:

A)NGS data processing which includes variant calling
from whole exome sequencing (WES) data and
expression quantification from whole transcriptome
sequencing (WTS, a.k.a. RNA-seq) data. We calculate
the somatic single nucleotide variants (SNVs), inser-
tions and deletions (INDELs), and copy number varia-
tions (CNVs) using Mutect [4], Strelka [5], and
EXCAVATOR [6], respectively. The MapSplice-RSEM
[7, 8] pipeline was used for RNA-seq quantification to
warrant accuracy in spite of long computation time.
Galaxy [9] pipelines for WES and WTS data process-
ing are shown in Additional file 1: Figure S1 and Add-
itional file 2: Figure S2 respectively. We also provide
Galaxy workflow files for WES and WTS data pro-
cessing in Additional files 3 and 4 respectively so that
those files can be imported into another Galaxy server.
Additionally, users can upload their own FASTQ files
into our BioCloud system for processing NGS data
and for getting the various reports described below.
Step by step demonstration for this procedure is fully
described in Additional file 5.

B) Import of clinical information from patient’s medical
record, which includes de-identification and encryption

using standard data model of NCI Clinical Data Ele-
ments (https://gdc.cancer.gov/clinical-data-elements).

C) Variant annotation and prioritization to identify
driver alterations or targeted drugs. Genomic
alterations were curated at both the gene and
variant levels to identify function-affecting variants
in cancer genes of the COSMIC database [10].

D)Targeted therapy with clinical relevance to obtain
“actionable” targets of different significance. Many
curated resources were amassed to establish the list
of actionable target genes and variants (i.e. cases
where the targeted drugs are available clinically).

E) Pathway view of genomic alterations and available
targets. Key pathway genes are manually curated for
several cancer types to enhance mechanistic
understanding that might lead to alternative
therapies.

F) Patient stratification and survival analysis which
facilitate medical scientists to test clinical hypotheses
for the purpose of developing diagnostic or
prognostic molecular markers. We support patient
classification by the mutual exclusivity of somatic
mutations and by the gene expression signatures.

G)Clinical report system to help clinical decision in an
easy-to-use GUI format.

BioDataBank
High-quality interpretations of individual genomic variants
inevitably requires vast amount of information collection,
proper data modeling, curation of raw data, and integration
to build a comprehensive knowledgebase. BioDataBank is
our knowledgebase encompassing gene, protein, gene vari-
ants in cancer, population (cohort) data, and drugs for clin-
ical therapy. Table 1 is the list of resources that we
integrated to build the BioDataBank. Specifically, cancer
gene variants were catalogued from the COSMIC [10] and
TCGA databases. Curated information on targeted drugs in
clinical use or in clinical trials were amassed from various
databases such as OncoKB [11], MyCancerGenome [12],
and the Personalized Cancer Medicine Knowledge Base
[13] (see Table 1).

Cohort database and selection of background patients
Patient grouping and management is an essential part of
CGIS to identify other patients with similar mutations or
gene expression pattern, which can be used to predict the
progress of the disease as well as to identify appropriate
therapies. For example, identifying patients with similar
molecular characteristics makes it possible to interrogate
clinical questions like ‘how did the cancer progress?’ and
‘what would be the effective or non-effective treatments?’.
Cancer omics data at population scale is also important
for patient stratification to identify subtypes on molecular
basis. Our cohort database contains the TCGA multi-
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Fig. 1 System architecture of our CGIS software. Information flow among various components is indicated in arrows. BioDataBank is the central
knowledgebase of information for genes, variants, drugs, curated records, cohort population data, etc. Labels beside component panels (a, b, c, d,
e, f and g) correspond to description markers in the section of Implementation/Overview of system and features

Table 1 Public omics data and clinical resources

Category Resource Comments

Gene Hugo symbol (http://www.genenames.org) Gene symbol mapping

Entrez genes (https://www.ncbi.nlm.nih.gov/gene) Gene model

Protein Uniprot (http://www.uniprot.org) Protein model

Pfam (http://pfam.xfam.org) Protein domains

Cancer gene variants COSMIC cancer gene census [10] Catalogue of Somatic Mutations in Cancer

Personalized Cancer Medicine Knowledge Base [13] MD Anderson Cancer Center

Cancer omics data The Cancer Genome Atlas (TCGA; http://cancergenome.nih.gov) Somatic mutations
RNA expressions
Copy Number Variations
Clinical information

Drug and clinical trials MyCancerGenome [12] Vanderbilt-Ingram Cancer Center

OncoKB [11] Memorial Sloan Kettering Cancer Center

VarDrugPub [17] In-house database for mutation-gene-drug
relations mined from all the PubMed articles

IntOGen [15] Anticancer drugs database

Handbook of targeted cancer therapy [16] More than 120 targeted therapy agents for
which clinical trial data are available

The New England Journal of Medicine Manual search
· Key words: breast | lung | glio & cancer &
survival & genetic profile
· Searching option: past 10 years
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Fig. 2 (See legend on next page.)
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omics data with clinical information for each patient. It in-
cludes SNVs, CNVs, RNA expression data on 1845 tumor
and 1929 normal samples across three focused cancer
types (breast invasive carcinoma, glioblastoma multi-
forme, and lung adenocarcinoma) currently. To support
researchers to find patient cohorts that meet their study
goals, we implemented a filtering scheme to select the pa-
tient cohort based on their clinical or molecular features,
including histological subtypes, risk factors, mutational
features, diagnosis, therapeutic actions, and treatment
outcome at an individual patient level. For example, EGFR
was the most frequently mutated gene among female and
lifelong never-smoker patients, whereas TP53 mutation
was prevalent in other patients, which can be readily con-
firmed using our cohort explorer for the TGCA LUAD co-
hort (shown in Additional file 6: Figure S4).

Results
Variant annotation and Druggability
The variant calling process using the WES Galaxy pipe-
line produces VCF (variant calling format containing de-
tails of variants) and BAM (binary alignment map for
aligned reads) files, which are imported to the variant
annotation and prioritization module of CGIS. We used
Oncotator as the main tool for annotating genomic
point mutations and short indels [14]. Since many tran-
scripts can be made from the same gene, transcript se-
lection is an important issue in variant annotation. For
example, EGFR chr7:55259515 T > G mutation can be
annotated as p.L858R only through proper choice of
transcript among many different EGFR transcripts. In an
effort to resolve this issue, we use the UniProt’s canon-
ical sequence as the reference to collect all transcripts
that produce the canonical protein sequence in transla-
tion. We further added transcripts concordant with all
clinically actionable variants in MyCancerGenome [12].
Resulting list of transcripts was provided to Oncotator
[14] with the command line option of (−c) to make these
transcripts as primary annotation targets. An example of
variant annotation results is shown in Fig. 2a.
Drugs targeting specific variants of the patient are of

prime interest. As listed in Table 1, we compiled various
resources on cancer drugs for targeted therapies both in
clinical usage and in preclinical development. Specific-
ally, we categorized drugs into three groups – 1) in-

house curated drugs for actionable targets which include
the FDA-approved drugs, 2) drugs reported in PubMed
abstracts obtained from systematic text mining and
manual curation, and 3) OncoKB [11] drugs that classi-
fied drugs in four levels of reliability according to clinical
applicability. We carefully characterized (potential) clin-
ically relevant alterations and assigned available drugs to
somatic mutations at the variant and gene levels. For the
in-house curated drugs for actionable targets, we in-
cluded the FDA-approved drugs, drugs in clinical trials
referenced by highly reliable sources such as MyCancer-
Genome [12], IntOGen [15], Handbook of targeted can-
cer therapy [16], and manual searches in the New
England Journal of Medicine journal. Drugs from text
mining were obtained from VarDrugPub [17] that identi-
fied the variant-gene-drug relations in all the PubMed
abstracts using a machine learning method.
We further provide filtering utility to select genes of

known importance in cancer as well as variants based on
patient frequency and functional impact (Fig. 2a). The
list of known cancer genes was obtained from the Can-
cer Gene Census of COSMIC (616 genes) [10]. Users
may also select the cancer drug targets in clinical prac-
tice (26 genes) that were curated by MD Anderson per-
sonalized cancer medicine Knowledgebase [13]. These
two sets of cancer genes may be the prime targets of
personalized treatment and can be focused by the check-
box filtering as shown in Fig. 2a.
It is often the case that users want to examine the de-

tails of specific mutation. We provide three interactive
plots for efficient variant exploration. The mutation dis-
tribution plot (Fig. 2b) shows the mutation spot on the
gene structure with functional domains. Mutation fre-
quency among TCGA patients with the same cancer
type is shown in the needle plot format. We also show
the read alignment plot (Fig. 2c) so that users can check
the validity of mutation calls and allele frequencies. To
implement this feature without carrying the large-sized
BAM file, our NGS pipeline creates a reduced BAM file
that contained the read alignments near the mutation
points only. Lastly, we support the co-mutation plot to
examine the landscape of somatic mutations and CNVs
(Additional file 7: Figure S3). Mutations in a specific pa-
tient can be readily compared with the cohort popula-
tion such as the TCGA data.

(See figure on previous page.)
Fig. 2 Screen shots of variant reports and exploration (BRAF p.V600E) (a). Variant annotation and prioritizing with available drugs. The variant report
includes mutation position, variant allele frequency (VAF), patient frequencies, and drugs. Drug table shows mutation-relevant drugs recommended from
various resources such as authentic drugs in clinical usage, OncoKB drugs classified in 4 levels, and drugs reported in PubMed abstracts. Filters to show
variants of specified properties only are located at left-side. b Needle plot of annotated mutations in BRAF gene. Both height and circle size represent the
frequency of mutation at each location among the TCGA patient cohort (LUAD in this example). The location and type of mutations found in the patient
of the report is indicated by up-triangle icons under the protein sequence bar that contains the protein domains. The bottom part is for zooming in
specific area. c Reads alignment plot around the mutation point (±100 bp range) is shown in the web browser using IGV java script version
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Fig. 3 Patient stratification and survival analysis. a Patient grouping by mutual exclusivity of a group of gene alterations. (1) As an example, we show a
group of mutually exclusively altered genes (RORC, MDM2 and TP53) having a common downstream target (HIF1A) identified by Mutex [18]. Color
intensity of each gene is proportional to the alteration ratio. Green and blue edges represent transcriptional relations and post-translational relations,
respectively. The patient frequency of alteration in exclusive genes is indicated above the box (i.e. 57%). (2) Distribution of mutations and copy number
changes shows the mutually exclusive pattern. (3) Division of patients into two groups of altered and unaltered, and the survival plot between two
groups. b Patient grouping by gene expression signature. (1) Select the expression signature genes pre-defined for each cancer type (e.g. PAM50 for
breast cancer [21]). (2) Decide the mathematical function to calculate the risk score from expression values of signature genes. Samples are sorted
according to the risk score as shown in the waterfall plot. (3) Select the high risk and low risk groups by moving dotted vertical lines. The survival plot
shows the difference of survival rates between two groups. (4) Clinical or molecular features of patients are mapped onto the waterfall
plot. (5) Expression profile of signature genes in the TCGA patient cohort (LUAD in this example). The position of our patient under study
is indicated with arrow icons
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In sum, our variant annotation and prioritization scheme
based on knowledge of cancer genes and targeted drugs
provides an efficient way of scrutinizing clinical relevance
of somatic variants in a given cancer type.

Patient stratification and survival analysis
Proper stratification of patients is the most fundamental
concept of targeted precision medicine. We imple-
mented two most commonly used methods of grouping
patients based on mutation and gene expression data.
Survival analysis of resulting patient groups can be car-
ried out interactively to facilitate hypothesis test of sur-
vival benefit for clinicians.

Mutual exclusivity among driver mutations based on
signaling networks
In tumor, not one but several alternative driver alter-
ations in different genes can lead to similar downstream
events. A key observation is that when a member of a
substitutive gene set is altered, the selection pressure on
the other members is diminished or even nullified. As a
result, the mutation pattern of alternative driver genes
appears almost mutually exclusive among different pa-
tients. We use Mutex program [18] to identify mutually
exclusive set of genes with a common downstream effect
on the signaling network and implemented survival ana-
lysis for altered vs. unaltered patient groups. An example
of the TP53 signaling module targeting HIF1A gene is
shown in Fig. 3a, taking TCGA LUAD as the patient co-
hort. Note that the gene alteration includes both somatic
mutations and CNVs here.

Patient grouping by gene expression signatures
DNA sequencing will not be sufficient to optimally select
patients for all classes of targeted therapy. In fact, other
types of high-throughput technologies, including RNA se-
quencing, DNA methylation profiling, and small RNA pro-
filing, are being extensively used to identify cancer subtypes
and to further improve our understanding of their bio-
logical mechanisms. RNA sequencing is the closest to the
clinical applications [19]. For example, OncotypeDX based
on expression profile of 21 genes predicts accurately
recurrence of early-stage ER-positive breast cancer, demon-
strating the possibility of molecular prognosis [20]. We im-
plemented a scheme to sort out patients according to the
risk score based on expression value of pre-defined genes
(Fig. 3b). The score was derived from the average expres-
sion value of 103 genes that defined the metastatic sub-
group in our in-house study. Patients in the TCGA LUAD
cohort were ranked by the score in the waterfall plot, and
we defined the highest and lowest 60 patients as high and
low score groups respectively. The difference in the overall
survival rate between two groups indicates that the corre-
sponding signature genes may have prognostic value in
lung adenocarcinoma. Notably, the list of scoring genes and
threshold for defining patient groups are provided by users
interactively. Thus the system is flexible enough test diverse
clinical hypotheses.

Altered key pathways
The eventual development of acquired resistance has been
a near universal observation with targeted cancer therapy.
Even in patient samples where those acquired resistance
emerges, alterations often converge on specific gene mod-
ules or pathways, suggesting that even these scenarios could

Fig. 4 Aberrant key pathways for LUAD. a Mutated genes (BRAF, SETD2 and ARD2 in this case) in the given patient are indicated in thick red
border. The background color is determined by the CNAs (gain in read and loss in blue), with the color depth reflecting the frequency of patients
who were affected by mutation or CNAs. b A click on a pill icon opens up a window that shows available drugs targeting the gene of interest
(BRAF in this example). Drugs are color-coded according to the approval status
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be managed with drugs or drug combinations that target
this biochemical and signaling bottleneck [19]. To address
this scenario, we defined and unified the altered key path-
ways for each cancer type that demonstrate how multiple
signaling pathways interact via cross-talk and feedback. An
example of altered key pathways is shown in Fig. 4a for lung
adenocarcinoma. Note that genes are colored according to
the abundance of activating or suppressing aberrations (mu-
tations and CNAs). Drugs targeting each gene in the path-
way are also listed to help users search available drugs
targeting genes on up- or down-stream path (Fig. 4b).

Conclusion
Our CGIS software was designed both for clinicians
seeking for an easy-to-understand report of genomic
analysis and for medical scientists who want to explore
genomic information to test clinical hypotheses for bio-
marker development. We integrated ample genomic in-
formation from diverse public resources with manual
curation if necessary. We also devised and implemented
several novel ideas and tools for investigating roles of
variants, exploring population cohorts, patient stratifica-
tion based on genomic data, and drugs based on path-
way view. This is just a prototype result of our project
and we will continue to develop more features and mod-
ules for enhanced function and convenience.

Availability and requirements
Project name: Clinical and Genomic Information System
(CGIS) for cancer precision medicine.
Project home page: http://203.255.191.21
Operating system(s): Platform independent.
Programming language: JavaScript.
Other requirements: Node.js version 4.4.7 or higher,

MySQL version 5.6 or higher, D3.js, igv.js.
License: Proprietary (allowed for non-commercial

use only).
Any restrictions to use by non-academics: restricted by

the license.

Additional files

Additional file 1: Figure S1. Galaxy workflow for WES data processing.
(PNG 221 kb)

Additional file 2: Figure S2. Galaxy workflow for WTS data processing.
(PNG 111 kb)

Additional file 3: Galaxy workflow file (json data format) for WES data
processing, it can be imported to another Galaxy server. (GA 53 kb)

Additional file 4: Galaxy workflow file (json data format) for WTS data
processing, it can be imported to another Galaxy server. (GA 23 kb)

Additional file 5: Instruction for users to upload their own FASTQ files
into our BioCloud system so that they can process the NGS data and get
the various reports described in main script. (PDF 1060 kb)

Additional file 6: Figure S4. An example of filtering process to select a
patient cohort based on clinical information or properties. A. Selection of
female and lifelong never-smoker patients in the TCGA LUAD cohort.
(“Cohort Selection” menu is located in left-top side of the page) B. Driver
genes were sorted by mutation frequency by clicking the “# Mutations”
label at the bottom. The sorting result confirmed that EGFR is the most
frequently mutated gene among these patients, whereas TP53 mutation
was prevalent in other patients as shown in Additional file 7: Figure S3.
(PNG 179 kb)

Additional file 7: Figure S3. Cohort explorer for the whole TCGA LUAD
cohort and our patient (1) Significant driver genes identified by MutSigCV
[22]. Each horizontal bar represents total count of mutations on the
corresponding gene in the cohort. Color scheme indicates the coding
properties of mutations. (2) The gray bar represents –log10(p-values) of each
driver gene. (3) Sample-wise count of mutations with coding properties
color-coded. (4) Clinical features of samples. (5) Mutations found in our pa-
tient are plotted at left-most side (i.e. the first column). (PNG 120 kb)

Abbreviations
BAM: Binary Alignment Map; CNA: Copy Number Aberration; CNV: Copy
Number Variation; INDEL: Insertion or Deletion; LUAD: Lung
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Variant,; TCGA: The Cancer Genome Atlas,; VCF: Variant Call Format;
WES: Whole Exome Sequencing; WTS: Whole Transcriptome Sequencing

Funding
The publication cost of this article was funded by the Technology Innovation
Program of the Ministry of Trade, Industry and Energy, Republic of Korea
(10050154).

Availability of data and materials
Not applicable.

About this supplement
This article has been published as part of BMC Medical Genomics Volume 11
Supplement 2, 2018: Proceedings of the 28th International Conference on
Genome Informatics: medical genomics. The full contents of the supplement
are available online at https://bmcmedgenomics.biomedcentral.com/articles/
supplements/volume-11-supplement-2.

Authors’ contributions
YJ have developed and tested the system with TC, JK, and JP. JS carried out the
collection and modeling of key pathways of each cancer types. YJ and TC
performed the collection and interpretation of public cancer omics and clinical
data. SL4 and SK built and managed NGS data processing pipeline. YK performed
the collection of actionable targets and available drugs. SL1* participated in its
design and coordination, and wrote the manuscript with YJ. All authors read and
approved the final manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Ewha Research Center for Systems Biology (ERCSB), Ewha Womans
University, Seoul, Korea. 2Interdisciplinary Program in Bioinformatics, College
of Natural Science, Seoul National University, Seoul, Korea. 3Daumsoft, Inc.,
Seoul, Korea. 4DNA Link, Inc., Seoul, Korea.

Jang et al. BMC Medical Genomics 2018, 11(Suppl 2):34 Page 102 of 116

http://203.255.191.21
https://doi.org/10.1186/s12920-018-0347-9
https://doi.org/10.1186/s12920-018-0347-9
https://doi.org/10.1186/s12920-018-0347-9
https://doi.org/10.1186/s12920-018-0347-9
https://doi.org/10.1186/s12920-018-0347-9
https://doi.org/10.1186/s12920-018-0347-9
https://doi.org/10.1186/s12920-018-0347-9
https://bmcmedgenomics.biomedcentral.com/articles/supplements/volume-11-supplement-2
https://bmcmedgenomics.biomedcentral.com/articles/supplements/volume-11-supplement-2


Published: 20 April 2018

References
1. Ghazani AA, Oliver NM, St. Pierre JP, et al. Assigning clinical meaning to

somatic and germ-line whole-exome sequencing data in a prospective
cancer precision medicine study. Genet Med. 2017;19:787.

2. Doig KD, Fellowes A, Bell AH, et al. PathOS: a decision support system for
reporting high throughput sequencing of cancers in clinical diagnostic
laboratories. Genome Med. 2017;9(1):38.

3. Mock A, Murphy S, Morris J, Marass F, Rosenfeld N, Massie C. CVE: an R
package for interactive variant prioritisation in precision oncology. BMC
Med Genet. 2017;10(1):37.

4. Cibulskis K, Lawrence MS, Carter SL, et al. Sensitive detection of somatic
point mutations in impure and heterogeneous cancer samples. Nat
Biotechnol. 2013;31(3):213–9.

5. Saunders CT, Wong WSW, Swamy S, Becq J, Murray LJ, Cheetham RK.
Strelka: accurate somatic small-variant calling from sequenced tumor–
normal sample pairs. Bioinformatics. 2012;28(14):1811–7.

6. Magi A, Tattini L, Cifola I, et al. EXCAVATOR: detecting copy number variants
from whole-exome sequencing data. Genome Biol. 2013;14(10):R120.

7. Wang K, Singh D, Zeng Z, et al. MapSplice: accurate mapping of RNA-seq
reads for splice junction discovery. Nucleic Acids Res. 2010;38(18):e178.

8. Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data
with or without a reference genome. BMC Bioinformatics. 2011;12(1):323.

9. Afgan E, Baker D, van den Beek M, et al. The galaxy platform for accessible,
reproducible and collaborative biomedical analyses: 2016 update. Nucleic
Acids Res. 2016;44(W1):W3–W10.

10. Forbes SA, Beare D, Boutselakis H, et al. COSMIC: somatic cancer genetics at
high-resolution. Nucleic Acids Res. 2017;45(D1):D777–83.

11. Chakravarty D, Gao J, Phillips S, et al. OncoKB: a precision oncology
Knowledge Base. JCO Precis Oncol. 2017;1:1–16.

12. Taylor AD, Micheel CM, Anderson IA, Levy MA, Lovly CM. The path(way) less
traveled: a pathway-oriented approach to providing information about precision
Cancer medicine on my Cancer genome. Transl Oncol. 2016;9(2):163–5.

13. Johnson A, Zeng J, Bailey AM, et al. The right drugs at the right time for the
right patient: the MD Anderson precision oncology decision support
platform. Drug Discov Today. 2015;20(12):1433–8.

14. Ramos AH, Lichtenstein L, Gupta M, et al. Oncotator: Cancer variant
annotation tool. Hum Mutat. 2015;36(4):E2423–9.

15. Rubio-Perez C, Tamborero D, Schroeder MP, et al. In silico prescription of
anticancer drugs to cohorts of 28 tumor types reveals targeting
opportunities. Cancer Cell. 2015;27(3):382–96.

16. Karp DD, Falchook GS. Handbook of targeted cancer therapy. Sacramento:
Wolters Kluwer; 2014.

17. Variant-Gene-Drug Relations Database. http://vardrugpub.korea.ac.kr.
Accessed 10 Jul 2017.

18. Babur Ö, Gönen M, Aksoy BA, et al. Systematic identification of cancer
driving signaling pathways based on mutual exclusivity of genomic
alterations. Genome Biol. 2015;16(1):45.

19. Hyman DM, Taylor BS, Baselga J. Implementing genome-driven oncology.
Cell. 2017;168(4):584–99.

20. Paik S, Shak S, Tang G, et al. A multigene assay to predict recurrence
of tamoxifen-treated, node-negative breast Cancer. N Engl J Med. 2004;
351(27):2817–26.

21. Parker JS, Mullins M, Cheang MCU, et al. Supervised risk predictor of breast
cancer based on intrinsic subtypes. J Clin Oncol. 2009;27(8):1160–7.

22. Lawrence MS, Stojanov P, Polak P, et al. Mutational heterogeneity in
cancer and the search for new cancer-associated genes. Nature. 2013;
499(7457):214–8.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

Jang et al. BMC Medical Genomics 2018, 11(Suppl 2):34 Page 103 of 116

http://vardrugpub.korea.ac.kr

	Abstract
	Background
	Results
	Conclusions

	Background
	Implementation
	Overview of system and features
	BioDataBank
	Cohort database and selection of background patients

	Results
	Variant annotation and Druggability
	Patient stratification and survival analysis
	Mutual exclusivity among driver mutations based on signaling networks
	Patient grouping by gene expression signatures
	Altered key pathways

	Conclusion
	Availability and requirements

	Additional files
	Abbreviations
	Funding
	Availability of data and materials
	About this supplement
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

