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Type 2 diabetesmellitus (T2DM) greatly increases risk for cardiovascular disease, including
ischemic heart disease and myocardial infarction. With the completion of several
cardiovascular outcomes trials (CVOTs) for new glucose-lowering therapies, including
the sodium-glucose cotransporter-2 (SGLT2) inhibitors and glucagon-like peptide-1
receptor (GLP-1R) agonists, we now have strong evidence alluding to the
cardioprotective nature of these agents in people with T2DM. These agents have
frequently been observed to reduce rates for 3-point major adverse cardiovascular
events, which encompass death from cardiovascular causes, nonfatal myocardial
infarction, or nonfatal stroke. Herein we will provide an overview on whether reductions
in nonfatal myocardial infarction and ischemic heart disease status are a key component of
the improved cardiovascular outcomes in people with T2DM treated with either SGLT2
inhibitors or GLP-1R agonists. Observations from preclinical studies will be compared to
their clinical counterparts, while being further interrogated to define potential mechanisms
that may account for SGLT2 inhibitor or GLP-1R agonist-induced cardioprotection against
ischemic heart disease. A better understanding of the role these agents have in impacting
the progression of ischemic heart disease in individuals with T2DM will have a substantial
impact in our management of this patient population.
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INTRODUCTION

Our society is experiencing an unfortunate explosion in the prevalence of obesity, which has greatly
contributed to elevated rates of both type 2 diabetes mellitus (T2DM) and cardiovascular disease in
our population. Cardiovascular disease in itself is a major cause of global mortality, with ischemic
heart disease accounting for the majority of its disease burden. Ischemic heart disease is primarily
attributed to atherosclerosis/coronary artery disease, which if allowed to progress or left untreated
will manifest into myocardial infarction (MI) and ensuing ischemic cardiomyopathy/heart failure
(Khan et al., 2020). Of importance, reports from the Framingham Heart Study have indicated that
T2DM independently increases the risk of cardiovascular disease and mortality, primarily attributed
to either MI and/or heart failure (Mahmood et al., 2014).

In light of this epidemiological data, it is vital that we improve our understanding of the
mechanisms that precipitate diabetes-related heart disease, while using clinical evidence to best guide
the therapeutic choices we use to manage cardiovascular health in highly susceptible diabetic

Edited by:
Stephanie Könemann,

Universitätsklinikum Greifswald,
Germany

Reviewed by:
Oscar Lorenzo,

Health Research Institute Foundation
Jimenez Diaz (IIS-FJD), Spain

*Correspondence:
John R. Ussher

jussher@ualberta.ca

Specialty section:
This article was submitted to

Vascular Physiology,
a section of the journal
Frontiers in Physiology

Received: 25 March 2022
Accepted: 08 June 2022
Published: 27 June 2022

Citation:
Almutairi M, Chan JSF and Ussher JR
(2022) New Therapeutic Options for
Type 2 Diabetes Mellitus and Their

Impact Against Ischemic
Heart Disease.

Front. Physiol. 13:904626.
doi: 10.3389/fphys.2022.904626

Frontiers in Physiology | www.frontiersin.org June 2022 | Volume 13 | Article 9046261

MINI REVIEW
published: 27 June 2022

doi: 10.3389/fphys.2022.904626

http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2022.904626&domain=pdf&date_stamp=2022-06-27
https://www.frontiersin.org/articles/10.3389/fphys.2022.904626/full
https://www.frontiersin.org/articles/10.3389/fphys.2022.904626/full
https://www.frontiersin.org/articles/10.3389/fphys.2022.904626/full
http://creativecommons.org/licenses/by/4.0/
mailto:jussher@ualberta.ca
https://doi.org/10.3389/fphys.2022.904626
https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2022.904626


individuals. Current evidence supports that tight glycemic control
is strongly associated with reduced risk for microvascular
complications (UK Prospective Diabetes Study (UKPDS)
Group, 1998; Nathan et al., 2005). Conversely, well controlled
glycemia in subjects with T2DM does not appear to reduce the
risk for macrovascular cardiovascular disease such as ischemic
heart disease and subsequent MI. Of relevance, the Action to
Control Cardiovascular Risk in Diabetes (ACCORD) trial
observed that intensive glucose lowering was associated with
increased rates of death from cardiovascular causes (Action to
Control Cardiovascular Risk in Diabetes Study, 2008). With
health regulatory agencies (e.g. US Food and Drug
Administration) now requiring pharmaceutical manufacturers
to conduct cardiovascular outcomes trials (CVOTs) for new
anti-diabetic therapies (Drucker and Goldfine, 2011), we now
have access to cardiovascular outcomes data in thousands of
subjects with T2DM treated with the latest therapies for T2DM.
This includes the sodium-glucose co-transporter 2 (SGLT2)
inhibitors and the incretin-based therapies, which includes
both the glucagon-like peptide-1 (GLP-1) receptor (GLP-1R)
agonists and the dipeptidyl peptidase 4 (DPP4) inhibitors.
Accumulating evidence from these CVOTs has revealed much
promise for GLP-1R agonists and SGLT2 inhibitors, but not
DPP4 inhibitors, in terms of improving cardiovascular outcomes
in people with T2DM.

The majority of these CVOTs are investigating major adverse
cardiovascular events (MACE) as a primary endpoint, which is
usually comprised of death from cardiovascular causes, nonfatal
MI, or nonfatal stroke, referred to as 3-point MACE. Herein we
will summarize the data from CVOTs relating toMI in the T2DM
population treated with SGLT2 inhibitors or GLP-1R agonists,
while interrogating preclinical data to delineate mechanisms that
may account for either SGLT2 inhibitor or GLP-1R agonist
mediated cardioprotection against ischemic heart disease. As
animal models of chronic ischemia and subsequent MI are
more reflective of the pathology of heart failure with reduced
ejection fraction (Lindsey et al., 2021), we will focus specifically
on studies of in vivo and ex vivo ischemia/reperfusion injury,
which are more directly related to the nonfatal MI endpoint of 3-
point MACE.

The Pathology of Ischemic Heart Disease
and Current Management
Ischemic heart disease is characterized by an imbalance between
myocardial oxygen supply and demand. This often results from
underlying atherosclerosis leading to inadequate perfusion of the
myocardium, with endothelial dysfunction of the coronary
arteries, myocardial hypoxia, and accumulation of metabolic
by-products contributing to its pathology (Eisen et al., 2016).
In the absence of restoration of coronary flow (i.e. reperfusion),
the lack of oxygen/nutrient delivery to the myocardium prevents
cardiomyocytes from generating the energy necessary to support
contractile function, eventually resulting in cardiomyocyte death
and loss of myocardial tissue (i.e. MI).

Accordingly, ischemic heart disease can be alleviated via
surgical methods to improve myocardial perfusion (e.g.

coronary artery bypass), mechanical means to improve
coronary flow (e.g. coronary angioplasty), or
pharmacologically to erode the coronary blockage with
thrombolytics (e.g. streptokinase) (Smilowitz and Feit, 2016).
In individuals with stable angina and/or ischemic heart
disease, pharmacotherapy is primarily focused on either
decreasing myocardial oxygen demand with β-blockers or
calcium channel blockers, increasing myocardial oxygen
supply with nitrates, or lowering circulating cholesterol with
statins (Joshi and de Lemos, 2021). While individuals with
T2DM and coexistent cardiovascular disease are often
receiving concurrent treatment with many of the
abovementioned therapies, it is imperative that we more
critically evaluate how their respective glucose-lowering
medications (e.g. SGLT2 inhibitors, GLP-1R agonists) also
impact the progression of ischemic heart disease.

SGLT2 Inhibitors and Cardiovascular
Outcomes
The SGLT2 inhibitors (empagliflozin, canagliflozin, dapagliflozin,
ertugliflozin) were developed as potential antidiabetic agents that
promote glucose-lowering by blocking the reabsorption of renally
filtered glucose, which is subsequently excreted in the urine
(glucosuria) (Heerspink et al., 2016). While SGLT2 has been
demonstrated to account for ~97% of renally filtered glucose in
normal physiology, treatment with SGLT2 inhibitors only
prevents ~50–60% of glucose reabsorption in practice, due to
SGLT-1 compensating for glucose reabsorption in later regions of
the proximal convoluted tubule, (Rieg et al., 2014; Heerspink
et al., 2016). From a glucose-lowering mechanism of action
viewpoint, SGLT2 inhibitors are unique in that they facilitate
the elimination of glucose, rather than stimulate its uptake via
either increasing insulin secretion or insulin sensitivity. As such,
SGLT2 inhibitors have a notably lower risk of hypoglycemia,
while lowering glycated hemoglobin by comparable levels versus
other glucose-lowering medications (Heerspink et al., 2016).

Due to their favorable actions in CVOTs in combination with
their safety profile and reasonable efficacy, the SGLT2 inhibitors
have attained an increasing role in clinical practice guidelines
(Davies et al., 2018; Diabetes Canada Clinical Practice Guidelines
Expert et al., 2018). The salutary actions of large scale CVOTs
involving SGLT2 inhibitors to reduce 3-point MACE have been
extensively discussed and analyzed in previous reviews, though
this benefit does not appear to be attributed to reductions in MI
(Odutayo et al., 2021; Bhattarai et al., 2022; Razuk et al., 2022).
For example, completion of the Empagliflozin Cardiovascular
Outcome Event Trial in T2DM Patients (EMPA-REG) (Zinman
et al., 2015) reported reductions in 3-point MACE in patients
assigned empagliflozin compared to standard-of-care. However,
rates of nonfatal MI or both nonfatal plus fatal MI were not the
major reason behind this reduction in 3-point MACE, despite
lower proportions of subjects receiving empagliflozin
experiencing an event versus standard-of-care (4.5 versus 5.2%
event rate; p = 0.22, 4.8 versus 5.4% event rate; p = 0.23). Likewise,
the Canagliflozin Cardiovascular Assessment Study (CANVAS)
also reported fewer events in subjects treated with canagliflozin
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using 3-pointMACE (Neal et al., 2017). Rates of nonfatal MI were
once again not significantly reduced for canagliflozin, but similar
to empagliflozin did trend towards the right direction with
regards to possible benefit (9.7 versus 11.6 events per
1000 patient-years; hazard ratio 0.85, 95% confidence interval
0.69–1.05.). On the contrary, the Dapagliflozin Effect on
CardiovascuLAR Events (DECLARE-TIMI 58) trial only
observed a trend to a reduction in events using 3-point MACE
(p = 0.17) in dapagliflozin treated subjects with T2DM (Wiviott
et al., 2019). Nonetheless, rates of MI did once more point
towards a direction for improvement (11.7 versus 13.2 events
per 1000 patient-years; hazard ratio 0.89, 95% confidence interval
0.77–1.01.). Most recently, findings from the Evaluation of
Ertugliflozin Efficacy and Safety Cardiovascular Outcomes
Trial (VERTIS-CV) have been the least promising for all
SGLT2 inhibitor CVOTs, as ertugliflozin did not decrease 3-
point MACE, with rates of fatal or nonfatal MI being unaffected
versus standard-of-care (6.0 versus 5.8% event rate) (Cannon
et al., 2020).

SGLT2 Inhibitors in Preclinical Studies of
Ischemic Heart Disease & Possible
Mediators of Cardioprotection
While reductions in MI do not appear to be primarily involved in
how SGLT2 inhibitors improve cardiovascular outcomes in
people with T2DM, a plethora of preclinical studies have
demonstrated that SGLT2 inhibitors decrease infarct size and
alleviate ischemia/reperfusion injury. These salutary actions are
observed regardless of whether the animals are nondiabetic or
have T2DM, and appear to be a drug-class effect as benefit has
been observed with empagliflozin, canagliflozin, and
dapagliflozin (Sayour et al., 2021). For example, 12-week-old
male nondiabetic C57BL/6J mice subjected to temporary left
anterior descending (LAD) coronary artery occlusion for 45-
min and 24-h of reperfusion, demonstrate reductions in infarct
size and improved systolic function if pretreated with
empagliflozin (10 mg/kg) once daily for 3-days prior to
surgery (Lu et al., 2020). Of interest, this cardioprotection was
attenuated if the mice were also pretreated with compound C for
3-days prior to surgery, suggesting that empagliflozin mediates
the reduction in infarct size via stimulation of 5′AMP activated
protein kinase (AMPK) activity. Similarly, pretreatment of male
nondiabetic Sprague Dawley rats (250–300 g) for 7-days with
empagliflozin (30 mg/kg) also decreased infarct size following
temporary LAD coronary artery occlusion followed by 2-h of
reperfusion (Seefeldt et al., 2021). Moreover, 12-week-old male
nondiabetic C57BL/6J mice orally administered empagliflozin
(10 mg/kg) for 6-weeks also exhibited reductions in infarct size
following LAD coronary artery occlusion for 30-min and 2-h of
reperfusion, but this time increased signal transducer and
activator of transcription-3 rather than AMPK activity
(Nikolaou et al., 2021).

In both Zucker lean and Zucker diabetic fatty rats,
canagliflozin administration in the diet (166.7 mg/kg chow for
ZL rats; 100 mg/kg chow for ZDF rats) for 4-weeks decreased
infarct size during ex vivo Langendorff heart perfusions involving

35-min regional ischemia (via LAD coronary artery occlusion)
and 2-h reperfusion (Lim et al., 2019). Furthermore, dapagliflozin
treatment (40 mg/kg) once daily for 7-days prior to LAD
coronary artery occlusion (30-min) followed by reperfusion (4-
h) also decreased infarct size in male C57BL/6mice and decreased
markers of cardiac damage (circulating creatine kinase levels) (Yu
et al., 2021). This cardioprotection requires autophagosome
mediated degradation of NLR family pyrin domain containing
3 (NLRP3), as concurrent treatment with chloroquine to prevent
lysosome-induced impairment of autophagosomes extinguished
dapagliflozin’s ability to decrease NLRP3 levels and attenuate
infarct size. It has also been suggested that SGLT2 inhibitors may
induce cardioprotection by increasing circulating ketone bodies,
and treatment of the isolated Langendorff perfused mouse heart
with β-hydroxybutyrate (3 mM) improves functional recovery in
response to 30-min global no flow ischemia and 40-min
reperfusion (Byrne et al., 2020). Of interest, the NLRP3
inflammasome may also be implicated in this mechanism, as
this ex vivo model of ischemia/reperfusion injury produced
robust increases in myocardial NLRP3 expression that were
also abolished by treatment with β-hydroxybutyrate (3 mM).
Nevertheless, whether this explains SGLT2 inhibitor mediated
cardioprotection against ischemia/reperfusion injury remains
inconclusive.

Reasons for the discrepancy between the SGLT2 inhibitor
CVOTs and preclinical studies could stem from the majority of
preclinical data being performed in nondiabetic animals, despite
some evidence of benefit in animals with T2DM. Furthermore,
participants enrolled in CVOTs for glucose-lowering medications
like SGLT2 inhibitors are often at high risk of cardiovascular
disease or have existing cardiovascular disease. Hence, these
individuals are often receiving cardiovascular therapies like β-
blockers, which may make it more difficult to observe benefit,
versus preclinical studies where the animals being subjected to
experimental cardiovascular disease are not concurrently
receiving approved cardiovascular therapies. While SGLT2
inhibitors appear to consistently decrease infarct size, it should
also be noted that the benefit observed has often involved shorter
reperfusion times that may ignore apoptotic death of
cardiomyocytes, which may mask the actual infarct size with
longer reperfusion times (>24 h) (De Villiers and Riley, 2020;
Lindsey et al., 2021).

GLP-1R Agonists and Cardiovascular
Outcomes
GLP-1 is an incretin hormone secreted from enteroendocrine
L-cells predominantly in the small intestine following nutrient
ingestion (Campbell and Drucker, 2013). GLP-1 mediates its
biological activity via the GLP-1R, a G-protein coupled receptor
belonging to the Class B Family of G-protein coupled receptors.
Following its initial identification in the pancreas, expression of
the GLP-1R has been identified in numerous tissues including the
lungs, enteric nervous system, regions of the brain, and of
relevance to this specific review, in the heart, specifically the
vascular smooth muscle cells and atrial cardiomyocytes
(Campbell and Drucker, 2013). Regarding its glucose-lowering
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actions in T2DM, GLP-1 stimulates the islet β-cell GLP-1R to
potentiate insulin secretion in a glucose-dependent manner, and
thus the GLP-1R agonist drug class harbors low overall risk for
hypoglycemia.

Similar to SGLT2 inhibitors, results from large-scale CVOTs
have frequently demonstrated that GLP-1R agonists yield
significant improvements in cardiovascular health in people
with T2DM. However, the field was not met with initial
excitement as both The Evaluation of Lixisenatide in Acute
Coronary Syndrome (ELIXA) and Exenatide Study of
Cardiovascular Event Lowering (EXSCEL) trials demonstrated
that treatment of subjects with T2DM with lixisenatide or
exenatide, respectively, were merely noninferior to placebo for
3-point MACE (Pfeffer et al., 2015; Holman et al., 2017). On the
contrary, the majority of CVOTs for other GLP-1R agonists have
been quite positive. This includes the Liraglutide Effect and
Action in Diabetes: Evaluation of Cardiovascular Outcome
Results (LEADER), the Trial to Evaluate Cardiovascular and
Other Long-term Outcomes with Semaglutide (SUSTAIN-6),
the Albiglutide and Cardiovascular Outcomes in Patients with
T2D and Cardiovascular Disease (HARMONY Outcomes), and
the Researching Cardiovascular EventsWith aWeekly Incretin in
Diabetes (REWIND) CVOTs, all of which reported reductions in
3-point MACE (Marso et al., 2016a; Marso et al., 2016b;
Hernandez et al., 2018; Gerstein et al., 2019). Unlike the
SGLT2 inhibitor CVOTs, the improvement in 3-point MACE
with numerous GLP-1R agonists does appear to involve
attenuation of ischemic heart disease, as trends to decreased
rates of nonfatal MI were observed in LEADER (6.0 versus
6.8% event rate; p = 0.11) and SUSTAIN-6 (2.9 versus 3.9%
event rate; p = 0.12). Furthermore, event rates for nonfatal MI
were significantly decreased in HARMONY Outcomes (4 versus
5% event rate; p = 0.03), though no changes were observed in
REWIND (4.1 versus 4.3% event rate; p = 0.65).

Clinical studies in small numbers of subjects experiencing MI
have also demonstrated favourable actions of GLP-1R agonists
regarding relevant MI endpoints. For example, a 6-h exenatide
infusion achieving a mean plasma concentration of 0.177 ±
0.069 nM administered 15-min prior to reperfusion onset in
subjects undergoing coronary angioplasty to treat ST-segment
elevation MI, reduced infarct size and increased the myocardial
salvage index at ~90-days post-infusion (Lonborg et al., 2012a;
Lonborg et al., 2012b). Furthermore, in subjects with ST-segment
elevation MI treated with exenatide (10 μg subcutaneous
injection and 10 μg intravenous bolus) 5-min prior to
coronary angioplasty, significant improvements in systolic
function (ejection fraction) were observed 6-months later
(Woo et al., 2013). In addition, subjects treated with exenatide
also demonstrated reductions in markers of cardiac damage,
which include circulating levels of creatine kinase-MB and
troponin I. While these studies provide more support for
GLP-1R agonists being cardioprotective in the setting of
ischemic heart disease, the study populations are not
equivalent to those enrolled in CVOTs of subjects with
T2DM. Moreover, the EXSCEL CVOT did not observe
improved outcomes against nonfatal MI for exenatide, though
once weekly treatment with exenatide is also not comparable to

exenatide infusion administered while undergoing angioplasty
for a developing MI.

GLP-1R Agonists in Preclinical Studies of
Ischemic Heart Disease & Possible
Mediators of Cardioprotection
Paralleling observations with SGLT2 inhibitors, GLP-1R agonists
frequently induce protection against myocardial ischemia/
reperfusion injury in preclinical models. The first observations
of benefit were seen with intravenous infusion of native GLP-1
(4.8 pmol•kg−1•min−1) in male Sprague Dawley rats subjected to
temporary LAD coronary artery occlusion for 30-min and
followed by 2-h reperfusion, which markedly reduced infarct
size (Bose et al., 2005), though concerns with short reperfusion
times once again need to be considered. These salutary actions
have been recapitulated with numerous GLP-1R agonists,
including exenatide (10 μg 5-min prior to reperfusion followed
by 10 μg twice daily for 3-days), which decreased infarct size
following 75-min left circumflex coronary artery occlusion and 3-
days reperfusion in Dalland Landrace pigs (sex not specified)
(Timmers et al., 2009). Likewise, male Sprague-Dawley rats
treated with albiglutide (1, 3, or 10 mg/kg once daily) for 3-
days prior to 30-min LAD coronary artery occlusion and 24-h
reperfusion also markedly reduced infarct size (Bao et al., 2011).
Of interest, the albiglutide-induced protection against ischemia/
reperfusion injury involved increases in myocardial glucose
oxidation, which may be a key mechanism of GLP-1R agonist-
induced cardioprotection. Increases in myocardial glucose
oxidation have been directly shown to attenuate ischemia/
reperfusion injury and decrease infarct size (Ussher et al.,
2012). Using radioisotopes to measure flux through glucose
oxidation in isolated working mouse hearts, the GLP-1R
agonist liraglutide has been shown to only increase glucose
oxidation rates if hearts are removed from mice that have
been first treated systemically with liraglutide, but no increase
is observed if the isolated working heart is directly treated with
liraglutide (Almutairi et al., 2020). Such metabolic observations
are consistent with liraglutide treatment (200 μg/kg) in C57BL/6J
male mice improving functional recovery if their hearts are
perfused in the Langendorff mode following 30-min global no
flow ischemia and 40-min reperfusion, whereas no benefit was
observed if the isolated heart was directly treated with liraglutide
(30 nM) (Noyan-Ashraf et al., 2009).

GLP-1 and GLP-1R agonists may also decrease infarct size and
mitigate ischemia/reperfusion injury by preventing
cardiomyocyte apoptosis. Numerous markers of apoptosis,
including terminal deoxynucleotidyl transferase dUTP nick
end labeling and cleaved caspase 3 levels, as well as expression
of pro-apoptotic/anti-apoptotic proteins (e.g. B-cell lymphoma 2
[Bcl2], Bcl-2 associated death promoter) often reflect decreased
apoptosis (Bose et al., 2005; Noyan-Ashraf et al., 2009; Timmers
et al., 2009; Bao et al., 2011). As the GLP-1R does not appear to be
expressed in cardiomyocytes, at least in rodents (Kim et al., 2013),
similar to what has been observed for the aforementioned GLP-
1R agonist-induced changes in cardiac energy metabolism, it is
likely that these anti-apoptotic actions are indirectly mediated.
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Increases in circulating insulin and decreases in circulating
glucagon, respectively, could account for the stimulation of
myocardial glucose oxidation and reduction in cardiomyocyte
apoptosis (Drucker, 2016; Al Batran et al., 2018), though no study
has extensively defined whether changes in the secretion of these
hormones are responsible.

Caveolins, which are integral membrane proteins important
for the formation of caveolae (membrane invaginations), play a
key role in ischemia/reperfusion injury (Schilling et al., 2015), and
evidence suggests that they may also contribute to GLP-1R
agonist-induced reductions in infarct size. Male C57BL/6 mice
(8–10 weeks of age) treated with exendin-4 (dose not specified)
exhibited significant reductions in infarct size and circulating
cardiac troponin I levels following 30-min LAD coronary artery
occlusion and 2-h reperfusion (Tsutsumi et al., 2014).
Intriguingly, these actions were completely abolished in male
caveolin-3 deficient mice. These findings were reproduced in
male C57BL/6 mice treated with exendin-4 (30 ng/kg intravenous
infusion) immediately prior to 30-min LAD coronary artery
occlusion and 2-h reperfusion, whereby increased migration of
caveolin-3 to buoyant caveolar fractions was observed
(Hamaguchi et al., 2015).

Another potential mechanism of GLP-1 mediated
cardioprotection involves its DPP4 regulated cleavage product,
GLP-1 (9–36). Although initially postulated to be biologically
inert, a plethora of studies have demonstrated that GLP-1 (9–36)
harbors cardiovascular actions. More specifically, direct
treatment with GLP-1 (9–36) has been demonstrated to
increase myocardial glucose uptake ex vivo (isolated
Langendorff rat heart) and in vivo (canine) (Nikolaidis et al.,
2005; Ban et al., 2008), while also inducing vasodilation in
preconstricted (via phenylephrine) isolated mesenteric arteries.
Furthermore, GLP-1 (9–36) can further be cleaved via neutral
endopeptidase 24.11 to GLP-1 (28–36), which may act directly on
mitochondria and decrease oxidative stress (Liu et al., 2012; Siraj
et al., 2020), actions compatible with attenuated ischemia/
reperfusion injury (Hausenloy and Yellon, 2013; Davidson
et al., 2019). This proposed mechanism of cardioprotection is
intriguing, as it could explain observations in studies where direct
treatment of the isolated heart or in vitro cultures of cardiac
myocytes lead to protective responses, despite GLP-1R expression
being absent in cardiac myocytes (Ussher and Drucker, 2014).
These observations may also explain why DPP4 inhibitors have
had much less success regarding their actions in CVOTs, since
DPP4 inhibitors prevent the formation of GLP-1 (9–36) and
subsequently GLP-1 (28–36). However, the vast majority of GLP-
1R agonists that have produced positive results in CVOTs are
resistant to DPP4 mediated cleavage, questioning the relevance of
this mechanism. Conversely, liraglutide is susceptible to DPP4
and neutral endopeptidase 24.11 mediated cleavage, leading to
cleavage products distinct from that of GLP-1 (Malm-Erjefalt

et al., 2010), and whether they are capable of producing similar
actions to that of GLP-1 (9–36) and GLP-1 (28–36) is currently
unknown.

Despite the preclinical and clinical studies for GLP-1R
agonists being somewhat more aligned than that observed for
SGLT2 inhibitors, the previous concerns described for the latter
remain relevant here. This once again includes participants
enrolled in CVOTs for GLP-1R agonists often receiving
cardiovascular therapies like β-blockers, which may impact the
overall translational impact of preclinical studies, whereas the
preclinical studies have primarily studied nondiabetic animals.

Summary Statement and Future Directions
Accumulating evidence from multiple CVOTs for SGLT2
inhibitors and GLP-1R agonists has resulted in major
excitement in the fields of cardiovascular endocrinology and
diabetic cardiology, as these agents display strong signs of
cardioprotection in people with T2DM. While the primary
endpoint in these CVOTs has been 3-point MACE, reductions
in nonfatal/fatal MI and attenuated ischemic heart disease do not
appear to be the primary driver of improved cardiovascular
outcomes for SGLT2 inhibitors, but may play a more
important role for the improved cardiovascular outcomes with
GLP-1R agonists. Nonetheless, that does not necessarily imply
that a GLP-1R agonist is the superior glucose-lowering agent
versus an SGLT2 inhibitor for an individual with T2DM and
coexisting ischemic heart disease. CVOTs for these agents are not
consistent amongst their participant populations for
cardiovascular risk/status, and there is a lack of direct
comparisons between GLP-1R agonists and SGLT2 inhibitors
in both clinical and preclinical studies. Advances in this area as
these questions are answered will undoubtedly play a major role
in therapeutic decision making with regards to managing both
glycemia and ischemic heart disease in subjects with T2DM.
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