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Abstract

Background: Coronavirus disease 2019 (COVID-19) is an emerging zoonotic viral infection, which was started in
Wuhan, China, in December 2019 and transmitted to other countries worldwide as a pandemic outbreak. Iran is
one of the top ranked countries in the tables of COVID-19-infected and -mortality cases that make the Iranian
patients as the potential targets for diversity of studies including epidemiology, biomedical, biodata, and viral
proteins computational modelling studies.

Results: In this study, we applied bioinformatic biodata mining methods to detect CDS and protein sequences of
ORF1ab polyprotein of SARS-CoV-2 isolated from oronasopharynx of an Iranian patient. Then through the
computational modelling and antigenicity prediction approaches, the identified polyprotein sequence was
analyzed. The results revealed that the identified ORF1ab polyprotein belongs to a part of nonstructural protein 1
(nsp1) with the high antigenicity residues in a glycine-proline or hydrophobic amino acid rich domain.

Conclusions: The results revealed that nsp1 as a virulence factor and crucial agent in spreading of the COVID-19
among the society can be a potential target for the future epidemiology, drug, and vaccine studies.
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Introduction
Coronaviruses (CoVs) are positive strand RNA viruses
belong to the order of Nidovirales and three families
including Arteriviridae, Coronaviridae, and Roniviridae
[1]. Based on the genetic studies, CoVs are classified to
into four genera including alpha, beta, gamma, and delta
CoVs. The diameter of CoVs is between 80 to 120 nm
and their shape is spherical. The spike projections of

these virions give the appearance of solar corona to the
CoVs. The main structural proteins of CoVs are enve-
lope (E), membrane (M), nucleocapsid (N), and spike
(S). The S proteins comprise N-linked signal peptide to
be transferred to endoplasmic reticulum (ER) and conse-
quently glycosylated in ER [2]. The homotrimeric struc-
ture of S glycoproteins on the surface of the CoVs
mediate the attachment of virions to the cell receptors
[3]. The size of positive-sense RNA genome of CoVs is
between 26.2 and 31.7 kb. The RNA genome composes
of six to ten open reading frames (ORFs). ORF1a as the
longest part of the RNA encodes for the replicases and
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ORF1b expresses for two large polyproteins including
pp1a and pp1ab comprising about 4000 and 7000 amino
acids. The expression of pp1ab polyprotein is essential
for programmed ribosomal frame shifting signal by
bridging between ORF1a and ORF1ab [4]. In the CoVs,
the frameshifting signal is led to the expression of a
RNA-dependent RNA polymerase (RdRP), which is re-
quired for the coronavirus replication [5]. The polypro-
teins of CoVs are cleaved by virus-encoded cysteine
proteinases comprise papain- and chymotrypsin-like
proteases into 16 nonstructural proteins (nsp) including
the expression of nsp1 to nsp11 by ORF1a and encoding
nsp12 to nsp16 by ORF1b [6]. The nsp3, nsp4, and nsp6
contain hydrophobic transmembrane domains, which
are considered as the anchor sites of pp1a and pp1ab
polyproteins to membranes during the first step of for-
mation of replication-transcription complexes (RTC).
Further study defined that two out of three hydrophobic
domains in nsp3 and six out of seven hydrophobic do-
mains in nsp6 span the membrane, while four hydropho-
bic domains in nsp4 span to lipid bilayer [7]. On the
other hand, ORF1b-encoded nsps including nsp12 has
the RdRP activity, nsp13 has the helicase activity, nsp14
has the 3′ to 5′ exonuclease and RNA cap N7-guanine
methyltransferase and activities for proofreading in asso-
ciation with nsp7/nsp8/nsp12 complex, and nsp15 has
the endoribonuclease activity. The nsp16 has the methyl-
transferase activity, which in combination with helicase/
triphosphatase, nsp13, and 2′O-MTase, a replication-
transcription machinery is constituted to enable the
CoVs in the RNA synthesis and processing steps [8].
CoVs cause zoonotic lethal human respiratory infections

[9]. Severe Acute Respiratory Syndrome Coronavirus
(SARS-CoV) was the causative agent of 2002–2003 outbreak
that occurred in the Guangdong Province of China with
mortality rate of 9% and 774 total deaths [10]. It is accepted
that SARS-CoV was originated in Chinese bats that contain
SARS-related CoVs with angiotensin converting enzyme 2
(ACE2) as the same host receptor, although the population
working in the wet animal markets were the seropositive
cases. In 2012, the CoVs were mutated to Middle East Re-
spiratory Syndrome Coronavirus (MERS-CoV) or camel flu
and obtained the human-to-human capability from the
camel origin with mortality rate of 40% and 333 total deaths.
The host cell receptor for MERS-CoV is Dipeptidyl peptid-
ase 4 (DPP4), which is present in some other animal cells in-
cluding bats, camels, horses, and rabbits [11, 12]. Up to
2019, the positive cases of MERS-CoV infection were 2374
and 823 total deaths from 27 countries [13]. Since the
mouse model doesn’t express the DPP4 cell receptor, the
vaccine studies against the MERS-CoV infection were fo-
cused on other vaccine model animals including Macaca
mulatta (Rhesus macaques) [14, 15], Callithrix jacchus
(common marmoset) [15–17], Camelus dromedarius

(Dromedary camels) [18], hDPP4-transduced mice [19],
transgenic mice expressing hDPP4 globally [20], hDPP4-
humanized transgenic mice [21], CRISPR/Cas9-engineered
mice [22], and hDPP4-knockin mice using CRISPR/Cas9
[23]. Since the big animals are not economic and easy hand-
ling, it is preferred that the smaller model animals with
available testing vaccine efficiency methods to be applied in
the MERS-CoV vaccine studies [24]. In addition, some
potential vaccine candidates were produced against MERS-
CoV infection using viral vectors including recombinant
human adenovirus encoding for S protein [25–27],
recombinant chimpanzee adenovirus encoding for S protein
[28, 29], modified vaccinia virus Ankara encoding for S pro-
tein [29–31] and N protein [32], recombinant human
adenovirus encoding for S protein with nanoparticle [33],
DNA vaccine encoding for S protein [34–36], subunit
vaccines for S protein, receptor binding domain of S protein,
and recombinant N-terminal domain [37–48], virus-like
particles encoding for S protein with nanoparticles [49–53],
nanoparticles with ferritin displaying receptor-binding
domain of S protein [54], inactivated whole- MERS-CoV
[55–57], and live-attenuated MERS-CoV [58–62].
The phylogenetic studies and sequence analyses of

SARS-CoV-2 and some SARS-related CoVs revealed that
all use ACE2 as the host cell receptor [63]. Evolutionary,
human SARS-CoVs and bat SARS-CoVs such as LYRa11,
Rs3367, Rf1, Cp and Rp3 share a common ancestor, while
SARS-CoV and MERS-CoV are distantly related to each
other [64, 65]. Receptor-binding domain (RBD) of S pro-
tein, which is responsible for binding to ACE2 of cell host
receptor, is considered as the major part evolving in the
beta CoVs so 29 unique RBDs were phylogenetically iden-
tified in three distinct clades [66].
Based on the outbreak of SARS-CoV-2 as a novel mem-

ber of CoVs in December 2019 in Wuhan, China, the
causative agent of coronavirus disease 2019 (COVID-19),
severity of symptoms, high human-to-human transmission
rate, pandemic epidemiological situation, and high mortal-
ity rate (> 2,000,000 infected cases and > 120,000 deaths
worldwide till mid-April 2020) [67], it is an urge to study
SARS-CoV-2 in all aspects to discover potential pharma-
ceutical and vaccine candidates against COVID-19.
In this study, we evaluated the partial DNA sequence

and the encoded ORF1ab polyprotein isolated from the
oronasopharynx of an Iranian patient through combin-
ation of biodata mining and computational modelling
methods to identify whether a potential domain is avail-
able for the stimulation of human immune system to con-
sider it as a potential target of drug and vaccine studies.

Results
Sequence Analysis
The multiple sequence alignment (MSA) analysis of the
coding sequence (CDS) from the Iranian patient
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(Accession Number: MT152900) and the Chinese CDS
query (Accession Number: NC_045512.2) revealed that
the Iranian CDS sequence was located between nucleo-
tides 237 and 558 (total length: 322 bases) of the Chinese
CDS query with 100% sequence identity (Fig. 1a). In
addition, the MSA analysis of the partial ORF1ab polypro-
tein from the Iranian patient (Accession Number:
QIH55230) and the query protein sequence from Wuhan,
China (Accession Number: YP_009724389.1) revealed that
the Iranian protein sequence was a part of ORF1ab poly-
protein from Wuhan, China (Accession Number: YP_
009724389.1) with 100% sequence identity (Fig. 1b) (The
complete information related to the Fig. 1a and b has been
presented in the supplementary material 1).

Protein Modelling
The protein modelling of the partial ORF1ab polyprotein
sequence from the Iranian patient (Accession Number:
QIH55230) in the RCSB PDB Protein Data Bank re-
vealed that a 47-amino acid sequence of NMR entry ID:
2GDT belonged to nsp1 from the SARS-CoV with E-

value: 4.20992E-16 and 83% identity, was the most simi-
lar model for the partial ORF1ab polyprotein sequence
from the Iranian patient (Accession Number:
QIH55230) (Fig. 2).
The visualization of the partial ORF1ab polyprotein se-

quence from the Iranian patient (Accession Number:
QIH55230) by the NGL (WebGL) viewer revealed that
the 3D model of the subject protein sequence has a con-
siderable overlap with the query sequence. This 3D
model overlap demonstrated that the partial ORF1ab
polyprotein sequence from the Iranian patient (Acces-
sion Number: QIH55230) has a protein structure with
close similarity to the nsp1 from SARS-CoV (Fig. 3).

Antigenicity Prediction
The antigenicity prediction of partial ORF1ab polypro-
tein sequence from the Iranian patient (Accession Num-
ber: QIH55230) defined three antigenic domains
including 22-, 13-, and 7-amino acids sequences. The
most antigenic domain was the 22-amino acids domain
located between Thr92 and Arg113 as the most

Fig. 1 Multiple sequence alignment (MSA) analysis of ORF1ab polyprotein sequence. a MSA analysis of the Iranian CDS with the CDS query from
Wuhan, China (yellow highlight); b MSA analysis of the Iranian partial ORF1ab polyprotein sequence with the query protein sequence from
Wuhan, China (grey highlight). Both MSA evaluations show 100% identity
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antigenic domain. In the first ranked antigenic domain,
13 out of 22 amino acids were hydrophobic (Table 1).
Further evaluation of the constituent amino acids of

first ranked antigenic domain defined that the hydropho-
bic and hydrophilic amino acids were located at the sur-
face of the subject protein and consequently access of
human immune system, while other amino acids were
buried and out of human immune system (Fig. 4).

Discussion
SARS-CoV-2 infected many people from several cities of
Iran since February 2020, which some studies are per-
forming on different aspects of COVID-19.
The MSA analysis of the CDS and partial ORF1ab poly-

protein sequence from the Iranian patient revealed that

both CDS and partial ORF1ab polyprotein sequences of
the Iranian sample were 100% identical to the query CDS
sequence from Wuhan, China (Accession Number: NC_
045512.2) and the query protein sequence from Wuhan,
China (Accession Number: YP_009724389.1), respectively.
These identities demonstrated that COVID-19 in Iran had
the Wuhan origin of China, which was transmitted by
human-to-human epidemiological pattern following a
pandemic outbreak in other Asian Southeast countries
such as Hong Kong, Japan and South Korea [68]. The pro-
tein modelling of the partial ORF1ab polyprotein sequence
from the Iranian patient and detecting the NMR structure
with PDB entry ID: 2GDT approved that the subject pro-
tein sequence from the Iranian patient is a part of nsp1
from SARS-CoV-2, which was 83% identical to the nsp1
from SARS-CoV. As it was identified, nsp1 is encoded by
ORF1a and is highly conserved, crucial to the virus repli-
cation, survival in the society and spread among suscep-
tible populations, and can be a potential virulence factor
in COVID-19 through accelerating the cellular RNA deg-
radation and consequently blocking the human immune
response [69]. Since the BLASTP E-value scores for nsp1
from various isolates of SARS-CoV showed high percent-
age of identity, it was highly possible that the analyzed
protein sequence was nsp1 and the Iranian patient had
been affected by the virulence effect of identified nsp1 of
SARS-CoV-2. The antigenicity prediction of the partial
ORF1ab polyprotein or nsp1 sequence from the Iranian
patient defined that firstly hydrophobic and secondly
hydrophilic amino acids of the first ranked antigenic do-
main of partial nsp1 of the patient displayed higher

Fig. 2 BLAST homology search analysis of the partial ORF1ab
polyprotein sequence. The homology analysis defined that 39 out of
47 amino acids of the Iranian subject protein sequence are similar to
the query protein sequence (NMR entry ID: 2GDT), which belonged
to nsp1 from SARS-CoV

Fig. 3 Protein Modelling of the partial ORF1ab polyprotein sequence. NGL (WebGL) viewer visualized the NMR structure of entry ID: 2GDT to (a)
cartoon-rainbow style and (b) spacefill-hydrophobicity style. Both models show that partial ORF1ab polyprotein from the Iranian patient and nsp1
from SARS-CoV have highly similar structures. The black amino acids are from the query and the red amino acids are from the subject
protein sequences
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antigenic properties with accessibility to the human im-
mune system such as Gly94, Pro98, and Gly101. The pre-
vious studies showed that diversity of pathogenic and
venomous living organisms produce glycine-proline rich
antigens in the secretions or venoms [70–73]. Further-
more, glycine, proline, as well as hydrophobic amino acids
were exposed on the surface of partial nsp1 of SARS-
CoV-2 to play as a part of a virulence factor (nsp1) and
stimulate the human immune system [74, 75].

Conclusions
Although the identified protein sequence from an
Iranian patient was a part of nsp1 from SARS-CoV-2
and could be a virulence and survival factor in the
spreading of the COVID-19 among the population,
there are some other potentials in nsp1 to make it at-
tractive for future therapeutic and preventive strat-
egies in pharmaceutical and vaccine manufacturers.

Based on the highly conserved sequence of nsp1
among the isolates of SARS-CoVs, it can be an ap-
propriate candidate in the molecular epidemiology of
COVID-19 in the pandemic outbreaks.

Methods
Sequence Analysis
To obtain the data for DNA sequences of SARS-CoV-2
from Iran, we used NCBI Virus database (https://www.
ncbi.nlm.nih.gov/labs/virus/vssi/#/) [76]. The accession
number of MT152900 was selected that was related to
the nucleotide sequence with 322 b in length isolated
from the oronasopharynx of an Iranian patient anno-
tated on the NCBI Virus database on 2020-02-26. The
accession number MT152900 was annotated on the
NCBI Virus database with the following details: Severe
acute respiratory syndrome coronavirus 2 isolate SARS-
CoV-2/MHKN-1/human/2020/IRN ORF1ab polyprotein
(orf1ab) gene, partial cds (Karbalaie Niya,M.H., et al.).

Fig. 4 Amino acids locations of the most antigenic domain of the partial ORF1ab polyprotein sequence. a Cartoon-rainbow style and b spacefill-
hydrophobicity style show the location of Gly94, Pro98, and Gly101 on the surface of the subject protein, which are accessible to the human
immune system. The black amino acids are from the query and the red amino acids are from the subject protein sequences. The arrows show
the buried amino acids

Table 1 Antigenicity prediction of the partial ORF1ab polyprotein sequence
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The accession number of the relevant protein sequence
is QIH55230, which was nominated as the partial
ORF1ab polyprotein with 107 amino acids in length.
The CDS sequence of the Iranian patient (Accession

Number: MT152900) and the query CDS sequence from
Wuhan, China (Accession Number: NC_045512.2) were
compared using MSA and Clustal Omega algorithm
(https://www.ebi.ac.uk/Tools/msa/clustalo/) [77]. In
addition, the partial ORF1ab polyprotein from the Iran-
ian patient (Accession Number: QIH55230) and the
query protein sequence from Wuhan, China (Accession
Number: YP_009724389.1) were compared using MSA
and Clustal Omega algorithm as well.

Protein Modelling
The partial ORF1ab polyprotein sequence from the Iran-
ian patient (Accession Number: QIH55230) was
searched in the RCSB PDB Protein Data Bank (https://
www.rcsb.org/) [78]. A Basic Local Alignment Search
Tool (BLAST) was employed by the Data Bank to iden-
tify the most identical crystalized protein structure to
the subject protein sequence. Then, the NMR structure
for the most identical crystalized protein structure would
be visualized by NGL (WebGL) viewer [79].

Antigenicity Prediction
The antigenicity prediction of the partial ORF1ab poly-
protein sequence from the Iranian patient (Accession
Number: QIH55230) was performed using EMBOSS
antigenic explorer (https://www.bioinformatics.nl/cgi-
bin/emboss/antigenic) [80]. This web tool predicts the
potentially regions of the subject protein sequence
through application of Kolaskar and Tongaonkar
method on the hydrophobic residues of a protein do-
main. In addition, the amino acids location of the most
antigenic domain of the subject protein was evaluated
using NGL (WebGL) viewer within RCSB PDB Protein
Data Bank.
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