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Abstract
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Background: Cancer as a worldwide problem is driven by genomic alterations. With the advent of high-throughput
sequencing technology, a huge amount of genomic data generates at every second which offer many valuable cancer
information and meanwhile throw a big challenge to those investigators. As the major characteristic of cancer is
heterogeneity and most of alterations are supposed to be useless passenger mutations that make no contribution to
the cancer progress. Hence, how to dig out driver genes that have effect on a selective growth advantage in tumor
cells from those tremendously and noisily data is still an urgent task.

Results: Considering previous network-based method ignoring some important biological properties of driver genes
and the low reliability of gene interactive network, we proposed a random walk method named as Subdyquency that
integrates the information of subcellular localization, variation frequency and its interaction with other dysregulated
genes to improve the prediction accuracy of driver genes. We applied our model to three different cancers: lung,
prostate and breast cancer. The results show our model can not only identify the well-known important driver genes
but also prioritize the rare unknown driver genes. Besides, compared with other existing methods, our method can
improve the precision, recall and fscore to a higher level for most of cancer types.

Conclusions: The final results imply that driver genes are those prone to have higher variation frequency and impact
more dysregulated genes in the commmon significant compartment.

Availability: The source code can be obtained at https.//github.com/weiba/Subdyquency.
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Background

Cancer as a worldwide challenge each year deprives
thousands of people’s life. Previous researchers pointed
out that cancer is a somatic evolutionary process charac-
terized by the accumulation of mutations. With the
development of sequence technology, several large-scale
cancer projects have generated a huge amount of cancer
genomic data, such as The Cancer Genome Atlas
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(TCGA) [1], International Cancer Genome Consortium
(ICGC) [2]. The successful of those projects help us to
investigate the cancer generation and development from
the gene level and meanwhile provide a good opportun-
ity and data support to the target therapies and diagnos-
tics. However, investigators still fail to overcome cancer
because it is a big challenge to distinguish the driver
mutations which promote the cancer development from
those passenger mutations which confer no selective
advantages [3]. Recently, many computational methods
have been proposed to identify driver genes based on
cancer genomics data [4, 5]. Generally, these methods
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can be cataloged into frequency-based method and
network-based method.

Frequency-based methods are those based on the as-
sumption that driver mutations confer a selective advan-
tage to tumor growth and they occur more frequently
with respect to background mutation across a cohort of
patients [6]. For example, Dees et.al. use the Background
Mutation Rate (BMR) to measure the significant muta-
tion genes that are more frequently mutated than ex-
pected by random chance [7]. Michale et al. [6] develop
MutsigCV which considers the mutation frequency in-
volving the related biological profile e.g. DNA replication
timing and transcription activity. Contrast to before-
mentioned methods which mainly focused on the
frequently mutated genes, Tian et al. [8] provide an
opposite idea (ContrastRank), assuming rare variants are
more likely to have functional effect than common vari-
ants and among the rare variants the non-synonymous
single nucleotide variants have the strongest impact.
They think the lower probability of a gene mutated in
samples the higher probability of it being a cancer driver
gene. Most of frequency-based methods have one fatal
shortage, although a part of driver genes is mutated at
high frequencies (>20%) most of cancer mutations occur
at intermediate frequencies (2—20%) or lower than the ex-
pected [9]. Therefore, it seems far from enough to identify
driver genes barely considering its mutated frequency.

Recently, some researchers have found that genes per-
form function together and form biological networks.
The gene alteration within the network may cause archi-
tectural change by removing or affecting a node or its
connection within the network [4]. These changes may
drive the cells to a new phenotype that may results in
cancer development [10, 11]. Wang et al. found cancer
genes often function as a network hub which involves in
many cellular processes and forms focal nodes in infor-
mation exchange between many signaling pathways [12].
Based on those findings, one group of network-based
methods maps the mutated genes of one patient or a co-
hort of patients to gene interactive network. Then some
mutated subnetworks are extracted to identify driver
genes. For example, HoteNet [13] applies a propagation
process on the mutated gene interactive network and ex-
tracts significantly mutated subnetworks to identify
driver genes. Network-Based Stratification(NBS) method
[14] and Varwalker [15] firstly stratify mutated gene
interactive network of each patient into subnetworks
and then use a consensus method to merge all subnet-
works across all samples to identify driver genes.
Another group of network-based methods assume that if
one alteration impacts more connected genes whose
expression change obviously (dysregulated genes), the
higher possibility of this gene is a driver gene. This kind
of method usually uses the mRNA expression information
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to identify the dysregulated genes (also called outlying
genes). After that, a bipartite graph is constructed, where
one part consists of mutated genes and the other part con-
sists of outlying genes, edges connect two parts according
to the connections in gene interactive network. DriverNet
is an exactly model which uses the bipartite graph to
prioritize the driver genes that impacts the expressions of
a large number of outlying genes [16]. Shi et al. [17]
improve the prediction accuracy of driver genes by utiliz-
ing the diffusion algorithm on the bipartite graph of each
patient so as to establish the relationship between mutated
genes and its outlying genes. Based on the bipartite graph
of mutated genes and outlying genes for single sample,
DawnRank [18] ranks potential driver genes considering
both their own expression difference and their impact on
the overall differential expression of the outlying genes in
the molecular interaction network. LNDriver [19] and
DriverFinder [20] are also designed very similar to Driver-
Net, while LNDriver incorporates the DNA length to
filter mutated gene at the first step and DriverFinder
identifies outlying genes considering not only cancer
expression distribution but also a corresponding
normal expression distribution.

Network-based methods improve accuracy of predict-
ing driver genes to some extent. However most of afore-
mentioned network-based methods have some shortages
as they excessively rely on the network. Some of the
interactions in the network are not accurate which may
lead to some nosily false positive data. In order to com-
pensate it, researchers consider integrating other bio-
logical profiles to lower the ambiguity of network. For
example, Intdriver incorporates the functional informa-
tion of Gene Ontology (GO) similarity and interaction
network by using the matrix factorization framework to
prioritize the candidate driver genes [21]. Even though
this, most of methods still ignore the importance of sub-
cellular localization. Since proteins must be localized at
their appropriate subcellular compartments to perform
their desired functions, and protein-protein interaction
(PPI) can take place only when they are in the same sub-
cellular compartment [22, 23]. Based on this idea, Peng
et al. do a statistical test and find a result that essential
proteins appear more frequently in certain subcellular
compartment than nonessential proteins and the com-
partment importance degree varies with its containing
proteins’ counts [24]. Tang et al. combine the subcellular
and PPI information to build a weighted network in
order to find the candidate disease genes in diabetes
[25]. They assume that proteins can interact with each
other only if they are localized in the same compart-
ments and develop a method to measure the connective
reliability for each pair of interconnection proteins
within the protein-protein interaction (PPI) network
[25]. Inspired by these ideas, we considered whether or
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not the prediction performance of driver genes can be
improved by only considering the genes that get a large
number of supports from the outlying genes in the same
subcellular compartments.

In order to improve the prediction performance to a
higher level, in this work, we integrated above mentioned
useful biological features, i.e. mutation frequency, subcel-
lular localization, bipartite graph to develop a new model
called Subdyquency. In order to efficiently combining
these features together, we applied the random walk
algorithm which can not only consider gene’s self-charac-
teristic but also involve its influence in the network. We
hypothesized that driver genes are determined by itself
variation frequency in a cohort of patients, the dysregu-
lated genes caused by it and reliability connections be-
tween mutated and the dysregulated genes. Compared to
previous bipartite graph-based methods (e. g. DriverNet,
Shi’s Diffusion algorithm and DawnRank), Subdyquency
identifies driver genes by combining their biological prop-
erties and reliable gene-gene interactions. Compared with
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the Dawnrank and Varwalker that are also random
walk-based methods, Subdyquency only considers the in-
fluence of direct neighbors in the network instead of walk-
ing to the whole network. We implemented driver genes
prediction on three cancer types, including breast invasive
carcinoma (breast), lung adenocarcinoma (lung) and pros-
tate adenocarcinoma (prostate) cancer. The prediction re-
sults show Subdyquency outperforms other existing six
methods (e. g. Shi's Diffusion algorithm, DriverNet,
Muffinne-max, Muffinne-sum, Intdriver, DawnRank) in
terms of recall, precision and fscore. Moreover, the conse-
quence shows the Subdyquency is prior to these methods
in identifying driver genes with significant functions and
some potential driver genes that are not included in
benchmark dataset.

Methods
Overview
We proposed a method by integrating the subcellular
localization information, variation frequency, dysregulated
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Fig. 1 The workflow of Subdyquency. The left part with yellow background color represents the process to generate a walking score of each
mutated gene for each patient. At first, we constructed the bi-partite graph between the outlying genes (dark green nodes) and mutated genes
(red nodes) for each patient according to their relationship in influence graph (step 1). Each pair of interactions between mutated genes and
outlying genes in bipartite graph was assigned a reliability weight according to the common subcellular compartments they belong to (top part).
Then, we calculated the variation frequency for each filtered mutated genes and outlying genes as the initialized value (step 2). After random
walk with three times, the walking score for each patient can be drawn (step 3). We integrated the walking score by summing up the outlying
genes’ value of each mutated gene across all patients (pink background). We calculated the final score for each mutated gene by summing up its
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information and influence network to prioritize the driver
genes. At first, outlying genes of each patient were identi-
fied and a patient-outlying matrix was constructed accord-
ing to whether or not the genes express differently in the
patient. Secondly, we built the bipartite graph between the
mutated genes and the outlying genes by using the
patient-mutated matrix, influence graph and patient-out-
lying matrix. (see the details in Fig. 1). Thirdly, each pair
of interactions between mutated genes and outlying genes
in the bipartite graph was assigned a reliability weight ac-
cording to the common subcellular compartments they
belong to. Then, we calculated each mutated gene’s vari-
ation frequency and outlying gene’s variation frequency
across the cohort of patients. Finally, we used the random
walk algorithm initialized by the variation frequency of
the mutated genes and outlying genes in a single patient
and iterated three steps on the weighted bipartite graph to
generate a walking score for each mutated gene in the pa-
tient. This process repeated for each patient until the ran-
dom walk score matrix was generated. At last, each gene
score for all patients has been summed up as its final
score. We ranked mutated gene in a descending order
based on their final score.

Datasets and resources

In this research, we mainly focused on the somatic mu-
tation and transcriptional expression data for three
cancer types: lung adenocarcinoma (lung), prostate
adenocarcinoma (prostate), breast invasive carcinoma
(breast). Both of the somatic mutation data and tran-
scriptional expression data were downloaded from
TCGA by using R package “TCGA2STAT’ (https://cran.
r-project.org/web/packages/TCGA2STAT/) and we only
used the samples which include both of them. These
three cancers were searched by using key words ‘LUAD);
‘PRAD’ and ‘BRCA’ for lung, prostate and breast cancer,
respectively. Besides, we set the searching ‘type’ param-
eter as the ‘somatic’ for mutation data and ‘RNASeq’ for
expression data by only considering the non-silent som-
atic mutations and raw read counts, respectively. The
downloaded TCGA somatic mutation data was repre-
sented by a binary patient-mutated matrix in which ‘1’
indicates a gene is mutated in the corresponding patient.
The gene that was mutated in at least one patient was
regarded as mutated gene. The expression data was pre-
possessed same as description in DriverNet [16]. For
each patient, a gene was regarded as an outlying gene if
its z-score > 2.0 or its z-score < — 2.0 according to its ex-
pression data. Furthermore, we downloaded the protein
functional interaction network(2015 version) as the in-
fluence graph from Reactome database, which consists
of protein-protein interactions, gene co-expression pro-
files, protein domain interactions, GO annotations and
text-mined protein interactions [26]. The influence
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graph used in this work contains 12,174 proteins and
229,283 interactions. The Network of Cancer Genes
(NCG4.0) which includes manually curated list of 2000
protein-coding cancer genes for 23 distinct cancer types
[27] was used as the benchmark to evaluate the perform-
ance of our method. For each cancer type, Table 1 dis-
plays its sample counts, known driver gene counts in
NCG4.0, mutated gene numbers, outlying gene numbers
in influence graph and its density degree. For example,
lung cancer dataset includes 268 known driver genes
from NCG 4.0 and 230 lung cancer patients both having
somatic mutation data and RNASeq data involve 5525
mutated genes, 7125 outlying genes and 54,557 weighted
edges between mutated and outlying genes. In order to
explain the density of network in each cancer, we used
the practical edge counts to divide all edge counts
(e.g.54557/7125*5525) as the density degree. The protein
subcellular localization comes from the COMPART-
MENTS database [28]. This database integrates evidence
on protein subcellular localization from manually cu-
rated literature, high-throughput screens, automatic text
mining, and sequence-based prediction methods, in
which, the subcellular has been labeled as 11 different
compartments, e.g. Nucleus, Golgi apparatus, Cytosol,
Cytoskeleton, Peroxisome, Lysosome, Endoplasmic
reticulum, Mitochondrion, Endosome, Extracellular
space and Plasma membrane [25]. All of the datasets
used in this research can be downloaded from the web-
site https://github.com/weiba/Subdyquency.

Subcellular analysis

Similar to the Tang’s ideas [25], we proposed an assump-
tion that driver genes more likely regulate their down-
stream gene’s expression in the same compartment and
the interaction in the significance compartment is more
reliability than the lower importance compartment. To
support this idea, we calculated the average weighted
score (details of assigning weight are in the next section)
between each pair of known driver genes, outlying genes
or non-driver mutated genes and outlying genes within

Table 1 The datasets for each cancer type

Lung Breast Prostate
Patients 230 974 331
Drivers 268 373 236
Mutated-count 5525 6510 1942
Outlying-count 7125 7915 4410
Edges 54,557 69,369 11,165
Density-degree 0. 00138591 0. 00134627 0. 00139884

The second row is the sample counts for each cancer type. The third row
represents the involving driver genes for each cancer type. The Mutated count
and Outlying count are the genes number for the constructed bipartite graph.
Edges are the total number of the edges for each bipartite graph. Density-
degree is the value of practical edges out of total edges
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the weighted subcellular influence graph. Result shows
the higher the weight is, the more possibility of driver
gene impacts outlying gene in the common significant
subcellular compartment. The details for three cancers
have been displayed in Table 2. The compartment cover-
age rate of each cancer is near to 100%, which means
that all the driver genes appear at least one subcellular
compartment. The average interaction weight between
driver genes and outlying genes is nearly three-four
times higher than the average interaction weight
between general passenger mutated genes and outlying
genes in lung, breast and prostate cancer. Especially for
the prostate cancer, the average interaction weight
between driver genes and outlying gens is more than
four times higher than that between non-driver genes
and outlying genes. These results sufficiently illustrate
one phenomenon that most of mutated genes tend to lo-
cate in at least one compartment to perform their func-
tions. Besides, compared with passenger genes, driver
genes are more likely impact outlying genes in some
significant compartments.

In order to verify the subcellular size information is
useful in our research, we used the known cancer-related
driver genes to measure the correlation between com-
partment size and driver genes’ counts for each cancer
type. The results are shown in Table 3. It is obviously
that there is a positive correlation between compartment
size and the counts of known driver genes. Almost all of
driver genes gather in the top three largest size compart-
ments e.g. Nucleus, Cytosol and Plasma. Because, there
are many important cell activities, like chromosome
replication and transcription, that are carried in these
compartments and involve in a large number of proteins
[23]. Besides those largest compartments, only minority
group of driver genes can be found in the ‘Endosome’
and ‘Lysosome’ with only 825 and 1960 proteins, re-
spectively. This result suggests that the compartment
size to assign weight is appropriate, since most of
known driver genes likely gather in the larger size
compartments.

Table 2 The average weight between each pair of driver genes,
outlying genes and non-driver genes outlying genes

Weight Breast Lung Prostate
Compartment-coverage 0. 9878 0. 9874 0.9778
Drivers-outlying 0. 0038 0. 0035 0. 0048
Non-drivers-outlying 0.0011 0.0012 0.0011
Drivers/non-drivers 3.455 2.917 4. 364

The compartment-coverage is the compartment coverage of genes for each
cancer type. Drivers-outlying and non-drivers-outlying are the average weight
between drivers, outlying genes and non-drivers, outlying genes for the
weighted subcellular bipartite graph. The last row is the value of drivers-
outlying divide non-drivers-outlying
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Table 3 The total number of mutated genes located in each
compartment

Compartment Compartment size Lung Breast Prostate
Nucleus 13,938 125 177 50
Cytosol 13,726 123 177 49
Cytoskeleton 3236 32 49 14
Peroxisome 4605 31 36 13
Lysosome 1906 17 15 4
Endoplasmic 4160 43 41 15
Golgi 3275 31 32 8
Plasma 8719 108 110 38
Endsome 825 15 13 3
Extracellular 8589 69 72 25
Mitochondrion 7130 47 50 19

The first column displays the compartment name of human. The
‘compartment size, ‘lung;, ‘breast’ and ‘prostate’ are the total number of
involving genes for each compartment

Constructing bipartite graph

We constructed the bipartite graph according to the as-
sumption of DriverNet that driver genes will impact on
the expression of their downstream genes (dysregulate
genes or outlying genes) which connect to them in the
influence graph [16]. The bipartite graph consists of two
parts, the right part is mutated genes denoted by
M(m1,m2,m3,. ..) and the left part is outlying genes de-
noted by O(01,02,03,.. .). The mutated genes are inferred
from mutated gene profiles of all patients and the outly-
ing genes are extracted by using the same way of Driver-
Net [16]. We constructed the interactions between the
mutated genes and outlying genes in bipartite graph
based on the rule that for each patient, the subgroup of
mutated genes connects to the subgroup of outlying
genes whenever each mutated gene in the functional
interaction network have at least one connection to the
outlying genes of another group. Specifically, In Fig. 1,
red node in the mutated group represents there is at
least one edge connects it to an outlying gene and the
blue node means no connective edges can be found in
the influence graph. Similarly, the dark green node in
the outlying group means at least one edge connects it
to a mutated gene and light green node means no edges
connect it to a mutated gene.

Assigning weight to bipartite graph

To compensate the error prone shortage of functional
interaction network, we want to devise a method that
can measure the reliability between each pair of inter-
action genes within the network. Since proteins can per-
form their functions only if they locate in appropriate
subcellular compartments and protein-protein interac-
tions happen if the proteins are in the same subcellular
compartment. In this work, we use Tang’s [25] method
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to assign a subcellular supportive weight to the interac-
tions between each pair of mutated and outlying gene in
the constructed bipartite graph. Firstly, we measured the
importance of the compartment denoted by Cy based on
the number of proteins it has [23]. For each compart-
ment, Cx divided by the largest size of compartment Cj,
and its final significance score SC can be calculated as
follows:

Cxll
Cu

~—

SC(I) = (1)

From this formulation, the value of SC ranges from 0
to 1. I belongs to one of subcellular compartments,
where I €{1, 2, 3, 4, 5......11}, since there are 11 compart-
ments in this work. The various significance scores rep-
resent the importance of different compartments, which
means the compartment with larger size is more import-
ant than the compartment with smaller size, because the
number of proteins involved in it is more than others.
This situation implies that some interactions happen in
the significant compartments should have higher score
than that in other smaller size compartments. Hence,
the weight assigned to each pair of related genes in the
interaction network can be defined as:

.. max(SC(I)), if SLoc(i, j)z@

Wi, j) = { 5€C(C<'A2)), otherw(ise) (2)
where W(i,j) is the weight between the mutated gene i
and the outlying gene j. If the mutated gene i and the
outlying gene j interact with each other in the same
compartment (e. g. SLoc(i, j) = @), the interactive weight
is equal to the maximum significance score of their shared
compartments. Otherwise, the weight was assigned with
the minimum significance score among all compartments.
Cy represents the smallest size of compartment.

Initializing variation frequency

The variation frequency of mutated genes is calculated
according to the mutated genes’ abnormal times across
the cohort of patients. We assume that most of driver
genes are prone to mutate in many patients and impact
a huge amount of down-stream genes (outlying genes)
[16]. Meanwhile, the more the mutated genes impact the
outlying genes that also frequently mutate across the co-
hort of patients, the more likely they are to be driver
genes. Because previous studies found that cancer is the
fact that genes act together in various signaling pathways
and protein complexes [13]. If an outlying gene also
frequently mutates across the cohort of patients, its con-
nective mutated genes tend to be driver genes. There-
fore, in this work, we also consider the variation
frequency of outlying genes across the cohort of pa-
tients. The variation frequencies of outlying genes were
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calculated under two conditions. If the outlying genes
also mutate in at least one patient, their variation
frequencies were set according to their abnormal times
across the cohort of patients. Otherwise, their variation
frequencies were unified as 1 out of total sample counts.
For example, the outlying gene ‘SLAMF6’ is mutated in
3 of 230 lung cancer patients. Its outlying variation fre-
quency is 3/230. The ‘A2D1’ is outlying gene while is not
mutated in any samples. Hence, its variation frequency
is 1/230. At here we calculated the variation frequency
of mutated gene and outlying gene based on the infor-
mation of all samples. These variation frequencies were
applied to the next step as the initialized score for each
patient’s mutated gene and outlying gene.

Random walk

After constructed the weighted bipartite graph, a ran-
dom walk method was employed to calculate a score for
each mutated gene in the bipartite graph. Given m is the
number of outlying genes and n is the number of mu-
tated genes. W is a n*m matrix. Its element w(i, j)
denotes the weight of the connection between mutated
gene i and outlying gene j in the weighted bipartite
graph. Let Rm(i) be the ranking score of mutated gene i
and Ro(j) be the ranking score of outlying gene j. M(i)
denotes the variation frequency of mutated gene i
(which was calculated by the last step), while Ofj) is the
variation frequency of outlying gene j (which was calcu-
lated by the last step). The initialized score of mutated
gene and outlying gene for each patient are various
according to whether it has this gene or not. Then, for
each mutated gene and outlying gene in the bipartite
graph, their ranking score can be computed by Formula
3 to 5. a is the damping factors representing the extent
to which the ranking depends on the structure of the
graph or itself frequency. At here, we set a to 0.5(details
in the Result section). The result of Formula 3 was used
as the input to multiply the weighted bipartite graph in
Formula 4. Similarly, the result in Formula 4 would be
used as the input for Formula 5. This process repeated
for each patient in a given cancer. Finally, all mutated
genes for each patient have a corresponding score. We
added up each score across all patients as the final score
of the mutated gene and ranked all of mutated genes in
a descending order. The higher ranking implies the
higher possibility of them to be the driver genes.

Ry(0) = a*M() + (1-a) « 3 Wy 0() (3
=1
R,(i) = a * O(j) + (1-a) = Z W % Ry(i) (4)
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R, (i) za*M(i)+(1—a)*Zm:Wij*Ro(j) (5)
=1

Assessing the performance

Similar to previous works [17-19], we evaluated the per-
formance of our method from three aspects: prediction
of known cancer genes, functional analysis, literature
mining and analysis.

Prediction of known cancer genes

We chose the top K of ranked genes as potential driver
genes to evaluate the performance of our method. The
accuracy of prediction depends on how well the pre-
dicted driver genes match the selected benchmarking
genes(NCG 4.0), which was measured by three widely
used statistical tests, i.e. precision, recall and fscore.

P
Precision — L
recision = - —n (6)
TP
Recall = — 7
AT TP YN @)

F 9 Precision x Recall (8)
score =
Precision + Recall

Functional analysis

The somatic mutations always target the cancer genes in
a group of regulatory and signaling networks to generate
cancer [13, 29, 30]. Besides, those driver genes
frequently occur in the functional regions of protein
(such as kinase domains and binding domains) to impact
the major biological functions [31]. Hence, in order to
validate the efficiency of our method in distinguishing
the genes sharing the most important functions and
appearing some important pathways, we leveraged the
DAVID database to execute GO enrichment analysis and
KEGG pathway enrichment analysis. The DAVID data-
base is a web-based analytic tool which integrates bio-
logical knowledgebase and aims at extracting biological
functions from large gene/protein lists [32]. For the GO
enrichment analysis, we chose the three enriched gene
ontology sets COTERM_BO_DIRECT, GOTERM_CC_-
DIRECT and GOTERM_MF DIRECT as the main ob-
servation objects.

Literature mining analysis

To further prove the prediction performance of our
method in distinguishing potentially unknown mutated
driver genes, we leveraged one of the literature mining
method(called cociter) to figure out the co-citation of
the predicted driver genes with the keywords cancer type
(i.e. ‘lung, ‘breast, ‘prostate’), ‘driver’ and ‘cancer’ [33].
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The cociter is a literature mining approach which is used
to evaluate the significance of co-citation for any gene set
from the 8,077,952 genes in the National Center for Bio-
technology Information (NCBI) Entrez gene database.

Results

To evaluate the performance of our method, we com-
pared our method with six existing methods, DriverNet
[16], Shi’s Diffusion algorithm (namely Diffusion) [17],
Muffinne-max (namely Muf _max) [34], Muffinne-sum
(namely Muf_sum), Intdriver [21] and Dawn-Rank [18].
The DriverNet [16] and Shi’s Diffusion algorithm [17]
are constructed based on the bipartite graph and divide
the patients’ genes as mutated and outlying subgroups
according to the mutated profile and expression infor-
mation. Both Muf_max and Muf_sum map the mutated
genes to gene functional network and leverage the vari-
ation frequency of mutated genes by considering the
impact of either the most frequently mutated neighbor
or all direct neighbors [34]. Intdriver combines the bio-
logical GO similarity profile with gene functional net-
work to accumulate the accuracy of final result [21]. The
DawnRank uses the random walk on the bipartite graph
of mutated genes and outlying genes to identify the
driver genes for specific patient [18]. We set the IntDri-
ver turning parameters AN, AS and regularization param-
eter AV to the default value 0.3, 0.7 and 0.01 separately.
The input of DawnRank requires the normal and tissue
expression data for each person. But, since the limitation
of downloaded datasets from TCGA, only part of pa-
tients can be found that both have the normal and can-
cer expression information. In this research, we found
only 110, 58 and 52 samples that both have normal and
tumor gene expression information for breast, lung and
prostate respectively. Besides, the DawnRank’s free
parameter was set to 3 according to the recommenda-
tion of authors.

All comparison methods were implemented on three
types of cancers, i.e. lung, prostate, and breast cancer
and evaluated from three aspects, prediction of known
cancer genes, functional enrichment analysis and litera-
ture mining analysis. The result section was organized as
follows. Firstly, we evaluated the effect of the parameter
a on the performance of our method. Secondly, we
compared the performance of our method with other six
existing methods for each cancer type. Then, we did
the frequency-based comparison of each method.
Lastly, in order to verify the robustness of our method,
we tested the performance by extracting samples with
different sizes.

Effects of parameter a
a in our method has been used as a trade-off to weigh
the dependence degree between its own profile and the
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connecting network. In order to clearly illustrate the
effects of a, we calculated the area under the
Precision-Recall curve (AUC) for every cancer type
under different a values ranging from 0 to 1, by adding
0.1 for each iteration. According to our method
(mentioned in methods and materials section), setting a
to O represents the final result only depending on the
bipartite graph and setting a to 1 means the final result
is only influenced by itself profile (e.g. variation
frequency). AUC values for each cancer type and differ-
ent a values are displayed in Table 4. It is clear that the
result tendency for all cancer types stays in a relatively
steady status with less than 0.16 gap between max and
min AUC values in average. Among them, the breast
and lung cancer are in a similar increasing tendency
when « increasing from 0 to 0.7 and slightly decreasing
after that. While the AUC values of the prostate cancer
are almost decreasing from 0.5171 to 0.3416 when «
ranging from O to 1. We supposed the reason for setting
a to 0 achieving the prostate’s highest AUC value is that
only 30 out of 126 genes mutate more than 3 patients in
prostate cancer and the rest of genes seldom mutate
across all patients. Hence, compared with subcellular
weighted interactive network, variation frequency makes
smaller impact on identification of the driver genes of
prostate cancer. Besides, for the other two cancer types
(e.g. lung and breast), their AUC values achieve the max-
imum when « near to the middle where incorporates it-
self variation frequency and the impact of network.
Based on above analysis, both the variation frequency
and subcellular weighted interactive network make more
or less impact upon identification of the driver genes of
all cancers. Besides, the AUC values increasing from 0.1
to 0.9 keep in a relatively steady status for all cancers.
Hence, we chose the median value 0.5 as the static a

Table 4 Performance comparison with respect to different

values

a Breast Prostate Lung
0 04139 05171 0.3545
0.1 04129 05111 0.3604
0.2 04363 0.4706 0.3641
03 04574 04833 0.3894
04 04709 04634 04138
0.5 04771 04651 04177
0.6 04762 04281 0437
0.7 04763 0.3957 04377
08 04672 0.385 04334
09 04219 0372 04135
1 03627 03416 04204

The calculated AUC values of Subdyquency for each cancer type under
different a values
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value for each cancer. This setting means the subcellular
weighted interactive network and variation frequency of
mutated genes or outlying genes make the equal contri-
bution to final score.

Based on the above analysis, both the variation fre-
quency and subcellular weighted interactive network
make more or less impact upon identification of the
driver genes of all cancers. Besides, the AUC values in-
creasing from 0.1 to 0.9 keep in a relatively steady status
for all cancers. Hence, we chose the median value 0.5 as
the static a value for each cancer. This setting means the
subcellular weighted interactive network and variation
frequency of mutated genes or outlying genes make the
equal contribution to final score.

Result for lung cancer

Lung cancer as the top ten killer cancers occurred in 1.8
million people and leaded millions people death in 2012.
In this research, we analyzed 230 lung cancer patients
that both have somatic mutation data and expression in-
formation in TCGA and extracted the related subcellular
bipartite graph with 5525 mutated genes, 7125 outlying
genes. After applying our method, all mutated genes
acquired ranking scores for each patient and the final
score of mutated genes were calculated by accumulating
all corresponding scores across the cohort of patients.
The performance of our method was assessed by compar-
ing it with other existing methods in the aspects of the
prediction of known cancer genes and the literature min-
ing analysis. Besides, we also did the functional enrichment
analysis in pathway and GO aspects in order to prove the
biological functions of the identified driver genes.

Prediction of known cancer genes

We selected K of genes ranked in the top list by each
comparison method as candidate driver genes. According
to the benchmark dataset, the fscore, recall, precision
values can be calculated to evaluate the performance of
each method. With difference of the values of K ranging
from 1 to 200, the fscore curve, recall curve and precision
curve can be drawn. Figure 2 shows that our results in
total remarkably outperform other existing methods.
Specifically, for our result, there are 44 out of top 200
driver genes can be found in the NCG 4.0, compared with
only 16, 18, 19, 22, 25 for Muf_max, Shi’s method, Intdri-
ver, DriverNet, Muf sum respectively. The details of
prediction of known cancer genes for lung cancer are
supplied in the Additional file 1.

Literature mining analysis

We searched the top 30 candidate driver genes to-
gether with key terms ‘cancer) ‘driver’ and ‘lung’ in the
cociter website. The higher cocitation score implicates
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the stronger association between the genes and the
key terms.

Table 5 shows that some significant well-known genes
like TP53, KRAS, EGFR, PIK3CA, ATM are showed in
our top list. Although they are also identified by most of
other methods, their ranking positions are not higher
than ours. The well-known suppressor TP53 which
disrupts the cell cycle arrest and the apoptosis pathways
in human cancer ranks first in our method, 36th in
Diffusion algorithm and 12th in Muf_sum. The Kirsten
rat sarcoma (KRAS) is said to be one of the most acti-
vated oncogenes with 17 to 25% of all human tumors
harboring an activating KRAS mutation, resulting in
gene activation with transforming ability of the mutant
proteins [35]. The KRAS ranks third in our list but
ranked 20th in Diffusion algorithm and 102th in Muf -
max. The PIK3CA is known as the regulator of cellular
growth and proliferation, which ranks 14th in our method
but 56th in Muf sum, 109th in DawnRank and even
cannot find in Muf_max and Intdriver. It is co-cited with
‘cancer’ for 1199 times and regarded as driver genes in 183
publications and is related to lung’ 54 times. The result
shows our method can not only prioritize some important
genes but also can identify unknown cancer genes that are
missed by the NCG 4.0. For example, the transcription
factor STAT3 is constitutively activated in many human
cancers and makes big contribution in modulating cancer
cell proliferation, survival, metastasis and so on [36]. It
was co-cited with cancer for 1824 times and was 418
times related with ‘lung; and 27 times with ‘driver’. The
CREBBP has been used as coordinating numerous tran-
scriptional responses that are important in the processes
of proliferation and differentiation [37]. It co-appeared
with ‘cancer’ for 117 times, with ‘lung’ for 15 times, and
with ‘driver’ for 2 times.

Functional analysis

We used the DAVID on-line database to perform the
functional and pathway enrichment analysis for the top
200 candidate driver genes of lung cancer. For the
functional analysis, the chosen genes were categorized in
the GOTERM_BP_FAT, GOTERM_CC_MFAT and
GOTERM_MEF_FAT set. In terms of biology process, the
candidate driver genes play more roles in the regulation
of transcription, intracellular signaling cascade, cell
surface receptor linked signal transduction, cell adhe-
sion, regulation of cell death and apoptosis cell cycle etc.
(see Additional file2). With respect to the cellular
component, the top 200 genes significantly enrich in the
plasma membrane, intracellular non-membrane-
bounded organelle, cytoskeleton, nuclear lumen, cytosol,
cell fraction etc. (see Additional file 2). Finally, in the
molecular function, the identified driver genes have
some important functions such as the metal ion binding,
nucleoside binding, ATP binding, structural molecule
activity, transcription regulator activity, protein kinase
activity, enzyme binding etc.(see Additional file 2). For
the pathway analysis, we adopted the KEGG category
and found driver genes enrich in the Focal adhesion,
Regulation of actin cytoskeleton, ErbB signaling pathway,
MAPK signaling pathway, Non-small cell lung cancer,
Chemokine signaling pathway, Calcium signaling path-
way, Wnt signaling pathway etc. which are significant
associated with lung cancer (see Additional file 2).

Results for breast cancer

In the U. S., breast cancer is the second most common
cancer in women. It can occur in both men and women,
but it is rare in men. At here, we focused on 974
patients that both have somatic mutation data and ex-
pression information in TCGA and extracted 6510
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Table 5 Cociter analysis of top 30 lung cancer driver genes identified by our method

Genes Driver Lung Cancer |s_driver QOurs Diffusion Muf_max Muf_sum IntDriver Driver Net Dawn Rank
TP53 110 999 6772 1 1 36 5 12 5 1 1
TTN 2 1 10 1 2 2274 2 13 2 15 156
KRAS 172 1217 3525 1 3 20 102 15 19 3 2
RYR2 2 4 3 0 4 681 101 16 1" 21 493
MUC16 1 31 338 1 5 1587 NA NA 3 16 507
UBC 2 17 134 0 6 4 100 1 NA 2 NA
EGFR 166 2849 4748 1 7 2 7 22 168 4 4
SPTA1 1 2 3 0 8 140 NA NA 24 5 13
LRP1B 2 8 17 1 9 5321 NA 18 8 482 1508
DMD 3 17 23 0 10 164 3 31 157 74 9
STK11 8 160 504 1 " 205 NA 34 70 31 14
Muct7 0 0 9 0 12 484 NA NA 13 161 791
ANK2 0 1 4 0 13 160 NA NA 80 62 6
PIK3CA 54 183 1199 1 14 3 NA 56 NA 6 109
ACTN2 1 3 7 0 15 27 9 40 NA 77 20
FAT3 1 2 T 0 16 330 NA NA 48 89 224
COL11A1 1 9 21 1 17 215 NA 30 16 12 18
PCLO 1 0 4 0 18 5326 NA NA 36 851 2664
PLCG2 1 2 13 0 19 10 NA 137 NA 34 NA
NF1 1 16 165 1 20 40 NA 108 129 19 22
PRKCB 1 1 41 1 21 6 NA 60 NA 17 NA
PCDH15 1 2 4 0 22 227 NA 19 31 A 98
STAT3 27 418 1824 0 23 7 97 45 NA 20 35
CREBBP 2 15 17 0 24 1 38 110 NA 10 12
PLCB1 1 7 9 0 25 24 NA 52 192 24 26
MYH2 1 4 3 0 26 55 NA 49 108 14 27
ATM 5 139 1377 1 27 133 12 144 NA 27 417
MYHS8 1 0 0 0 28 291 8 81 NA 1157 804
ZNF536 1 0 4 1 29 1907 NA NA 25 1039 1458
APOB 2 4 27 0 30 480 NA 25 15 43 21

The first to the fourth column show the co-appeared counts of top 30 identified genes with ‘driver; ‘lung’ and ‘cancer’ (from the left to the right). Is_driver
indicates whether the given gene is a driver or not. The left columns represent the rank positions of identified genes in Subdyquency, Diffusion, Muf_max,

Muf_sum, IntDriver, DriverNet and DawnRank respectively

mutated genes and 7915 outlying genes to compose the
bipartite graph.

Prediction of known cancer genes

From the top 200 listed candidate driver genes, our
method accurately identified 44 driver genes that can be
found in the NCG 4.0. We supposed the most efficiency
method can prioritize as many as possible driver genes
in the top list. Figure 3 shows that our result was the
best one to prioritize the driver genes from the top 130
listed candidate driver genes. Among those methods, the
result of DriverNet is the closest one to ours.

Specifically, from the top 1 to 130 genes selected as can-
didates, our method always acquires higher values than
DriverNet in fscore, recall and precision curves while
with more than top 130 genes being considered, Driver-
Net gradually keeps closer to us with only 0.004 less in
top 150 listed genes in terms of fscore. However, when
selecting the top 200 genes as candidate driver genes,
our result keeps the best performance. Its fscore
achieves 0.154 compared with Diffusion (0.15), Muf_max
(0.052), DriverNet (0.143), DawnRank (0.122), IntDriver
(0.108) and Muf sum (0.108). The details of prediction
of known cancer genes for breast cancer are supplied in
the Additional file 1.
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Literature mining analysis

Table 6 shows that for breast cancer, some important
driver genes in our top list can be found. Our top 6
ranked genes are very similar with DriverNet while very
different with Diffusion and Muf_max. The well-known
suppressor TP53 still ranks in the first position by our
method, DriverNet and Muf_sum but ranks 255th by
the Diffusion algorithm. The oncogene PIK3CA which is
the one of most likely gain-of-function mutated in the
breast cancer ranks in the second place by our method
while in the 170th by Diffusion and 336th by Muf max
[38]. The putative tumor suppressor gene EP300 ranks
in the 5th by our method while 73th in Diffusion, 135th
in Muf_max, 175th by DawnRank and even neglectes by
Intdriver. The CGH1 is key regulator adhesive properties
in epithelial cells which mutates frequently in breast
cancer [39]. It ranks 6th by our method, 39th by Diffu-
sion method and 462th by Muf_max. It should be noted
that some genes highly related with breast cancer rank
at top but are missed by the NCG4.0 such as the
CREBBP, RHOA, HDAC1, ATM and MYC. Among
these genes, the ATM and MYC co-appear with item
‘cancer’ for 1377 and 1978 times, with ‘breast’ for 408
and 383 times respectively. It means our method can
not only prioritize some significant driver genes but also
identify some unknown driver genes.

Functional analysis

In terms of the biology process, the top 200 potential
breast driver genes mainly focus on the regulation of
transcription, intracellular signaling cascade, transcrip-
tion, signal transduction, regulation of cell death, regula-
tion of apotheosis, phosphorus metabolic process etc.
(see Additional file 3). In the respect of cellular compo-
nent, the identified genes mainly locate in the organelle,

plasma membrane, organelle lumen, nuclear lumen,
cytosol, cytoskeleton, chromosome etc. (see Additional
file 3). For the molecular function aspect, they enrich in
the ion binding, DNA binding, transcription regulator
activity, nucleotide binding, ATP binding, transcription
factor activity, protein kinase activity etc. (see Additional
file 3). For the pathway aspect, the candidate diver genes
enrich in the breast cancer related pathway, including
Focal adhesion, ErbB signaling pathway, Jak-STAT sig-
naling pathway, Neuotrophin signaling pathway, MAPK
signaling pathway etc. (see Additional file 3).

Results for prostate cancer

It is well-known that prostate cancer is the second most
common cancer among men. In this work, we focused
on 331 prostate patients that both have somatic muta-
tion data and expression information in TCGA and
extracted 1942 mutated genes and 4110 outlying genes
to compose the bipartite graph.

Prediction of known cancer genes

From the Fig. 4, our result is obviously the best one from
the beginning to the end in terms of precision, recall
and fscore curves. Especially in fscore curve when select-
ing top 50, 100 and 150 of genes as candidate driver
genes, the fscore of our method achieve the 0.119, 0.131
and 0.119 respectively, compared with the lower one
Muf_sum with only 0.084, 0.113 and 0.109 on these
three points. In the recall curve, the Muf_max that is
the one closest to us has the recall values of 0.021,
0.012, 0.008 less than us when selecting top 50, 100 and
150 of genes as candidate driver genes. The similar situ-
ation also occurs in the precision curve. The details of
prediction of known cancer genes for prostate cancer
are supplied in the Additional file 1.
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Table 6 Cociter analysis of top 30 breast cancer driver genes identified by our method

Genes Driver Breast Cancer Is_driver Ours Diffusion Muf_max Muf_sum IntDriver Driver Net Dawn Rank
TP53 110 1356 6772 1 1 255 2 1 2 1 2
PIK3CA 54 334 1199 1 2 170 336 6 1 2 1
UBC 2 30 134 0 3 263 224 2 NA 3 128
TTN 2 1 10 0 4 3470 554 19 3 6 104
EP300 4 86 269 1 5 73 135 4 NA 5 175
CDH1 19 358 1410 1 6 39 462 64 5 4 8
PIK3R1 7 21 131 1 7 174 354 30 NA 9 24
GATA3 8 122 154 1 8 91 382 2687 4 8 4
CREBBP 2 41 117 0 9 53 9 44 NA 7 NA
RHOA 6 100 334 0 10 213 693 141 NA 12 199
MAP3K1 2 62 135 1 " 136 1363 184 7 20 3
BRCA1 22 4017 4652 1 12 24 121 144 NA 1 NA
ERBB2 78 4332 5335 T 13 77 10 54 NA 62 79
NCOR1 3 45 109 1 14 151 31 539 30 15 52
SIN3A 3 12 49 0 15 220 93 541 NA 17 NA
ERBB3 4 178 354 1 16 78 407 139 76 27 6
HDAC1T 4 99 427 0 17 104 24 128 NA 23 NA
MUC16 1 20 338 1 18 654 7281 1885 6 28 905
DMD 3 2 23 0 19 63 567 114 24 70 5
PTEN 64 672 3047 1 20 203 3 1 41 118 262
ACTB 3 14 61 0 21 2 1244 82 NA 14 131
RB1 10 124 689 T 22 210 1 5 NA 58 35
ATM 5 408 1377 0 23 17 42 423 157 45 NA
ERBB4 4 220 350 1 24 79 468 117 NA 53 217
STAT3 27 332 1824 0 25 242 43 51 NA 31 185
DYNCTH1 2 2 9 0 26 66 1395 654 53 10 17
MYC 45 383 1978 0 27 149 40 46 NA 197 NA
SP1 3 108 393 T 28 231 83 21 NA 67 NA
NEB 1 1 4 0 29 1151 1037 2188 31 400 1162
PLCG2 1 2 13 0 30 181 439 121 NA 49 NA

The first to the fourth column show the co-appeared counts of top 30 identified genes with ‘driver; ‘breast’ and ‘cancer’ (from the left to the right). Is_driver
indicates whether the given gene is a driver or not. The left columns represent the rank positions of identified genes in Subdyquency, Diffusion, Muf_max,

Muf_sum, IntDriver, DriverNet and DawnRank respectively

Literature mining analysis

From Table 7, there are 7 driver genes in our top 10
gene list that are related with prostate cancer in
NCG4.0, including TP53, SPOP, FOXA1, MUC16, ATM,
CTNNBI and SPTA1. Besides, our method also priori-
tizes some significant driver genes which are put in the
bottom position or even neglected by other methods.
For example, the tumor suppressor PTEN which is
important to regulate the cell survival signaling ranks
18th by our method while 715th by Diffusion, 111th by
Muf _max, 147th by DriverNet and neglectes by the
DawnRank [40]. The BRAF is one of the most common
mutated gene in prostate cancer which ranks in the 22th

by our method while 245th by Diffusion, 35th by Muf_-
sum, 57th by DriverNet, 42th by DawnRank and forgets
by Muf_max. The famous tumor suppressor APC which
co-appears with ‘cancer’ for 2016 times, with ‘prostate’
for 59 times ranks in the 29th in our method, while
183th in IntDriver, 71th in DriverNet and is missed by
DawnRank, Muf max and Muf sum. Besides, some
genes highly related with prostate cancer that are
ignored by NCG4.0 are also identified by our method.
For instance, the BRACI is the well-known key patho-
genic factor for prostate and breast cancer [41]. It
co-appeared with ‘cancer’ for 4652 times, with ‘prostate’
for 156 times and 22 times for ‘driver’. The SMAD4 that
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Fig. 4 Prediction performance Comparison of each method for prostate cancer in terms of Precision, Recall and Fscore values. The figure shows
the comparison for prostate cancer of precision, recall and fscore for top ranking genes in the seven methods. The X-axis represents the number
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is found to co-appear with ‘cancer’ for 759 times with
‘prostate’ for 41 times and 14 times for ‘drivers’ is also
forgotten by NCG 4.0. Besides, the other listed genes
(GLI1 and SP1) which are observed to be the highly
related genes are also missed by the NCG 4.0.

Functional analysis

We adopted the top 200 of prostate candidate driver
genes to do the enrichment analysis. The result shows,
in the biology process, the identified genes enrich in the
regulation of transcription, cell cycle, intracellular signal-
ing cascade, regulation of programmed cell death, cell
adhesion, regulation of apoptosis, regulation of meta-
bolic process, homeostatic process, phosphorus meta-
bolic process etc. (see Additional file 4). For the cellular
component, they focus on the organelle, plasma mem-
brane, organelle lumen, cytoskeleton, nuclear lumen, cyto-
sol, cell fraction, chromosome etc. (see Additional file 4).
With respect to the molecule function, they enrich in the
ion binding, DNA binding, transcription regulator activity,
ATP binding, transcription factor activity, nucleotide
binding and so on (see Additional file 4). In the pathway
enrichment analysis, the identified genes enrich in the
Focal adhesion, prostate cancer, Chemokine signaling
pathway, Wnt signaling pathway, MAPK signaling path-
way, ErbB signaling pathway etc. (see Additional file 4).

Variation frequency evaluation

Table 8 illustrates the counts of driver genes with low or
high variation frequency identified by ours and other six
methods for each cancer type. The identified driver
genes with low variation frequency are those mutated in
equal to or less than three samples, others are driver
genes with high variation frequency. The top of Table 8
lists the number of real driver genes with low variation

frequency detected by each method when selecting top
50, 100, 150 and 200 genes as candidates. The result
shows our method can figure out some driver genes with
low variation frequency. Although, it cannot say our
model is superior than others, the gap is very small or
even zero.

Besides, we also verify the capability of our method
in identifying driver genes with high variation fre-
quency (>3 samples) by comparing with other six
methods. The bottom of Table 8 shows that our cap-
ability of identifying driver genes with high variation
frequency in all cancer types is obviously superior to
other six methods.

Above results indicate that although the variation fre-
quency is involved in our method, it does not weaken
our capability in identifying driver genes with low vari-
ation frequency because our method introduces gene
functional network information for prediction. On the
contrary, adding variation frequency enhances our
capability in identifying the driver genes with high
variation frequency.

Robust analysis

The final result may be impacted by the quantity of dis-
cussed samples due to the variation frequency that is
calculated based on the total sample size for each cancer
type. Hence, to validate the robustness of our method, at
first, we randomly generated a series of sample subsets
with different sizes 10, 20, 50% of the total number
patients for each cancer type. Then, we applied our algo-
rithm on each subset and repeated the process 10 times.
The whole test process is similar to the Shi’s diffusion
algorithm [17]. Figure 5 shows the average precision of
ours and other five methods when selecting top 200
identified genes. Since there are limited number of



Song et al. BMC Bioinformatics (2019) 20:238

Page 14 of 17

Table 7 Cociter analysis of top 30 prostate cancer driver genes identified by our method

Genes Driver Prostate Cancer |s_driver Ours Diffusion Muf_max Muf_sum IntDriver Driver Net Dawn Rank
TP53 110 298 6772 1 1 2 108 4 3 1 1
SPOP 4 24 43 1 2 171 13 3 2 4 15
TIN 2 0 10 0 3 1713 2 2 1 25 51
FOXA1 10 69 182 1 4 10 109 17 6 5 2
MUC16 1 8 338 1 5 1712 NA NA 4 76 184
ATM 5 61 1377 1 6 17 110 18 9 Il 18
CTNNB1 44 170 2517 1 7 1 112 16 NA 2 21
OBSCN 0 0 7 0 8 1705 1 22 50 174 417
SPTA1 1 0 3 1 1702 NA NA 8 15 6
Muci7 0 0 9 0 10 1710 NA NA 16 58 4
PLCB4 3 0 4 0 1 14 NA 27 NA 13 NA
EGFR 166 144 4748 1 12 3 120 24 NA 6 NA
LRP1B 2 1 17 0 13 1681 NA 21 20 230 NA
BRCA1 22 156 4652 0 14 7 134 47 NA 7 23
FAT3 1 1 1 0 15 26 NA NA 5 35 65
PIK3CA 54 34 1199 1 16 5 NA 31 53 9 NA
KMT2C 4 2 23 0 17 887 NA NA 10 33 NA
PTEN 64 642 3047 1 18 715 1M1 25 38 147 NA
RP1 1 0 9 0 19 NA NA NA 31 NA 695
PIK3R2 2 5 25 0 20 4 NA NA NA 8 NA
UBC 2 10 134 0 21 13 28 1 NA 3 NA
BRAF 126 33 2175 1 22 245 NA 35 14 57 22
KMT2D 2 2 25 0 23 409 NA NA 13 61 NA
SMAD4 14 41 759 0 24 6 NA 135 NA 17 42
ROCK1 2 17 150 0 25 70 NA 88 NA 64 NA
HDAC3 2 11 100 0 26 46 143 147 NA 21 NA
HSPA8 1 9 96 0 27 12 114 40 NA 14 NA
GLI 9 41 403 0 28 9 NA 108 NA 41 54
APC 21 59 2016 1 29 " NA NA 183 71 NA
SP1 3 38 393 0 30 8 130 20 NA 12 NA

The first to the fourth column show the co-appeared counts of top 30 identified genes with ‘driver; ‘prostate’ and ‘cancer’ (from the left to the right). Is_driver
indicates whether the given gene is a driver gene or not. The left columns represent the rank positions of identified genes in Subdyquency, Diffusion, Muf_max,

Muf_sum, IntDriver, DriverNet and DawnRank respectively

samples that both have normal and cancer expression
profiles, we do not include the DawnRank in this test. It
can be seen that the precision values decrease signifi-
cantly when the sample size is smaller than the 50% of
total counts, while, keeping in a relatively steady status
after that. Even if the sample sizes changed, our method
is still superior other methods in breast and lung can-
cers. Our precision of prostate is similar or slightly lower
than that of the Muf sum. The precision values are
0.076, 0.092, 0.114, 0.126 for ours and 0.06, 0.095, 0.135,
0.125 for Muf sum in 10, 20, 50% and all of sample
sizes. Maybe, this is because only 236 driver genes can
be found from the NCG 4.0 and meanwhile, we chose

the top 200 candidate driver genes to evaluate. Hence,
the difference between our method and Muf_sum is not
so obviously. However, our results in prostate are still
better than other six methods.

In summary, the result shows even with a small subset
of patients, our method in general is better than other
methods. Hence, it can be said that Subdyquency is ro-
bustness enough to adjust different sample sizes.

Discussion

In this paper, we have proposed a method called Subdy-
quency to identify the cancer driver genes. We assumed
that driver genes are more likely to regulate the
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Table 8 Number of driver genes with low or high variation frequency identified by our method and six other existing methods

Top genes Ours Diffusion DriverNet Muf_max Muf_sum IntDriver DawnRank
Low Frequency Breast 50 0 1 0 0 1 0 0
100 0 2 0 0 2 0 0
150 0 2 0 0 2 0 0
200 2 2 1 0 4 0 1
Lung 50 0 0 1 0 0 0 0
100 0 3 1 0 2 0 2
150 1 3 2 2 2 0 4
200 1 4 2 7 2 0 5
Prostate 50 3 4 2 2 2 2 1
100 3 4 4 2 2 3 1
150 3 5 3 6 2 3 1
200 3 7 5 2 3 2
High Frequency Breast 50 25 11 17 13 13 13 16
100 32 26 29 20 21 20 22
150 40 33 39 26 29 26 28
200 43 41 40 27 38 31 34
Lung 50 21 15 15 9 11 8 10
100 32 22 23 12 19 16 19
150 39 26 27 12 27 20 22
200 43 35 29 12 30 29 25
Prostate 50 15 6 9 1 12 10 7
100 20 8 14 1 16 1 9
150 21 10 16 10 19 12 M
200 23 13 17 10 20 14 13

The table shows the number of driver genes identified by our method and other six methods with low variation frequency (mutated less or equal to three
samples) or high variation frequency (mutated more than three samples) for each cancer type
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downstream gene’s expression in the same compartment
and the interaction in the significance compartment is
more reliability than that in the lower importance com-
partment. Hence, the Subdyquency incorporates with
mutated genes’ own profile (variation frequency) and its
interactions with other dysregulated genes in a certain
compartment (subcellular localization). The result shows
that our model can achieve a higher performance in pre-
cision, recall and fscore aspects than other six methods.
The interesting and novel finding is that some new un-
known potential driver genes which are co-cited by
other literatures also can be found by Subdyquency.
Besides, our results enrich in some significant cancer
pathways and GO functions.

In the future, we hope to improve the performance of
our method to a higher level by filtering the variation
frequency based on the DNA length. Because the longer
the genes are, the more chance of them to be the mu-
tated genes [31]. Besides, we want to construct a new
interaction network among mutated genes involving
other cancer-related profiles such as the tissue-specific
profile. We also want to consider the heterogeneous
between different cancer types in order to deeply
improve the performance for some specific cancers.

Conclusions

In recent years, there are many methods and tools have
been proposed to identify driver genes. However, they
still have some limitations such as low precision and fail
to comprehensively consider both the biological proper-
ties and the network topological properties of driver
genes. In this study, we developed a new method by
integrating mutated genes’ own profile (variation
frequency) and its interactions with other dysregulated
genes in a certain compartment (subcellular localization)
to pinpoint the candidate driver genes. We set the
parameter a to coordinate the importance of variation
frequency and interactions. According to the AUC
values when setting a to different values, we assigned «a
with 0.5 which means the same importance between
mutated genes’ own profile and its interactions network.
We applied our method on three different cancers (lung,
prostate, breast) and compared the results with other six
existing methods (DriverNet, Diffusion, Muf max,
Muf_sum, DawnRank, IntDriver). The prediction of
known cancer genes shows our method is superior to
other six models in terms of precision, recall and fscore.
The literature mining results indicate our method can
not only prioritizes some significant driver genes but
also recognizes the rare unknown driver genes with high
co-cited counts. Furthermore, the functional enrichment
analysis shows that the driver genes identified by our
method enrich in some important functions and some
cancer related significant pathways. The analysis on
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prediction results with respect to different variation fre-
quency displays our method has capability to prioritize
driver genes regardless of it is low variation frequency
(mutated equal or less than 3 samples) or high variation
frequency (mutated more than 3 samples). Unlike previ-
ous computational based methods, our method stands at
the biological perspective to hypothesize that the driver
genes mutate in many samples and impact more down-
stream genes in the common compartment.
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