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Precision interventional brachytherapy is a radiotherapy technique that combines radiation
therapy medicine with computer network technology, physics, etc. It can solve the
limitations of conventional brachytherapy. Radioactive drugs and their carriers change
with each passing day, and major research institutions and enterprises worldwide have
conducted extensive research on them. In addition, the capabilities of interventional
robotic systems are also rapidly developing to meet clinical needs for the precise delivery
of radiopharmaceuticals in interventional radiotherapy. This study reviews the main
radiopharmaceuticals, drug carriers, dispensing and fixation technologies, and
interventional robotic precision delivery systems used in precision brachytherapy of
malignant tumors. We then discuss the current needs in the field and future
development prospects in high-precision interventional brachytherapy.
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INTRODUCTION

Malignant tumors (MT) are among the most severe diseases threatening human health conditions
in the 21st century. MT are also the focus of substantial research worldwide (1–3). The primary
treatment modalities for MT include surgical treatment, radiotherapy, chemotherapy,
immunotherapy, as well as the newly developed photothermal, photodynamic, and sound-
dynamic therapies (4–7). Of these, comprehensive surgical treatment mainly based on surgical
treatment plays a crucial role in the treatment of MT (8). However, it is often difficult, if not
impossible, to diagnose MT early. Accordingly, by the time tumors are found, patients are in the
middle and late stage of the disease, and the rate of surgical resection and radical cure is thus low (9–
11). Therefore, tools to improve the therapeutic effect of existing treatments on patients with MT is
an urgent problem to be solved and a hot research topic at the moment.

Radiotherapy is one of the three most-commonMT treatment modalities, along with surgery and
chemotherapy. It uses ionizing radiation to kill tumor cells and shrink tumors (12, 13). Versus
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surgery and chemotherapy, radiotherapy uses colorless, odorless,
invisible, and non-invasive radiation to kill tumor cells. It is
widely used in the radical curative treatment or palliative
treatment of pr imary MT and metas tat ic tumors .
Approximately 70% of patients with malignancy need radiation
therapy at various stages of their treatment, of which 70% are
radical radiotherapy. Radiotherapy accounts for about 40% of
cured malignancies (14). The goal of radiotherapy is to maximize
the radiation dose to the lesion (target) area for a long time and
kill tumor cells while preventing or protecting surrounding
normal tissues or organs from unnecessary radiation exposure,
thus providing the required special protection to some vital
organs such as the brainstem, spinal cord, kidney, gonads,
etc. (15).

Traditional radiotherapy techniques, such as Co-60
teletherapy with poor precision and limited radiotherapy
effectiveness, only achieve the primary stage of the radical
curative treatment of the tumor, and also cause temporary or
permanent damage to normal tissues and organs (16, 17).
Interventional medicine has progressed particularly rapidly and
led to the development and use of interventional radiotherapy
techniques, in which radiopharmaceuticals are directly injected
into the lesions through intubation and injection to enrich the
concentration of the drugs in the lesions. This enables precise
and targeted delivery of radiopharmaceuticals and overcomes the
deficiency of traditional Co-60 teletherapy (18–20). However,
there are still a series of problems to be solved in using
radiopharmaceuticals in interventional radiotherapies, such as
the selection of radiopharmaceuticals and their carriers, the
uniform distribution and long-term fixation. In addition,
interventional internal radiation therapy uses padding and
manual implantation of radioactive drugs by doctors with their
bare hands. This can prevent accurate calculations and
evaluation of the injection pressure. Surgeons are thus exposed
to radiation hazards. There is also an increase in patients with
radioactive leaks and absorbed dose by non-target organs when
the implantation operation time is too long and the injection
pressure is too high. In addition, most implantation of
radiopharmaceuticals is performed under computed
tomography (CT) guidance. Although CT offers high
resolution, it has problems such as being unable to be used in
real-time dynamic navigation, with repeat punctures or offer
precise delivery.

Precision interventional brachytherapy (PIBT) is a gradually
developed radiotherapy technique that combines radiotherapy
medicine with computer network technology, physics, etc. to
address the limitations of conventional internal radiotherapy
(21). For example, the most advanced radiotherapy equipment in
vascular interventional robotic surgery is accurate to millimeters
with very low side effects. This increases the accuracy of
radiotherapy and thus application in clinical practice.
Interventional doctors use catheters, guide wires, and other
interventional devices to eliminate the heavy burden of lead
protective aprons and reduce radiation exposure. Robot-assisted
percutaneous coronary intervention (PCI) surgery can reduce
radiation exposure by 97% (22). In addition, dispensing and
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fixation technologies for radiopharmaceuticals and drug carriers
and precise delivery systems are active research topics. This
paper reviews the main radiopharmaceuticals (131I, 125I, 177Lu,
etc.), drug carriers (Lipiodol, Microspheres, Hydrogels, etc.),
dispensing and fixation technologies (SHIFT, Medrad, etc.),
and interventional robotic precision delivery systems used in
malignant tumor PIBT (Figure 1). It also discusses the current
needs of the field and future development prospects.
COMMONLY USED RADIONUCLIDES

As early as 1901, Pierre and Marie Curie used small radium tubes
for the first time to treat malignant tumors marking the birth of
endoradiotherapy technology (23, 24). In 1970, Felix Mick
developed a low-energy 125I particle source containing iodine
particles encapsulated in capsules and placed in a titanium tube.
The 125I was subsequently used for endoradiotherapy of prostate,
liver, and lung cancer; its efficacy was clinically proven and
widely recognized over the following decades (25–27). Versus
conventional external radiotherapy, permanent 125I seed
implantation has its unique advantages. The first is that the
release of x-rays, g-rays, and other types of radiation is from the
inside of the tumor tissue, causing DNA damage to tumor cells
(28). As a result, the irradiation route does not need to pass
through normal tissues to reach the target area. The dose
distribution follows the inverse square law with an increase as
distance decreases. Thus, the surrounding normal tissues are well
protected, and the incidence of complications is low. Second, the
local dose is high. The intensity of the implanted radioactive
source is small, and the effective irradiation radius is short; thus,
a higher radiation dose can be applied to the tumor target
area (29).

The commonly used nuclides in nuclear medicine mainly
include 125I, 103Pd, 169Yb, 198Au, 131Cs, 137Cs, 192Ir, 60Co, etc.
(30). New nuclides such as 241Am, 152Cf, 26Ra, and 145Sm have
recently attracted considerable attention. They have been used in
clinical practice, but the most commonly used nuclides are 125I
and 103PD, which have become essential to traditional external
radiotherapy (31). The most common models of brachytherapy
source models seeds are Pharma Seed BT-125-1 or BT-125-2
(Syncor Pharmaceut ica l s Inc , Golden , CO, USA) ,
ADVANTAGE™Pd-103 IAPd-103A (IsoAid LLC, Port Richey,
FL, USA), Prospera I-125-Med363 (North American Scientific,
Inc., Chatsworth, CA, USA), Best® I-125 (Best Medical
International, Inc., Springfield, VA, USA), and Type 6711 125I
particles (HTA Co., Ltd., Beijing, China). The diameter of 125I
particles is 0.8 mm, and the length is 4.5 mm; the wall thickness
of the enveloping titanium tube is 0.05 m (the source core is j
0.5mm×3.0mm to adsorb 125I silver rod, which is suitable for
killing tumor cells with slow growth). Although radionuclide
particle therapy for tumors has high safety and achieves sound
therapeutic effects, there are still some constraints, such as
selecting radionuclide particles for the precise treatment of
tumors with different proliferation rates to obtain the
maximum killing effect. Second, there are complications and
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adverse reactions after particle implantation. Finally, there is a
need to study further the efficacy evaluation methods of particle
implantation combined with external radiotherapy.
CARRIERS OF RADIONUCLIDES FOR
INTERVENTIONAL BRACHYTHERAPY

Iodized Oil
Lipiodol is the most commonly used carrier for radionuclide
drugs because it is easy to inject and selectively deposited. For
example, 131I-labeled lipiodol has been proven to be clinically
effective and is commercially available (32). However, 131I suffers
from high-energy gamma photon emission (364 keV, 81%) (33),
and the radioactivity yield of 131I-labeled lipiodol is also poor.
Due to its suitable decay properties (T½ =6.73 days, Eb (Max)
=0.49 MeV, Eg=208 KeV [11%]), the half-life of 177Lu is
comparable to that of 131I without significant decay loss.
Frontiers in Oncology | www.frontiersin.org 3
The relatively low abundance of low-energy gamma photons
can be used for simultaneous scintillation imaging and dosimetry
studies without a significant additional dose burden to the
patient. Thus, it is a feasible substitute of 131I in lipiodol for
liver cancer radiotherapy (34, 35). However, water-soluble
nuclide particles are difficult to disperse stably in lipiodol for a
long time. For instance, Suresh et al. treated a rat orthotopic liver
tumor model with 177Lu-labeled lipophilic 8-hydroxy-quinoline
mixed with lipiodol by a traditional method. They found that it
was prone to radioactive leakage and deposited in bone tissue
(36). This limited the clinical application of lipiodol with 177Lu-
labeled. Therefore, it is an important direction and hot topic for
future research to develop efficient, simple, and stable lipiodol/
nuclide preparations and obtain stable and long-term
interventional radiotherapy.

Microspheres
Recently, some progress has been made in developing methods for
the preparation of interventional radioactive microsphere
FIGURE 1 | Schematic showing radionuclide particles, radionuclide carriers, and dispensing systems commonly used in interventional brachytherapy.
October 2021 | Volume 11 | Article 753286

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


He et al. Precision Interventional Brachytherapy
embolization materials (37). For example, Arranja et al. (38)
dispersed solid acetylacetone holmium microspheres (HO2
(Acac) 3-MS) in NaH2PO4 or NaOH solutions and incubated at
room temperature for 2 h to obtain two new inorganic
microspheres. They then exchanged them with phosphate or
hydroxyl ions through acetylacetone to obtain Ho(OH) 3-MS
and Ho(OH) 4-MS. After preparing HopO4-MS and Ho(OH)
3MS, the stable isotope 166Ho was partially converted into
radioactive 166Ho by neutron activation, and high activity
radioactive microspheres were obtained. Zielhuis et al. (39) used
elemental holmium combined with the carboxylic acid group of
alginate polymer through electrostatic action to obtain alginate
microspheres loaded with holmium. Finally, 166Ho was added into
calcium-hardened alginate microspheres to obtain microspheres
with high radiochemical stability (94% after 48 h incubation in
human serum). Ma et al. (40) performed 131I labeling using gelatin
microspheres as carriers, and through a study in a New Zealand
rabbit liver model, found that the nuclides were aggregated in the
liver in the form of microspheres after 131I-GMSS administration.
In addition, radioactivity was detected 48 days after injection of
131IGMS, and the microspheres were degraded to different extents
24, 32, and 48 days after the injection of 131I-GMSS. Although these
microspheres offer high activity and degradability, they are
primarily limited to basic research at the animal level, and few
radioactive microspheres can be applied in human clinical practice.

The most commonly used clinical radiation microspheres are
radioactive 90Y microspheres. They can be injected into tumor
lesions through digital subtraction angiography (DSA) super-
selection, and the b-rays emitted by them can be used to kill
tumors and perform endoradiotherapy (41–43). Theraspheres
and SiR-spheres are available in the market. They are safe and
efficacious for the treatment of TM. Several side effects are
associated with trans-arterial procedures (44, 45) including
dissociation of cargo and formation of ectopic embolism.
Furthermore, since 90Y only emits beta rays and cannot be
detected by single-photon emission computed tomography/
positron emission tomography (SPECT/PET) imaging, it is
difficult to obtain the drug distribution behavior in vivo by
imaging techniques. There is a blind spot of the correlation
between therapeutic effect and nuclide quantification. Thus, it is
challenging to make unified clinical recommendations. 90Y
microsphere treatment is economically expensive, and thus
widespread use of this treatment is quite limited.

Others
Other radiopharmaceutical carriers mainly include scaffolds,
hydrogels, etc., such as the intensity-modulated radiation-
acrylic repositioning stent for the treatment of head and neck
cancer reported by Lee Vsk et al. Retrospective cohort studies of
patients with maxillary sinus, nasal, or oral cancer have revealed
that acrylic repositioning stents do not alter radiotherapy
outcomes and are highly stable (46). Zhu et al. (47) developed
a biliary stent loaded with 125I radioactive particles, and used a
comparative clinical study of 23 patients to show that 125I seeds
in the biliary stent not only improved the patency of the patients’
biliary tract, but also prolonged the patients’ survival time.
Frontiers in Oncology | www.frontiersin.org 4
Hydrogels have become a hot research topic in recent years
due to their excellent biocompatibility, biodegradability, and
outstanding clinical application value (48, 49). Hydrogel
carriers have also played an essential role in the study of
cancer brachytherapy. For instance, Schaal et al. (50) used
radionuclide 131I to label a thermal micelle composed of an
elastin-like polypeptide (ELP) to form an in situ hydrogel
brachytherapy of prostate cancer. The study was performed on
a human PC-3M-Luc-C6 prostate tumor model and human
BXPC3-Luc2 pancreatic tumor model and found that the ELP
pool retained 52% and more than 70% of radioactivity for 60
days in prostate and pancreatic tumors, respectively.
Furthermore, after 72 h, there was no significant accumulation
of radioactivity in the tissue outside the target (≦0.1%ID); the
median survival time of the two groups of nude mice was
significantly extended.

Puente et al. (51) used an injectable chitosan hydrogel capable
of releasing a chemotherapy drug (temozolomide, TMZ) while
retaining a radioactive isotope preparation (iodine, 131I) as the
carrier of intracavity local radiotherapy and chemotherapy for
the intraperitoneal therapy of brain gliomas. Some studies have
shown that injectable chemical-radio-hydrogel implants can
potentially improve local control and overall prognosis of
invasive, poor-prognosis brain tumors. Although some studies
suggest that hydrogels have many advantages, they are still
limited to basic research at the animal level. These materials
have not been clinically translated due to defects in drug delivery
and biological behavior.
RADIOPHARMACEUTICAL DISPENSING
AND FIXATION TECHNOLOGY

The precise implementation of interventional brachytherapy is a
significant clinical problem. The community needs to improve
the dispensing efficiency and drug stability while also reducing
the radiation injury to medical staff. This is an inevitable trend
for nuclear medicine: Replacing manual operation with
intelligent equipment (52, 53). The central dispensing systems
are UG-05 (Japan), Medrad (United States), IRIS (Italy).
However, such equipment has a single type of dispensing and
is expensive.

Zhang et al. successfully developed a PET molecular imaging
probe microfluidic modular integrated synthesis system for the
above problems. The system uses a modular microfluidic chip
strategy to synthesize different positron emission tomography
(PET) molecular image probes on an instrument and achieve the
chemical purity and radioactive chemical purity of online
controller drugs (54). The precision instrument equipment not
only dramatically expands individualization and increases the
accuracy of medical PET clinical applications, but also plays a
vital role in the research and development of related nuclear drugs
and radiation protection applications. However, this equipment is
not suitable for stable mixing of radiopharmaceuticals and
interventional embolic agents (such as lipiodol) commonly used
in the clinic. Given this, Liu ‘s team (55, 56) from Xiamen
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University developed a green, chemically free, super-stable
homogeneous lipiodol formulation technology (SHIFT)
(Figure 2). This technology makes the reactor reach the state of
supercritical fluid by adjusting the temperature and pressure in
the reactor. One can then adjust the physical parameters such as
temperature and pressure to adjust the intermolecular force of the
drug. This technology not only improves the solubility of drug
molecules in lipiodol, but also achieves a homogeneous and stable
state for several months to offer long-term fixation of radioactive
drugs and interventional embolization agents.
PRECISION DELIVERY SYSTEM OF
INTERVENTIONAL SURGERY ROBOTS

Interventional radiation therapy could be completed by an
intelligent operating system. In fact, the manual operation
based on experience is expected to be replaced by artificial
intelligence. In order to solve the fundamental problems facing
interventional radiation therapy such as intelligent precise
delivery, current research mainly focuses on operator design
choices, forced sensing information feedback, master-slave
control methods, artificial intelligence algorithms, and the
application of medical image analysis. Precision interventional
robotic systems mainly include vascular interventional robot
systems and particle-implantation robotic systems.
Frontiers in Oncology | www.frontiersin.org 5
Vascular Interventional Robotic System
The Hansen Sensei® robotic system for percutaneous coronary
intervention and percutaneous radiofrequency ablation was
launched by Hansen Medical Inc. (Mountain View, CA, USA). It
facilitates the entry and exit of the electrode conduit through the
contact rolling of the friction wheel. It offers a circumferential rotation
of the front end of the conduit by rotating the clamping device at the
end of the conduit (57). For peripheral vascular interventional (PVI),
a guidewire and a catheter should be used for drug injection. To
address this, Hansen Medical Inc. updated its Magellan® robotic
system by adding a set of friction band components in contact with
each other. They use relative friction and rolling to achieve feed
rotation of the guidewire. Versus the Artisan catheter, the Magellan
system is an intelligent catheter that is more refined in diameter and
has better angulation with tip force feedback. The major problem
with this system is that the operation requires the use of a specific
catheter, and the cost of a single operation is high (58).

The CorPath® GRX robot launched by Corindus Vascular
Robotics Inc. (Waltham, MA, USA) is currently the only robot
platform globally that can be used for PCI and PVI treatment at the
same time. This robotic system manipulates the guidewire to
complete the rotation and twist action of the feed by rolling and
rotating the holding chamber through multiple sets of friction
wheels. It then performs the rotation and feeds the guidewire
through a gear transmission mechanism with position movement
controlled by the manipulator’s arm. However, the current
FIGURE 2 | Schematic illustration of super-stable homogeneous lipiodol formulation technology (SHIFT) as a revolutionary strategy for transhepatic arterial
chemotherapy and embolization (TACE). The clinic drugs and lipiodol are introduced to develop formulations with SHIFT at a controlled temperature and pressure
overcoming current challenges in the hepatocellular carcinoma (HCC) treatment with TACE. (Reprinted with permission from Liu et al. (56). Copyright Elsevier B.V).
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CorPath® system still lacks the main end control mode. It can only
facilitate the remote end speed of the guidewire tube delivery
through the handle (22, 59).

In 2019, the French company Robocath SAS(Rouen France)
launched the R-One® robotic system for remote cardiovascular
interventional therapy. The system can be used for remote
delivery of coronary stents in PCI procedures. The robot is
designed with a hinged open-close holding pod similar to that
of CorPath®. However, its main-end controller can only control
the execution end speed and lacks force feedback design (60).

Yang et al. conducted in-depth research on artificial intelligence.
Rafi-Tari found potential operation skills of interventional surgery
through an artificial intelligence framework that made the operation
of the surgical robot smoother and more stable. They eventually
completed the surgical task in an experiment (61, 62). Chi et al.
proposed using artificial intelligence to enable the interventional
surgery robot to learn from the demonstration of the operation by
experts to complete the operation independently or explore
autonomously within the vascular model to try to accomplish the
surgical goals. The experimental results showed that artificial
intelligence could achieve this goal and a more accurate and
smoother operation process than manual operation (63–66).

Particle Implantation Robot System
The Elekta-Nucletron FIRST system from Elekta-Nucletron AB
(Stockholm, Sweden) includes an integrated real-time particle
therapy system (FIRST™) with robot-assisted needle recovery
and particle pushing devices. The system includes a computer-
controlled three-dimensional (3D) transrectal ultrasound
system, an integrated puncture and particle delivery device,
and an integrated treatment planning system. The surgical
robot was certified by the US FDA and Health Canada in 2001
and by the European Community (EC or CE) in 2002 for use
only in treating prostate cancer with particle implantation (67).

The MIRA-V system (68, 69) was developed at the University of
Western Ontario, Canada and is an ultrasound-guided minimally
invasive robot-assisted particle implantation system for the lung.
The robot carries lung dose planning software upgraded from the
Prostate Particle Implantation Planning System to improve the
accuracy of the execution plan (70). It also has an optical camera
and a 5DOF electromagnetic tracer sensor that can monitor the
position of the puncture needle tip. However, the system is still in
the laboratory stage and has not been reported in clinical
application. Recently, a multi-organ particle implantation surgical
robot (Para-Brachyrob system) was developed by the Research
Center for Industrial Robots Simulation and Testing (CESTER),
Technical University of Cluj-Napoca (Cluj-Napoca, Romania) for
high-dose-rate brachytherapy (71). It is still in the experimental
stage and has not yet received US FDA or CE approval.
DISCUSSION

To summarize, research on precision interventional
brachytherapy of malignant tumors has led to significant
Frontiers in Oncology | www.frontiersin.org 6
advances in the types, functions, choices, and quality of
radionuclides and their carriers in radiotherapy. However,
most nuclides and carriers with excellent performance are still
in the basic research and animal study stage. Future efforts
include optimizing the performance of existing nuclides and
carriers, stabilizing the nuclides in the lesion area for a long time,
improving the efficiency and safety of their use, and
clinical applications.

In addition, as the key to the accurate delivery of
interventional radiotherapy for malignant tumors, the
interventional surgical robot has initially achieved image
guidance at the technical level and realized preoperative
planning, puncture, and drug configuration automatically or
semi-automatically. However, clinical applications, to date,
have been limited: (1) Indications are narrow. Most
interventional surgical robots operate on patients with specific
tumors, and surgical robots involving other malignant tumors
are still in the laboratory stage. (2) The image guidance system is
single-mode. Existing equipment mainly uses ultrasound,
computed tomography (CT), or magnetic resonance (MR)
imaging to guide implantation. There is no surgical robot with
a multi-mode imaging system to guide the implantation process;
thus, it is impossible to map the radiopharmaceutical
distribution and pressure-gated feedback in real-time
accurately. (3) The robotic system is not intelligent enough. It
has not achieved the master-slave robot macro/micro composite
drive or an operating system with multi-channel control
feedbacks such as vision, force, and touch (haptics).
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