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There exist many acoustic parameters employed for pathological assessment tasks,
which have served as tools for clinicians to distinguish between normophonic and patho-
logical voices. However, many of these parameters require an appropriate tuning in order
to maximize its efficiency. In this work, a group of new and already proposed modulation
spectrum (MS) metrics are optimized considering different time and frequency ranges
pursuing the maximization of efficiency for the detection of pathological voices. The
optimization of the metrics is performed simultaneously in two different voice databases
in order to identify what tuning ranges produce a better generalization. The experiments
were cross-validated so as to ensure the validity of the results. A third database is
used to test the optimized metrics. In spite of some differences, results indicate that
the behavior of the metrics in the optimization process follows similar tendencies for the
tuning databases, confirming the generalization capabilities of the proposed MS metrics.
In addition, the tuning process reveals which bands of the modulation spectra have
relevant information for each metric, which has a physical interpretation respecting the
phonatory system. Efficiency values up to 90.6% are obtained in one tuning database,
while in the other, the maximum efficiency reaches 71.1%. Obtained results also evidence
a separability between normophonic and pathological states using the proposed metrics,
which can be exploited for voice pathology detection or assessment.

Keywords: modulation spectrum, speech, dysphonia, cross-validation, EER

1. INTRODUCTION

Speech not only conveys linguistic but also a large amount of information about the speaker, such as
sex, age, regional origin, health, etc. (Benzeghiba et al., 2007). This fact has motivated the design of
automatic systems exploiting the traits embedded in speech, such as those that perform an automatic
analysis of the patients’ vocal conditions. In this respect, the evaluation of voice quality is typically
addressed by means of two different procedures: a subjective perceptual evaluation of the patient’s
voice, where a score is assigned according to the judgment given by a listener; or by following an
objective approach based on acoustic analysis quantifying certain aspects of the vocal acoustic signal
(Barsties and De Bodt, 2014). Despite the popularity of the perceptual analysis, the objectivity as
well as the non-invasiveness, cost efficiency, and easiness of use of the acoustical analysis make this
approach more desirable in clinical scenarios. Moreover, the subjectivity of the perceptual analysis
enhances the need of automatic systems to detect pathological voices or objective parameters to
assess voice quality. In this study, several detectors of pathological voices are deployed using only
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one parameter each, extracted from Modulation Spectrum (MS).
The main purpose is to tune a group of MS-based metrics to
optimize their individual use in the pathological voice detection.
The automatic detection is carried out using a simple Equal Error
Rate (EER) scheme because the automatic detection itself is not
an objective but a mean to optimize correctly the use of these
proposed parameters. After the tuning, these parameters can be
used in the future in a clinical study to assess their convenience
for clinical use or as an ensemble of features for an automatic
detector of pathological voices. Therefore, the use of acoustic
analysis can provide objectivity to the voice assessment regarding
perceptual analysis avoiding the subjectivity problems derived
from the expertise of the rater or other cultural and physical facts
(Bele, 2005).

Generally, perceptual and acoustic analyses are performed on
sustained vowels rather than continuous speech, mainly because
this acoustic material is expected to generate a simpler acoustic
structure that might lead to consistent and reliable perceptual
judgments of voice quality (Parsa and Jamieson, 2001). How-
ever, analysis of sustained vowels alone may not capture all
salient characteristics of a patient’s voice, and therefore, it has
been suggested to conduct perceptual and acoustic analyses on
both sustained vowels and connected speech (Awan et al., 2010).
Notwithstanding, several systems have performed successfully in
automatic voice pathology detection (Boyanov and Hadjitodorov,
1997; Parsa and Jamieson, 2001; Godino-Llorente et al., 2006a;
Saenz Lechon et al., 2006; Arias-Londoño et al., 2011b) or in
evaluation of voice quality (Linder et al., 2008; Godino-Llorente
et al., 2010) using sustained vowels solely.

There exist in literature many indices assessing voice pertur-
bations, which might be classified according to the nature of
the processing in the signal. Some of them characterize ampli-
tude perturbations of the speech, such as shimmer, Amplitude
Tremor Intensity Index (ATRI), Relative Average Perturbation
(RAP), etc. Others characterize frequency perturbations of the
signal with indices, such as jitter, Pitch Perturbation Quotient
(PPQ), smoothed Pitch Perturbation Quotient (sPPQ), or Fre-
quency Tremor Intensity Index (FTRI) among others. Similarly,
other indices such as Harmonics to Noise ratio (HNR) or Glottal-
to-Noise Excitation ratio (GNE) analyze the noise contained in
the signal or consider the underlying non-linearity of the speech,
such as entropy. An extended classification of parameters can be
found in Moro-Velázquez et al. (2015). Although some of the
indices described in literature have provided success in evaluat-
ing vocal quality, the suitability of many of them has not been
studied deeply. Indeed, in some cases such as in the use of Mel-
Frequency Cepstral Coefficients (MFCCs) (Rabiner and Juang,
1993), they have been considered due to their success in other
speech applications but have been roughly translated to the voice
assessment task. This approachmight not be themost effective one
in terms of performance since a proper tuning of the parameters
describing the index can be decisive when facing situations, such
as pathology detection or voice quality assessment. Some of the
studies have demonstrated the usefulness of the tuning process to
select optimal margins of work in voice pathology screening. In
Godino-Llorente (2010), authors study the effect of varying the
bandwidth of the Hilbert envelopes and the frequency shift on the

computation of GNE (Michaelis et al., 1997) for the classification
between normal and pathological voices using the a corpus of
226 voices from the MEEI database (Massachusetts Eye and Ear
Infirmary, 1994).

In the last decade, some studies have used new types of param-
eterization based on measurements on MS. MS provides a visual
representation of sound energy in acoustic and modulation fre-
quency axes (Atlas and Shamma, 2003; Singh and Theunissen,
2003) supplying information about perturbations related with
modulation of the frequencies present in the voice signal. Numer-
ous acoustic applications use these spectra to extract features from
which some examples can be found in Chu et al. (2011), Lim
et al. (2011), Fan et al. (2012) and Bozkurt et al. (2014). Although
there are few publications centered in the characterization of
dysphonic voices using this technique from which Markaki and
Stylianou (2009, 2011), Arias-Londoño et al. (2011a), Carbonell
et al. (2015), Chittora et al. (2015), and Mekyska et al. (2015) are
some examples, it can be stated that MS has not been studied
deeply in the field of the detection of voice disorders and inmost of
the cases, the studies do not provide well defined parameters with
a clear physical interpretation but transformations of MS, which
are not easily interpretable, limiting their application in the clinical
practice.

A subset of the MS metrics described on this paper were
proposed by Moro-Velázquez et al. (2015) for the automatic
assessment of Grade and Roughness following the GRBAS scale
(Hirano, 1981). In spite of their good results, the study does
not ensure if the metrics can be tuned using different frequency
margins to optimize results. In this study, a tuning procedure for
several of these MS metrics or parameters is performed taking
into account different setups. These parameters are Modulation
Spectrum Homogeneity (MSH), Cumulative Intersection Level
(CIL), Ratio of points Above Linear Average (RALA), and Mod-
ulation Spectrum Percentiles (MSP). In addition and in order
to ensure a robust procedure, the metrics are optimized using
two different databases, selecting the setup producing the more
generalist performance. Finally, the third database is used to test
the optimized metrics using a Gaussian Mixture Model (GMM)
machine learning scheme.

Therefore, the present paper proposes to select the optimal
frequencymargins and window size among others in order to find
the best parameterization ranges for discriminating disordered
from normophonic voices when using a set of MS parameters.
For the decision-making process, the efficiency of a classification
system based on EER operating point is employed to assess the
performance of each one of the tested MS metrics. Experiments
are accomplished in two distinct pathological voice databases to
study the reliability of the tuning process in an inter-database
scenario. Thus, the ranges that exhibit a similar behavior in both
tuning databases and good performance will be selected as recom-
mended for parameterization. The resulting metrics can be used
separately in a clinical scenario to assess the quality of voice or in
an automatic detector or pathological voices. In the first case, a
clinical study is needed to validate the correct use of the param-
eters. In the second case, a study of the different classification
strategiesmust be achieved. These two cases are out of the scope of
this paper and must be taken into account for future work, but as
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an example, the third database is used to test the ensemble of the
optimized metrics in a GMM scheme for the detection of normal
and pathological voices.

This paper is organized as follows: section 2 develops the theo-
retical background referred to MS; section 3 explains the experi-
mental setup in which methodology and databases are detailed;
section 4 includes all the figures and tables of results. Lastly,
section 5 expounds the conclusions and future work.

2. THEORETICAL BACKGROUND

2.1. Modulation Spectrum
MS provides information about the energy at modulation fre-
quencies that can be found in the carriers of a signal. It is a
three-dimensional representation where abscissa usually repre-
sents modulation frequency and ordinate axis depicts acoustic
frequency, applicate, and acoustic energy. This kind of represen-
tation allows the observation of different voice features simul-
taneously, such as the harmonic nature of the signal and the
modulations present at fundamental frequency and its harmonics.

To obtain MS, the signal is filtered using a short-Time Fourier
Transform (sTFT) filter bank whose output is used to detect
amplitude and envelope. This outcome is finally analyzed using
FFT (Schimmel et al., 2007), producing a matrix E where MS
values at any point can be represented as E( fa, fm). The columns
at E (fixed fm) are modulation frequency bands and rows (fixed
fa) are acoustic frequency bands. Therefore, a can be interpreted
as the number of the acoustic band and m, the number of the
modulation band, while fa and fm are the central frequencies of
the respective bands. Due to the fact that values E( fa, fm) have real
and imaginary parts, the modulus of the spectrum is represented
as |E|. Throughout this work, the MS has been calculated using
the modulation toolbox library ver 2.1 (Atlas et al., 2010). Some
different configurations can be used to obtain E, where the most
significant degrees of freedom are the use of coherent or non-
coherent modulation (Schimmel and Atlas, 2005), the number
of acoustic and modulation bands, and acoustic and modulation
frequency ranges.

Figure 1 illustrates an example ofMS inwhich a sinusoidal tone
is presented with and without amplitude modulation at 50Hz. In
the first image (Figure 1A), the tone is represented by a point
at 1000Hz in the acoustic frequency axis and at 0Hz in the
modulation frequency axis. In the second image (Figure 1B), the
same tone is represented but including amplitude modulation
at 50Hz. In this case, two points emerge at 50 and −50Hz in
modulation frequency axis, while the central point remains but
with lower level. Likewise, Figure 2 presents the MS of a normal
voice (Figure 2A) and a pathological voice (Figure 2B). The
harmonic character of the normal voice is easily observable unlike
the pathological one. Moreover, in Figure 2A, most of the energy
is located around the 0Hz modulation band and in Figure 2B,
there is more dispersion of energy.

One of the principal drawbacks of MS is that it provides a large
amount of information, which has to be processed to obtain a
more compact but precise enough representation of the speech
segments. Thus, after obtaining the MS, some representative
parameters are extracted to characterize voice quality. Some of the
proposed metrics are described in Moro-Velázquez et al. (2015),
such as the dispersion metrics (CIL and RALA) and modulus
homogeneity (MSH). A new set of metrics is introduced, the MS
percentiles which are used only at the present study and whose
performance is compared with the former. All of thesemetrics use
the MS modulus as input source and are briefly described next.

2.1.1. Modulation Spectrum Homogeneity (MSH)
RepresentingMSmodulus as two-dimensional images let observe
that pathological voices usually have more complex distributions.
Images related to normal voices are frequentlymore homogeneous
and present less contrast. Accordingly, MS modulus homogeneity
is used as a measurement of the existence of voice perturbations.

Homogeneity is computed using a variation of the Bhanu
method described by Equation (1), as stated in Peters and Strick-
land (1990) utilizing N×N regions instead of 3× 3 regions as
proposed by Peters.

MSH =
∑
a

∑
m

[E( fa, fm)− E( fa, fm)N×N], (1)

Modula�on Spectrum

A
co

u
s�

c 
F

re
q

u
e

n
cy

 (
H

Z
)

Modula�on frequency (HZ)

A
co

u
s�

c 
F

re
q

u
e

n
cy

 (
H

Z
)

Modula�on frequency (HZ)

Modula�on Spectrum

Le
v
e

l(d
B

)

A B

FIGURE 1 | MS modulus of 1 kHz sinusoidal tone (A) and 1kHz tone with 50Hz amplitude modulation (B).
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beingMSH the MS Homogeneity value; E(fa, fm) the modulation
spectra computation (modulus or phase) at point (fa, fm); and
E( fa, fm)N×N the average value in aN ×N window centered at the
same point.

2.1.2. Cumulative Intersection Point (CIL) and Rate of
Points above Linear Average (RALA)
As MS differs from normal to pathological voices, changes in the
histograms of MS modulus reflect the effects of a dysfunction in
a patient’s voice. A quick empirical overview of the MS permits to
observe that pathological voices usually have a larger number of
points with levels above the average value of |E|. The appearance
of these points can be interpreted as the dispersion of the energy
present in the central modulation band (0Hz) toward side bands
compared to the case of a normal voice.

With this in mind, two metrics are proposed to measure such
dispersion effect: Cumulative Intersection Level (CIL) and Ratio
of Points Above Linear Average (RALA). CIL is the intersec-
tion between the histogram increasing and decreasing cumulative
curves and matches the median. Histogram is processed fromMS
modulus in logarithmic units (dB). As shown in Figure 3, the
CIL of the average cumulative curves of pathological voices on
MEEI database is 7 dB higher than CIL of normal voices. On the

other hand, RALA is the number of points in MSmodulus, which
are above average (linear units) divided by the number of points
which are below this average.

RALA =
NA
NB (2)

being

NA =
∑
fa

∑
fm

γ( fa, fm) (3)

NB =
∑
fa

∑
fm

1− γ( fa, fm) (4)

and

γ( fa, fm) =
{
1 |E( fa, fm)| ≥ |E|
0 |E( fa, fm)| < |E|

(5)

where |E| is the MS modulus average, NA the number of points
above |E|, NB the number of points below |E|, and NT the total
number of points in E( fm, fa).

Figure 4 represents these points in a healthy and a pathological
voice. It is noticeable that, as expected, theMS of dysphonic voices
present more points above the modulus average.
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FIGURE 2 | MS modulus of a normal voice (A) and a pathological voice (B) with chronic hyperplastic laryngitis.
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FIGURE 3 | Average cumulative curves for normal and pathological voices in MEEI subset.
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2.1.3. Modulation Spectrum Percentile (MSP)
Taking into consideration MS modulus, 25, 75, and 95% per-
centiles are proposed as parameters. These statistical measure-
ments, called MSP25, MSP75, and MSP95, respectively, point out
the presence of energy on MS at different level ranges and serve
as indicators of the level distribution at low, mid-low, and high
relative level ranges given that all the signals into the database
used to calculate these values are normalized. MSP95 indicates
the value under which the lower level values are. MSP75 indicates
the value in which the mid-low levels are around and MSP25 is
referred to the mid-high levels. The higher the number of points
of high levels in MS, the higher the MSP25 value. The higher the
number of points of low levels, the lower the MSP95 value. By the
way of illustration, with these metrics it is possible to compare
if a voice has more high level or low level points at a particular
modulation frequency range than other.

3. EXPERIMENTAL SETUP

3.1. Databases
In this study, two widely used voice disorders databases are used
to tune the proposed metrics, the MEEI database (Massachusetts
Eye and Ear Infirmary, 1994) and the PdA database (Godino-
Llorente et al., 2008). The purpose of using two databases is to

perform a robust tuning and a comparison between the adjusting
processes to ensure that the results are database-independent.
Thus, the selection of the different frequency ranges and setups
is performed in a more generalist manner. The third database, the
HGM database, is utilized to test the optimized metrics using an
advanced machine learning technique.

3.1.1. MEEI Database
The MEEI voice database is used in this study. From the original
710 recordings of English speakers, a corpus of 226 including the
sustained vowel /ah:/ is selected according to the criteria found in
(Parsa and Jamieson, 2000). All the used files have been resampled
to 25 kHz and 16 bits. Recordings of normal voices (53 files) have
an average duration of 3 s, while pathological voices recordings
(173 files) have an average duration of 1 s. The pathological voices
include a variety of voice affections including organic, neuro-
logical, and traumatic etiologies. In Table 1, statistics from this
database are depicted. This database has several drawbacks as it
has been highlighted in Saenz Lechon et al. (2006), and its use
could be controversial for obtaining absolute performance values
in normal vs. pathological classification tasks. Its utilization in this
study is aimed to validate the behavior of a tuning process with
the PdA database and to serve as a comparison dataset for other
studies due to its commercial availability.
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FIGURE 4 | Points above (black) and below (white) modulus average in MS for a normal voice (A) RALA=0.12 and a pathological voice due to bilateral
laryngeal tuberculosis (B) RALA=0.27.

TABLE 1 | Databases statistics.

Database Amount Average age Age range SD

Men Women Men Women Men Women Men Women

MEEI Normal 21 32 38.8 34.2 26–59 22–52 8.5 7.9
Pathological 70 103 41.7 37.6 26–58 21–51 9.4 8.2

PdA Normal 85 112 28.7 31.0 18–64 13–66 12.9 13.1
Pathological 61 114 44.7 34.8 19–68 16–65 11.7 12.4

HGM Normal 41 54 37.6 40.0 17–78 19–85 15.4 16.0
Pathological 32 78 49.1 47.2 26–80 18–81 15.6 16.2
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3.1.2. PdA Database
The PdA voice database is made up of Spanish speakers. An
amount 372 voice recordings of the sustained vowel /ah:/ at 25 kHz
and 16 bits are extracted from PdA database, excluding those
recordings with high background noise or undetermined phona-
tions. In Table 1, statistics from this database are depicted. The
average duration of both pathological (175 files) and normal (197
files) voice recordings is 3 s. Fifteen pathologies are present in this
database, mainly due to organic and traumatic etiologies.

3.1.3. HGM Database
This third database is included to test the ensemble of all the met-
rics in a more complex machine learning scheme. The database
was recorded in the hospital Gregorio Marañón of Madrid,
and it includes voices of 107 patients and 95 control subjects.
Although the database contains several types of recordings, for
this study, only the sustained vowel /ah:/ has been selected, at
sampling frequency of 22.05 kHz. In Table 1, statistics of age and
sex are shown. The average duration of both pathological and
normal voice recordings is 5 s. The voices were recorded using
the microphone AKG C520 and the acquisition system Medivoz
(Godino-Llorente et al., 2006b). HGM database includes 28 dif-
ferent causes of pathology including sulcus, edema, polyps, and
paralysis among others. All the subjects recorded were assessed by
a clinician previously, and inmost of the cases, a laryngoscopy was
performed.

3.2. Methodology
The main objective of this study is to select the most appropriate
configuration to calculate a group of MS metrics for the detection
of healthy vs pathological voices. The basic MS configuration
corresponds to 1024 modulation bands, 128 acoustic bands, and
Hilbert envelope in demodulation. Six measurements are accom-
plished in these spectra, MSH, CIL, RALA, MSP25, MSP75, and
MSP95. The purpose is to identify the parameterization ranges by
varying the different degrees of freedom that provides the best
performance for pathology detection measured in terms of effi-
ciency. Results are achieved using the described corpuses, MEEI
and PdA separately in a k-folds validation technique, being k equal
to 7. All the recordings from the three databases are conveniently
normalized.

In the procedure, each metric is studied and tuned separately
calculating its EER point for each group of training folds. This
point is used to classify the sequences in the test fold between
normal and pathological, and this performance is used to calculate
the efficiency. This simple classification method has been chosen
with the aim of observing the separability of normal and patholog-
ical voices for all the metrics. Taking into consideration that every
single voice record is segmented in frames, all the frames coming
from a certain speaker will be assigned to the same fold.

Themain variables or degrees of freedomaffecting the results of
efficiency are frame length, mask size (N×N), upper modulation
frequency limit, and acoustic frequencymargins. Thus, four stages
are defined at which one variable is varied into a range of values,
while the rest of variables remain fixed. At every stage, both
corpuses are parameterized several times taking into account the

ranges of values and these producing the best efficiency are fixed
for the next stage.

In the first stage, the frame length is varied in the range of
20–200ms t 20ms steps, while the other degrees of freedom
remain fixed. Once the best frame length is identified, the size
of the mask N ×N is varied on a second stage, only affecting to
MSH.After the selection of themore appropriateN, the third stage
is defined in which the upper limit of modulation frequency is
varied in the range of 20–220Hz at 20Hz steps to determine the
importance of this bandwidth for the different metrics. Finally,
a last stage is performed in which the three first variables are
fixed with the selected values obtained in the previous stages. In
that last phase, the influence of the acoustic frequency margins
in efficiency is studied. The lower limit varies from 0 to 1000Hz
at 100Hz steps and the upper between 1.2 and 12 kHz in 300Hz
steps at low frequencies and larger steps (from 1 to 3 kHz) at
high frequencies. After efficiency calculation, optimal acoustic
frequency ranges are obtained for each metric.

Lastly, the HGM database is parameterized two times to obtain
the MS metrics. The first parameterization is accomplished using
no restrictions, without following the optimization ranges and
only in one frame length. The second one is accomplished using
the ranges selected after the optimization process. The objective of
these parameterizations is to observe the differences in efficiency
using the selected ranges obtained after the optimization process
respecting to the full range case when using the MS metrics as
an ensemble in a GMM classifier. In order to obtain validated
results, a k-folds scheme is utilized, where k is equal to 7. GMM
tests are performed varying the number of Gaussians in the range
of 4–64.

4. RESULTS

In the first stage of tests in which frame length is varied, best
results are obtained using 180–200ms frames. All the tested met-
rics present their maximum efficiency in these frame lengths as
it is deduced from Figure 5. Since the usage of 180 or 200ms
frames does not lead to absolute improvements over±1%depend-
ing on the metric, 180ms is selected as the basic frame length
for the remaining tests in order to use a higher quantity of
frames, and the shorter the frame, the better the assumption of
stationarity.

The influence of the mask size used to calculate MSH on
efficiency is depicted in Figure 6. Best results are always obtained
for even N. For even values larger than 6, results are quite similar,
with an absolute variation of efficiency lower than ±1% in both
tuning databases. Therefore, 6× 6 is selected as the size of the
mask used to calculate MSH.

Hence, using 180ms as frame length for all metrics and 6× 6
masks (only applicable to MSH), a new round of efficiency cal-
culations is accomplished. In this case, the upper limit of the
modulation frequency is varied in the range 20–220Hzwith 20Hz
steps. Results are depicted in Figure 7. For MSH and MSP75,
higher efficiency is obtained in the range of 50–100Hz. In the
case of CIL, this range goes from 120 to 160Hz. RALA produces
the best results over 80Hz and MSP95 over 120Hz. In the case of
MSP25, best results are obtained employing 20Hz as upper limit
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FIGURE 5 | Influence of frame length on efficiency for MEEI (continuous) and PdA (dashed) databases.
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FIGURE 6 | Influence of the size of MSH mask on efficiency for MEEI
(continuous) and PdA (dashed) databases.

on modulation frequency axis. Thus, in the next stage, all tests are
performed using 20, 80, 120, 140, and 200Hz as upper limits of
modulation frequency in MS for all parameters.

Taking into account the results obtained in the previous stage,
a new round of parameterizations is performed to calculate the
variation of efficiency with lower and upper limits of acoustic
frequency. Results are illustrated in Figure 8.

In Table 2, the ranges providing best results for each tuning
database are displayed. As in all of the cases, the acoustic mar-
gins providing the best results overlap but do not match totally
considering one tuning database with respect to the other. Thus,
the acoustic margins are selected whose obtained results are rea-
sonably good and are supposed to generalize in a better manner.
These definitive acoustic ranges are included in Table 3.

In Table 4, test results on HGM database are depicted. All
calculations are made in 180ms frames using a combination of
the proposedmetrics and a GMMclassifier. In the optimized case,
only the selected ranges proposed in Table 3 are used, while in the
full range case, no restrictions are taken into consideration. Best
results are obtained using the optimized metrics.

The boxplots for these parameterizations are represented in
Figure 9 for MEEI database and Figure 10 for PdA database.

Additionally, mutual information (Cover and Thomas, 2012)
and Pearson’s correlation between all metrics have been calcu-
lated in order to analyze the relationship between them. Tables 5
and 6 incorporate the matrices of the relative mutual informa-
tion for the selected ranges for MEEI and PdA, respectively.
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FIGURE 7 | Influence of high modulation frequency boundary on efficiency for MEEI (continuous) and PdA (dashed) databases.

Tables 7 and 8 show the cross-correlationmatrices for the selected
ranges in MEEI and PdA databases, respectively. P values are
always under 0.005.

5. CONCLUSION AND DISCUSSION

In this study, a tuning of six MS-based metrics is presented.
Threemetrics were introduced previously by the authors inMoro-
Velázquez et al. (2015), while the remaining three are presented in
the present paper, namely MSP25, MSP75, and MSP95. Concern-
ing to the tuning process, frame length, mask size, modulation,
and acoustic frequency ranges are varied to obtain maximum
efficiency in the case of normal vs pathological detection using
each parameter separately. Two tuning databases are used inde-
pendently to first verify that the obtained results are validated and
second to select variable values, which would produce a better
generalization to detect pathological voices. Additional, the third
database is used to test the optimized metrics in a GMMmachine
learning scheme.

Best results using the selected ranges are obtained with MSP25
in MEEI database in which 90.6% of efficiency is achieved and
with RALA in PdA database, providing an efficiency of 71.1%.
RALA seems to be themetric with better generalization in pathol-
ogy detection, but it is important to notice that to find the best
parameter is not the objective of this study but to optimize all

of them. As each metric measures a different feature of MS, a
combination of them should be used for classification purposes. It
is difficult to claim what percentage of efficiency is the minimum
required to use the parameters in a clinical stage. For instance,
many controlled studies and tests made in laboratories obtained
efficiencies close to 100% in speech recognition during the last
decade, but that does not mean that the real-world automatic
speech-recognition systems are infallible. The voice pathology
detection case is quite similar. In order to validate a parameter for
clinical use, a clinical study must be performed after the labora-
tory tests. The inclusion of new parameters in acoustic analysis
software such as Praat (Boersma and Weenink, 2001), WPCVox,
and MDVP (Godino-Llorente et al., 2008) facilitate the use of the
new contributions and its integration in new clinical studies.

Regarding the first stage of the methodology, it can be deduced
from Figure 5 that the tendencies in both tuning databases are
quite similar in frame lengths larger than 80ms. This means that
for both databases, the performance increases as frame length
increases and finally settles at 180ms. This can be substantiated
in the fact that most of the relevant information of MS is located
at low modulation frequencies as it can be deduced from the
third stage whose results are depicted in Figure 7. In all met-
rics but MSP25, performance decreases considerably if the upper
limit of modulation frequency axis is restricted below 80Hz. In
these cases, poor results are obtained when the limit is 20Hz.
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FIGURE 8 | Influence of acoustic frequency boundaries on efficiency in MEEI (left) and PdA (right) databases. (A) MSH, (B) CIL, (C) RALA, (D) MSP25,
(E) MSP75, and (F) MSP95.
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TABLE 2 | Best efficiency results after tuning.

MS metric Database Mod. freq. up.
limit (Hz)

Acoustic
range (Hz)

SD
(%)

Best
efficiency
result (%)

MSH MEEI 80 300–1500 ±4.1 91.1
PdA 400–6000 ±7.1 66.7

CIL MEEI 80 0–1800 ±2.9 89.8
PdA 0–3000 ±5.4 63.9

RALA MEEI 200 800–2500 ±4.9 88.2
PdA 800–6000 ±8.2 71.1

MSP25 MEEI 80 0–1800 ±4.1 90.6
PdA 0–1800 ±4.1 64.0

MSP75 MEEI 200 0–1800 ±3.2 89.4
PdA 0–3000 ±6.5 63.8

MSP95 MEEI 200 0–2000 ±4.0 80.9
PdA 0–9000 ±9.2 62.8

TABLE 3 | Efficiency results for the selected acoustic ranges.

MS metric Database Mod. freq. up.
limit (Hz)

Acoustic
range (Hz)

SD
(%)

Efficiency
result (%)

MSH MEEI 80 200–9000 ±5.6 86.7
PdA ±7.1 66.7

CIL MEEI 80 0–2000 ±4.0 89.3
PdA ±4.0 63.5

RALA MEEI 200 800–6000 ±6.3 84.9
PdA ±8.2 71.1

MSP25 MEEI 80 0–1800 ±4.1 90.6
PdA ±4.1 64.0

MSP75 MEEI 200 0–2000 ±3.9 88.7
PdA ±4.7 62.4

MSP95 MEEI 200 0–9000 ±5.2 79.1
PdA ±9.2 62.8

TABLE 4 | Efficiency results in HGM database using a GMM scheme.

MS metrics Efficiency% (confidence interval)

MS ensemble – full range 71.3 (6.2)
MS ensemble – optimized 72.3 (6.2)

Accordingly, this supports the fact that the larger the frame length,
the better the performance as short frames produce information
leaks in very low frequencies. With reference to the second stage,
which only affects MSH, results are better when using an even
number for the mask length. This may be due to the differences
between the modulus at a point, E( fa, fm), and the average level
around it, E( fa, fm)N×N, both values used in Equation (1). When
N is odd, E( fa, fm)N×N is centered at ( fa, fm) and its value is more
likely to be closer to E( fa, fm) than in the case in which N is
even, when E( fa, fm)N×N is displaced from ( fa, fm). When using
even N and having MS with low homogeneity, in most of the
cases, pathological voices, MSH is more likely to be higher and
the measurement of homogeneity is more effective as the results
suggest.

Likewise, as it can be inferred from Figure 8, the behavior of
the metrics is quite similar in both tuning databases concerning

the acoustic frequency range with the distinction that efficiency
is always higher using MEEI database. This aspect is important
since it suggests a valid and database-independent behavior of
the results. As for MSH, the most relevant acoustic range goes
from 200 to 9000Hz suggesting that the homogeneity around
fundamental frequency does not seem to be important. Something
similar happens with RALA whose lower limit is 800Hz. In the
rest of the cases, the acoustic lower limit is 0Hz. For CIL, MSP25,
and MSP75, the acoustic upper limit is around 2000Hz, which
means that the information present in the modulations of the
upper harmonics is non-relevant with respect to these metrics.
In the case of MSP95, the use of almost all the acoustic range
produces the best results.

It is convenient to emphasize that there are some ranges in
which the optimization process reveals different behaviors in the
two databases. For instance, in Figure 5, it can be observed that
efficiency around 40ms frames rises up in PdA database for
RALA, MSP75, and MSP95. In spite of the good results, 40ms
has not been selected as reference frame length for these param-
eters as its behavior is not reproduced in the MEEI database.
Precisely, two databases have been used in this study to avoid
selecting spurious behaviors, which could be corpus-adjusted.
Similarly, it can be deduced from Figure 8 that the behavior of
the tuning process in both databases is quite similar regarding
the acoustic frequency limits although there are several differ-
ences. For instance, the efficiency of MSP95 (Figure 8F) in the
MEEI database exhibits a crest of high efficiency under 3 kHz
of acoustic upper limit, which does not appear in the PdA
database. The behavior in MEEI database under 3 kHz can be
considered as spurious and restricted to this database, while the
crest over 8 kHz appears in both databases indicating that the
selection of 9 kHz as acoustic upper limit is a more reasonable
decision.

Regarding the correlation, Tables 7 and 8 show a strong cor-
relation between parameters. This is not odd as all the metrics
are done over the same matrix, MS, and are closely related one
with regard to the other. For instance, CIL andMSPs are statistical
percentiles of the same data and the tendencies in variation will
be very similar for all of them. Mutual information is shown in
Tables 5 and 6 from where it can be deduced that even after
having a strong correlation, there exists separability between all
the metrics. MSH, CIL, and RALA are less separable among them
with respect to the MS percentiles and conversely.

It is noticeable that the MEEI efficiency results are always
greater than the PdA results. Separability between normophonic
and pathological voices is higher in the metrics calculated in
the MEEI database as the boxplots in Figures 9 and 10 reflect.
However, the literature has documented some issues regard-
ing the MEEI database that might have biased the experiments
(Saenz Lechon et al., 2006). In particular, it has been argued
that the healthy and pathological patients were recorded at dif-
ferent locations and that some variability might have been intro-
duced by means of this process. Nevertheless, the objective of
this study is to determinate the different ranges of parameteri-
zation producing a good and corpus-independent performance
instead of providing absolute efficiency values for the proposed
metrics.
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FIGURE 9 | Boxplots of tuned MS metrics for MEEI database.
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FIGURE 10 | Boxplots of tuned MS metrics for PdA database.
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TABLE 5 | Mutual information of metrics in MEEI database.

MS metric MSH CIL PALA MSP25 MSP75 MSP95

MSH 0.99 0.33 0.18 0.03 0.04 0.04
CIL 0.33 0.89 0.16 0.05 0.05 0.05
PALA 0.18 0.16 0.68 0.02 0.02 0.05
MSP25 0.03 0.05 0.02 0.19 0.13 0.07
MSP75 0.04 0.05 0.02 0.13 0.19 0.08
MSP95 0.04 0.05 0.05 0.07 0.08 0.22

TABLE 6 | Mutual information of metrics in PdA database.

MS metric MSH CIL PALA MSP25 MSP75 MSP95

MSH 1.00 0.17 0.07 0.01 0.01 0.02
CIL 0.17 0.98 0.01 0.01 0.02 0.02
PALA 0.07 0.01 0.54 0.00 0.00 0.01
MSP25 0.01 0.01 0.00 0.06 0.05 0.04
MSP75 0.01 0.02 0.00 0.05 0.10 0.04
MSP95 0.02 0.02 0.01 0.04 0.04 0.11

TABLE 7 | Cross-correlation matrix of metrics in MEEI database.

MS metric MSH CIL PALA MSP25 MSP75 MSP95

MSH 1.00 0.82 0.81 0.80 0.79 0.79
CIL 0.82 1.00 0.72 0.92 0.92 0.82
PALA 0.81 0.72 1.00 0.71 0.69 0.75
MSP25 0.80 0.92 0.71 1.00 0.98 0.86
MSP75 0.79 0.92 0.69 0.98 1.00 0.90
MSP95 0.79 0.82 0.75 0.86 0.90 1.00

In Table 4, it can be observed that the use of the optimized
parameters in a different database produces an improvement in
performance of one global point respect to the non-optimized
parameterization. In any case, for the future work, the tuned
parametersmay be used to detect pathological voices using several
databases, different to those used in this study and comparing
results with other typical parameters, such as perturbation or
noise parameters. A study of the combination of all the parameters

TABLE 8 | Cross-correlation matrix of metrics in PdA database.

MS metric MSH CIL PALA MSP25 MSP75 MSP95

MSH 1.00 0.67 0.56 0.68 0.66 0.68
CIL 0.67 1.00 0.37 0.87 0.88 0.77
PALA 0.56 0.37 1.00 0.48 0.45 0.59
MSP25 0.68 0.87 0.48 1.00 0.94 0.82
MSP75 0.66 0.88 0.45 0.94 1.00 0.87
MSP95 0.68 0.77 0.59 0.82 0.87 1.00

as the performed with the HGM database but comparing the
achievement of several machine learning schemes will be of use.
Moreover, its use in automatic classification of GRBAS or other
perceptual assessment of voice is advisable. On the other hand,
a more detailed study of the acoustic regions being selected for
each parameter depending on the pathology is of interest due to
it can reveal how physical impairments can influence the MS. In
addition, a clinical study of the performance of these parameters in
a clinical environmentmight be highly recommended. The tests in
laboratory such as these presented in this study are the first step to
the analysis of newmetrics about voice pathologies, but the results
obtained clinical studies define more clearly the usefulness of the
parameterization procedures.

In conclusion, results suggest that the optimization of the
proposed MS metrics for the detection of pathological voices
increases efficiency. The tuning process ensures that the selected
setup for calculating the metrics is not corpus-adjusted due to
the similar evolution of the efficiency as a function of the setup
variables in the two used databases.
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