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Abstract: In order to detect gravitational waves and characterise their sources, three laser links
were constructed with three identical satellites, such that interferometric measurements for scientific
experiments can be carried out. The attitude of the spacecraft in the initial phase of laser link docking
is provided by a star sensor (SSR) onboard the satellite. If the attitude measurement capacity of the
SSR is improved, the efficiency of establishing laser linking can be elevated. An important technology
for satellite attitude determination using SSRs is star identification. At present, a guide star catalogue
(GSC) is the only basis for realising this. Hence, a method for improving the GSC, in terms of storage,
completeness, and uniformity, is studied in this paper. First, the relationship between star numbers
in the field of view (FOV) of a staring SSR, together with the noise equivalent angle (NEA) of the
SSR—which determines the accuracy of the SSR—is discussed. Then, according to the relationship
between the number of stars (NOS) in the FOV, the brightness of the stars, and the size of the FOV, two
constraints are used to select stars in the SAO GSC. Finally, the performance of the GSCs generated by
Decision Trees (DC), K-Nearest Neighbours (KNN), Support Vector Machine (SVM), the Magnitude
Filter Method (MFM), Gradient Boosting (GB), a Neural Network (NN), Random Forest (RF), and
Stochastic Gradient Descent (SGD) is assessed. The results show that the GSC generated by the KNN
method is better than those of other methods, in terms of storage, uniformity, and completeness.
The KNN-generated GSC is suitable for high-accuracy spacecraft applications, such as gravitational
detection satellites.

Keywords: star sensor; guide star catalogue; machine learning

1. Introduction

A gravitational wave (GW) signal was first observed by LIGO, which successfully
confirmed the prediction of Einstein’s general relativity (GR) [1]. The signal sweeps
upwards in frequency, from 35 to 250 Hz, with a peak gravitational wave strain of
1.0× 10−21 [2]. However, gravitational waves have important astronomical sources in
the millihertz (mHz) range (i.e., 0.1–100 mHz) [3]. In order to detect the important gravita-
tional waves at low frequencies, it is necessary to go into space. The proposed space-borne
detection plans, LISA [4], TianQin [3], and Taiji [5], use laser interferometric systems (see
Figure 1) constructed using three identical satellites, each carrying two telescopes for laser
pointing. Nevertheless, the interferometric measurements for the experiment are only
possible once the three laser links between the three identical spacecrafts are acquired. The
attitude of the spacecraft is measured by the star sensor (SSR) and provides an initial rough
range for the laser link scanning; in other words, the attitude measurement capacity of the
SSR can influence the efficiency of the link docking. Hence, the method used to elevate
the measurement capacity of the SSR is important for laser acquisition. This paper aims to
improve the generation method of the star catalogue, in order to improve the measurement
capacity of the SSR.
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Figure 1. Laser link acquisition for gravitational wave detection.

In astronomy, star data in the celestial sphere are compiled into a catalogue, according
to different requirements. The catalogue is called a star catalogue (or star catalog). In
celestial navigation, a GSC (guide star catalogue) is the unique basis for a star sensor (SSR),
which facilitates star identification [6]. An SSR is key in celestial navigation. Compared with
sun sensors, earth sensors, magnetometers, horizon sensors, and other common attitude
measurement sensors, SSRs have a higher attitude measurement accuracy, can realise
navigation independently, and have a strong anti-interference ability. At present, they are
the most important attitude sensors used in satellites and other spacecraft. The ability of
an SSR to determine the attitude depends on the existence of an excellent navigation star
catalogue. Generally, a preferable star catalogue for navigation is characterised by a lower
number of guide stars, a higher completeness, and a much more uniform distribution of
the celestial sphere [7].

The most frequently used strategy for selecting guide stars for an SSR is the magnitude
filtering method (MFM). Considering the starlight sensitivity of the SSR, a fixed minimum
visual magnitude threshold (VMT) is set, and a maximum, “VMT_1”. Stars that are brighter
than or equal to the VMT and dimmer than or equal to VMT_1 in the catalogue are chosen
as guide stars [8]. The correct identification of a star atlas in a local celestial area (<100
square degrees) requires at least three guide stars among the observation stars, and at
least five guide stars for the entire celestial star identification process [9]. After processing
by MFM, the stars are still unevenly distributed in the celestial sphere, and according to
statistics, the maximum is about 10 times larger than the minimum. If we set the value
of VMT_1 too small (in other words, the maximum value of the visual magnitude of the
star is too small), the GSC will be incomplete, leading to a lack of stars in some directions
(called holes). This will lead to a reduction in the success rate of star identification and
measurement misalignment [10,11]. However, if the value of VMT_1 is too large, the star
number also increases, leading to redundancy in the GSC. As a result, the efficiency of star
identification may be reduced. Completeness, uniformity, and redundancy are the three
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most important characteristics of a GSC. It is necessary to probe the relationships among
them when selecting a GSC.

There are many studies that have considered the uniformity, completeness, and
redundancy of star catalogues. Farshad et al. [12] aimed to ensure the uniformity of the
database for an SSR, and a weighted K-means clustering method (GWKM) was proposed,
on the basis of SKM [13] and GKM [14]. The results of this research showed that the
number of stars was reduced while promoting uniformity, improving the refresh rate of
star identification and the efficiency of SSRs.

Ivan et al. [15] pointed out that the efficiency of star identification depends on the
quality of the GSC. They decreased the number of stars (NOS) in dense areas, while the
sparse areas had no change. The average NOS in the FOV was, thus, decreased. Finally,
the distribution of the stars became more symmetrical and bell-shaped. Additionally,
instrumental stellar magnitude estimation and a lower bound evaluation method were also
discussed. The onboard star catalogue was sufficient for middle-precision SSRs; however,
it was not satisfactory for high-accuracy SSRs.

When the celestial sphere is divided geometrically, the most representative method is
the inscribed cube algorithm [16]. An inscribed cube is used to evenly divide the celestial
sphere into six parts, where each of the six parts is then divided into N × N smaller parts.
Finally, an evenly and non-overlapping partition of the guide star selection is realised.
However, Li et al. [7] pointed out that the solid angles are different in size for each
sub-block, especially when the optical axis of the SSR is around the celestial pole. They
proposed a novel method to generate a “quasi-uniform” star catalogue, in order to solve
the differences in solid angles. There were 2664 sub-blocks that made up the whole celestial
sphere in total, where the reference was the solid angle corresponding to 4◦× 4◦. According
to the statistical results, the probability of at least three guide stars being in the FOV was
more than 99.9%.

According to Zhang et al. [17], except for neural networks, most methods for recog-
nising a star atlas need a star catalogue. At present, MFM is the most popular method
used to generate star catalogues. However, there are holes and redundancy problems
when using the MFM. Zhang proposed a Support Vector Machine (SVM) to generate a
star catalogue. Their results showed that the SVM has high flexibility. This is a successful
case of applying a classification algorithm for the generation of a GSC. Sun et al. [18]
combined NOS with Boltzmann entropy [19] within a circular region as a feature vector
and then used an SVM to select stars to generate an even GSC. Through an experimental
comparison, the SVM algorithm was shown to be much better than the MFM, in terms of
the distribution uniformity. On the basis of Sun’s method, Liu et al. [20] used a sphere
spiral algorithm to create uniform sampling data and then used the SVM to select the guide
star. Finally, defined global and local criteria were used to assess the performance of the
created GSC. By comparing a self-organising algorithm (S-OA), the MFM, and a magnitude
weighted method (MWM), they found that the proposed method was optimal and had
strong adaptability while preserving uniformity.

In summary, the MFM can be used to obtain a streamlined GSC. However, there
are still holes and redundancy problems. To solve this problem, many methods have
been devised. The SVM and other algorithms, as detailed above, have been introduced
to address the uniformity and redundancy of the GSC. However, the redundancy and
completeness are still difficult to make compatible. Depending on the nature of the mission,
one of them generally must be selectively sacrificed. At present, detection missions are
more complex. SSRs have also made comprehensive progress. More attention has been
paid to the GSCs for multi-field SSRs and high dynamic SSRs, and the generation of an
appropriate GSC is still very important. Most of the work has focused on the completeness,
uniformity, and redundancy of the GSC. However, the attitude determination accuracy of
SSRs has become increasingly important in space missions, while accuracy criteria have
not been considered in most GSC generation methods. The SVM classification algorithm
has a good effect on the generation of GSCs. In the machine learning field, there exist many
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classification algorithms that can achieve the same or an even better classification effects
than the SVM. However, few works have discussed the advantages, disadvantages, and
adaptability of these algorithms for the generation of GSCs.

This paper is devoted to creating a uniform and complete star catalogue by taking
advantage of the K-Nearest Neighbours classification algorithm. The NOS in the FOV
of an SSR is considered, in order to ensure sufficient accuracy for an SSR. It is chosen
as an important star selection criterion. Firstly, we used datasets, after the MFM and
double star processing, as the celestial star data. Subsequently, a sequential scanning of the
entire celestial sphere was carried out, and training and validation datasets were obtained.
Then, we use thed samples to identify the performances of the classification algorithms.
We found that the K-Nearest Neighbours (KNN—82.0%) and Decision Tree (DC—82.0%)
performed the best. Finally, we used SGD (Stochastic Gradient Descent), KNN, DC, NN
(Neural Network), RF (Random Forest), SVM, and GB (Gradient Boosting) to generate
star catalogues, and a test considering 10,000 random boresight directions of the entire
celestial sphere was conducted. On the basis of statistical analysis, the KNN classification
algorithm was found to be far superior to the MFM and SVM—which are normally used to
generate GSCs—in terms of completeness, uniformity, and redundancy. Furthermore, the
star catalogue can guarantee an SSR accuracy within 1 arc sec.

2. Star Numbers and SSR Accuracy

The method of establishing a correspondence between measured stars in the FOV and
an onboard GSC is called star pattern recognition. According to Liebe [10,11,21], the NOS
in the FOV of an SSR is connected with the accuracy of star identification. For an SSR, in
order to explore the relationship between the NOS in FOV and accuracy, the first thing to
consider is the average NOS in the FOV. It is considered that the GSC is sufficiently evenly
spread over the entire celestial sphere. The relationship between them is as follow :

NFOV = 6.57× e(1.08·M) ×
1− cos( A

2 )

2
. (1)

where A represents the circular FOV which is A deg wide. The corresponding part of the
sky covered by the FOV is (1− cos(A/2))/2, which is used as one part of Equation (1). M
is the magnitude sensitivity limit; this is the NOS that are brighter than a set magnitude.
The value of M is evaluated by sketching the correlation between the magnitude and the
NOS which are brighter than the set magnitude. According to [11], NFOV = 6.57 · e(1.08·M),
which is another part of Equation (1). Finally, the average NOS in the FOV is given by
Equation (1).

The relationships between the average NOS in FOV, the FOV size, and the visual
magnitude are shown in Figure 2. As we can see, the average NOS in the FOV increases
with the increase of the size of FOV and the value of VMT, within a certain range. The
lower figure in Figure 2 shows that, when VMT = 5 and FOV = 10 or VMT = 6 and
FOV = 10, about three stars and eight stars, respectively, appear on average in the FOV.
The attitude accuracy is far less than 1 arc sec. To satisfy the accuracy requirements, and
referring to Figure 2, there must be at least 18 stars in the FOV. Thus, an FOV of 12◦ and a
VMT of 8 were chosen as the parameters of the SSR.
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Figure 2. Average number of stars (NOS) for Different fields of view (FOVs) and visual magnitude
thresholds (VMTs).

The high frequency error NEA (noise equivalent angle) is a random measurement
error. It can be regarded as the capacity of an SSR to reappear at the identical attitude [11].
NEA errors are caused by device noise, stray light interference (e.g., from the sun, earth,
and bright stars), timing jitter, model error (stellar spectral distribution), non-uniformity
of tracking magnitude, and so on. In this paper, we guarantee the NEA to meet the
theoretical attitude accuracy of the SSR. The NEA can represent the accuracy of the SSR,
and a few parameters are used to estimate the NEA. The cross-boresight (not the optical
axis) NEA [11] is as follow:

σyaw,pitch =
AFOV × σcentroid

Npixel ×
√

Nstar
. (2)

where AFOV is the FOV of this SSR (generally 1◦ to 24◦; 12◦ is considered in this paper)
and σcentroid is the average centroiding accuracy. At present, the star image points on the
sensitive surface of the image sensor are defocused, in order to spread to more pixels to
obtain higher star centroid localisation accuracy. The diameter of the diffusion circle is
generally 3 to 5 pixels, typically ranging from 0.01 to 0.5. We assume the σcentroid is 0.1 pixel.
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Npixel represents the number of pixels across the focal plane, typically ranging from 256
to 1024 (here, it is taken as 1024). Nstar is the NOS in this FOV, as Figure 2 shows. In this
paper, Nstar is a vital parameter to create a star catalogue, as we are committed to creating
a star catalogue that can provide high-accuracy attitude information.

The boresight (optical axis) NEA of an SSR can be estimated as follows: First, suppose
that the quadratic focal plane of this SSR is N × N pixels. The average distance from the
star mapped to the focal plane to the center of it is calculated as:

∫ N/2

−N/2

∫ N/2

−N/2

√
x2 + y2dxdy = 0.3825N. (3)

As the optical axis is the roll axis, there is an uncertain spatial range on the roll axis.
We set it as σcentroid. The accuracy of a single star is derived from its geometric relationship
with σcentroid:

Eroll single star = atan
σcentroid

0.3825× Npixel
. (4)

Statistically, the measurement of the centroid positions of multiple stars in a frame is
independent and uncorrelated, and thus, this measurement is used to improve the entire
attitude accuracy. Hence, the parameter

√
Nstar is introduced. Finally, we obtain the roll

(optical axis) accuracy for the entire attitude estimate as follows:

Eroll = atan(
σcentroid

0.3825× Npixel
)× 1√

Nstar
× 180

π
. (5)

Figure 3 shows the relationship between the accuracy of three axes and the NOS in
the FOV. As the focal length of the SSR is much larger than that of the image sensor in the
optical system, the attitude accuracy error of the SSR in the direction of the optical axis
(usually the “roll” axis) is about 6–16 times larger than that in the two directions on the
focal plane (“yaw” and “pitch”), as shown in Figure 3.

Figure 3. The relationship between the accuracy of a star sensor (SSR) and the NOS in the FOV.

3. Data and Pre-Processing

Full-sky star catalogues commonly used for satellite attitude determination are listed
in Table 1. There are many stars in the catalogue, but not all of them will be used in celestial
navigation. Usually, it is necessary to refer to the nature of the specific tasks, in order
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to obtain the stars satisfying the mission from the basic catalogue, then to construct the
on-board navigation catalogue.

The Smithsonian Astrophysical Observatory Star Catalogue was compiled, in 1966,
from the Smithsonian Observatory and other catalogues. In 1979, the radian information of
equatorial co-ordinates and the cross-validation information of SAO/HD/DM/GC were
added. These data have been updated, according to the latest observation information
in 1984, based on J1950.0. The recent catalogue was released in 1990, and was based on
J2000.0. The star table contains 258,997 celestial bodies with very accurate positions and
motions [22]. For satellite attitude calculation by an SSR, the position accuracy factor is far
greater than the magnitude accuracy [21]. The position accuracy of the SAO Catalogue can
reach 10−8, and the magnitude accuracy is 10−1, so this meets the requirements of attitude
calculation well. The catalogue also covers the whole sky, which means that it has a high
completeness. For these reasons, we chose it as our basic star catalogue.

Table 1. Full-sky catalogues.

Star Catalogues Visual Magnitude Threshold Number of Stars Epoch

LAL 9.0 47,390 –
Tycho2 14.0 2.5 Million –

Bright Star Catalogue (BSG) 6.5 9110 J2000.0
Guide Star Catalogue (GSC) 16.0 nearly 20 million J2000.0

Henry Draper Catalogue (HD) 10.0 359,083 J1900.0
Fifth Fundamental Catalogue (FK5) 9.0 4652 –

Smithsonian Astrophysical
Observatory (SAO)

11.0 258,997 J2000.0

The data of the SAO includes 258,997 rows of star information, where each row
includes 204 bytes, representing 57 types of information about the stars. What we are most
concerned with is the visual magnitude, the celestial right ascension of J2000.0, and the
celestial declination of J2000.0. Due to the fact that stars are far away from us, the field
angles of stars are much less than 1 arc second, when observed from earth. Stars with a very
close sight (called double stars, not binary stars, in astronomy) cannot be distinguished
from each other on the imaging plane, and will interfere with the star identification process.
Therefore, the general star identification algorithm is not appropriate for double stars [23].
Double stars are deleted directly, in general. However, when the NOS in the FOV is very
small, each one is vital for the identification. In view of this, we combined such stars into
one, in order to ensure the completeness of the GSC

Suppose m1 and m2 are the double star’s magnitudes, and the right ascension and
declination are α1, α2, and β1, β2, respectively. The direction vectors r1 and r2 of the two
stars are calculated from their right ascension and declination, and the visual magnitude
of the combined star is m0. The combined brightness is F and the direction vector is r0.
The optical flux density can represent the brightness of stars, and the luminance ratio of
the double star is expressed by Equation (6). Then, we combine Equations (6) and (7) and
obtain Equation (8). Finally, the brightness of composed star is expressed by Equation (9).

F1

F2
= e(m2−m1)/2.5, (6)

F = F1 + F2, (7)

F
F2

=
F1 + F2

F2
e(m2−m0)/2.5, (8)

m = m2 − 2.5× ln(1 +
F1

F2
) = m2 − 2.5× ln(1 + e(m2−m1)/2.5). (9)
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Assume that the angular distances among this combined star with the double star are
φ1 and φ2. The angular distance between these two double stars is φ0. Then, we obtain
Equation (10). As φ0 is determined through the calculation of their right ascension and
declination, we can obtain the values of φ1 and φ2. The direction vector, r0, of the composed
star is obtained by Equation (11).

F1φ1 = F2φ2,

φ0 = φ1 + φ2 = φ1(1 +
F1

F2
) = φ1(1 + e(m2−m1)/2.5),

(10)

r0sinφ0 = r1sinφ1 + r2φ2 ≈ r1φ1 + r2φ2,

r0 = (r1φ1 + r2φ2)/sinφ0.
(11)

According to Zhang [23], in the process of star centroid extraction, the threshold of
binarisation is T and the double star must satisfy the minimal distance d:

T = 2B× e
−(d/2)2

2σ2 , (12)

where σ = 1, B = 255, and B represents the brightness of a star. For an SSR with a 12◦ FOV
and 1024× 1024 pixels, d is determined as 4 pixels, which is about 0.047◦. The basic star
catalogue, SAO, was reduced to a new star catalogue called “MFM” by setting VMT = 8
and processing the double stars. Figures 4 and 5 show the distribution and density of the
SAO and MFM star catalogues, respectively.

Figures 4a and 5a exhibit the distribution density of the GSC in the celestial sphere, in
which the colour in the colour bar represents the magnitude of the density, and the colour
above the colour bar represents the NOS in this region. It is shown that the SAO catalogue’s
distribution is more dense than that of the MFM catalogue, and the colour in Figure 4a is
darker (greener). Based on Figures 4a and 5a, we can make an intuitive conclusion that the
MFM catalogue has advantages, in terms of data capacity; namely, redundancy. Both SAO
and MFM have high completeness.

Figures 4b,c and 5b,c show the statistics of the NOS distributed over the entire celestial
sphere. In the direction of right ascension and declination, they are equally divided into
50 parts, and the corresponding NOS in each range is counted. In these figures, on the right
ascension, stars are most concentrated at about 100◦ and 300◦; on the declination, stars
are most concentrated at about ±40◦. The distribution of stars in the GSC obtained by the
MFM is similar to that of the GSC SAO, but the NOS is greatly reduced.

Figures 4d and 5d show that the nuclear density line of the GSC stars in the celestial
sphere. The nuclear density curve more clearly shows the distribution of stars in the sky.
The right colour scale shows the size of the nuclear density. The larger the scale is, the
higher the nuclear density is. That is to say, stars are densely distributed in this part of
the celestial sphere. Comparing the numerical values and the nuclear density curves, the
distribution of SAO is denser and the MFM is relatively more uniform.
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（ a ）

（ b ）

（ c ）

（ d ）

Figure 4. The scattered data density of the SA0 star catalogue. (a) The distribution density of SAO GSC; (b) the statistics of
the NOS distributed in the direction of right ascension; (c) the statistics of the NOS distributed in the direction of declination;
(d) the nuclear density line of SAO GSC stars in the celestial sphere.

（ a ）

（ b ）

（ c ）

（ d ）

Figure 5. The scattered data density of the MFM star catalogue. (a) The distribution density of MFM GSC; (b) the statistics of
the NOS distributed in the direction of right ascension; (c) the statistics of the NOS distributed in the direction of declination;
(d) the nuclear density line of MFM GSC stars in the celestial sphere.
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4. Generation of the KNN GSC

In the above two sections, we obtained the FOV size and threshold sensitivity of the
SSR and processed the double stars in the SAO. In this section, we mainly describe using
the KNN to generate the KNN GSC. First, we introduce machine learning classification
algorithms. Then, we introduce the principle of the KNN algorithm. Finally, we introduce
the specific implementation steps of using the KNN generating the GSC.

4.1. Machine Learning and Classification Algorithms

Machine learning (ML) is a form of artificial intelligence (AI) that is mainly used to
study how the performance of specific algorithms can be improved in empirical learning [24].
The purpose of ML is to realise AI. Classification in ML is a supervised learning method
(SLM), with statistical learning theory serving as the theoretical basis. An SLM builds a
mathematical model from a set of data (known as training data) that contains both the
input and the desired outputs [25]. The main difference between SLMs and unsupervised
learning is whether the dataset is labelled. Classification algorithms in ML can be regarded
as a form of “pattern recognition”. The classification algorithms use input training data
to predict the likelihood that subsequent data will fall into one of the pre-determined
categories; that is to say that the data follow the same pattern.

4.2. KNN Classification Algorithm

In this study, we used classification algorithms to generate GSCs. The used classifica-
tion algorithms were from the scikit-learn machine learning tool [26], which contains KNN,
RF, NN, DC, SVM, SGD, and GB, among others. In machine learning classification, the
classifier learns from labelled data (usually named training samples). After the classifier
understands the data, the algorithm determines which label to assign to the new data
(usually named test samples) by associating the schema with the (unlabelled) new data.

Classification determines the category of objects, based on one or more independent
variables. The KNN was determined as the optimal classifier for our star catalog selection.
For classification, when the dataset has little or no prior knowledge of the distribution, the
KNN algorithm has the most advantages. Furthermore, KNN classification is one of the
most fundamental and simple methods. KNN is a non-parametric algorithm [27] and is a
famous representative of “lazy learning”. It classifies new data according to similarity (e.g.,
a distance function with weight).

For classification, unlike other classification algorithms, KNN does not build a gen-
eral internal model through the training dataset; rather, it stores the data for the nearest
voting step, such that the algorithm is relatively simple. In scikit-learn, there are two
different nearest neighbour classifiers: “KNeighboursClassifier” (KNC) and “RadiusNeigh-
boursClassifier” (RNC). We adopted the most common technique, KNC, where k represents
the number of nearest neighbours that are distributed around the samples to be classified.
The other classifier, RNC, is given a fixed radius and counts the number of nearest neigh-
bours in its region. The KNN algorithm is highly dependent on the data. A larger k can
suppress noise in the data, but will increase the complexity of the algorithm. If k is too
small, the noise will be amplified and overfitting may occur. The optimal k value is usually
selected by cross-validation (see Section 4.3).

We used a variety of machine learning classification algorithms to generate GSCs,
where the steps of generating the GSCs were almost the same. We briefly introduce the
best (KNN) in the following. The KNN classification algorithm can be summarised in the
following steps:

1. Assume that there are n samples in the training set, {x1, x2, ..., xn}, which belong to c
categories {y1, ..., yc}.

2. Calculate the distance (usually the Euclidean distance) between the test data xk and
each training datum. The distance in N-dimensional space is defined as D(x, xk) :=√

n
∑

i=1
(xi − xk)

2, where x is the sample in the training dataset.
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3. Sort the data, according to the increasing relation of distance.
4. Select the k stars with the smallest distance.
5. Determine the frequency of occurrence of the category of the first k stars.
6. The most frequent category in the first k stars is returned as the prediction classification

result. k is the number of nearest stars.

In Figure 6, when k = 3, we can see that there is one guide star (the blue star) and a
non-guide star (the red star) in the circle; thus, we cannot classify the stars. When k = 5,
there are three guide stars and two non-guide stars, so we decide to classify the star (the
green star) as a guide star.

guide star

not guide star

to be classified star

K=5

K=2

Figure 6. A schematic diagram of the KNN classification algorithm.

4.3. Generating GSC by KNN

Star catalogue generation is regarded as a binary classification problem. There are
three features: right ascension, declination, and star magnitude. The features of the
stars to be classified are compared with the features of the stars in the training dataset.
If the first k data samples in the training dataset are found to be the most similar, the
category corresponding to the test dataset is the one with the most frequent occurrence.
The classification principle is simply expressed in Figure 6, and we assume that the stars
are distributed in Figure 6, according to the features.

In this paper, k is an important parameter of the classifier. Through cross-validation,
we start by selecting a smaller value of k. Then, we increase the value, calculate the variance
of the validation set, and finally find a more appropriate value of k. Here, we determined
that the optimal value of k was 15. Another important parameter of the KNN classifier in
scikit-learn is the weight. When it is selected as “uniform”, each neighbour is assigned
a uniform weight; if the value of the weight is selected as “distance”, it assigns a weight
proportional to the inverse of the distance from the query point. We chose “distance”, in
order to give closer neighbours more weight.

The specific steps of using the KNN classification algorithm to generate a GSC are
shown in Figure 7. The SAO catalogue processing, feature extraction, threshold filtering,
and accuracy analysis were introduced in the above sections. We chose “n”, the brightest
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stars in each simulated FOV, as guide stars and labelled them as “1”, meaning that we first
traversed the entire sky, according to the right ascension and declination. We took half of
the FOV to simulate SSR imaging. Later, we chose “m”, the brighter stars, as non-guide
stars and labelled them as “−1”. In other words, according to the brightness of the stars,
take “m” stars as non-guide stars, after “n” brightest stars. The stars “n” and “m”, taken
together, formed a sample set with labels. This ensured that stars could be selected as
guide stars in sparse celestial regions.

SAO Catalogue Preprocessing and Read 

SAO Catalogue

Start

Extract required parameters(Declination, 

Right ascension,Magnitude)

Set VMT = 8 and remove double stars and 

generate VMT samples

According to the accuracy of star sensor 

determine the number of star in FOV

Choose the top n  brigtnest satr as guide 

star in FOV labeled 1

Choose the top m  least brigt satr as 

guide star in FOV labeled 1   

Training train and test samples (ratio is 3:1) 

and Get the best classification classifier  

Statistics of the average number of stars in 

the 10,000 random direction FOV 

Whether the accuracy 

is greater than 1 arcsec

Generate the star catalogue

End

Yes

No

Figure 7. Flowchart of the algorithm used to generate star catalogues.

We obtained the training and test samples using the MFM star catalogue. Training
samples were used to train the corresponding classifier. The classifier was then used to
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classify samples. The training samples and test samples were divided according to a
proportion of 3:1. After label comparison, the accuracy of the classification algorithm was
determined. The accuracy, Ec, is the ratio of the correct classification in the star sample C
to the total number of samples S, Ec = (C/S)× 100%, as shown in Figure 8. KNN (82.0%)
was found to have the best performance.

In the final steps, shown in Figure 7, the average NOS in the FOV was determined, and
the corresponding accuracy of the SSR was calculated to determine whether the selection of
“m” and “n” was appropriate. First, smaller values of “m” and “n” were determined. The
values of “m” and “n” were then increased, until the accuracy was at least 1 arc sec. This
is a time-consuming step. Finally, through adjustment, the appropriate values of “m = 5”
and “n = 12” were obtained.

Figure 8. Accuracies of the classification algorithms.

5. Evaluation of the KNN GSC

In order to further evaluate the uniformity, completeness, and redundancy of the
KNN GSC and the GSCs generated by other machine learning classification algorithms,
we created 10,000 random directions, with a 12◦ FOV, Npixel = 1024, and VMT = 8. The
statistics are shown in Table 2. As can be seen in Figure 9 and Table 2, the maximum
and mean of the stars in the FOV of KNN (14,344.73) were better than those of the DC
(16,353.18) and other GSCs, and the Std (standard deviation) of KNN (15.62) was also the
best among those classification algorithms. The uniformity of the star catalogue shown
in Figure 9 is much better than in Figure 5. Hence, the proposed KNN machine learning
classification algorithm can generate a uniform, complete, and highly accurate GSC.

For an SSR’s star catalogue construction, the commonly used method is the SVM
classification algorithm. In our experiment, we found that the SVM was not the best for the
process of star catalogue generation when using machine learning classification algorithms.
The storage of the catalogue, the average NOS, the Std of stars, and the accuracy of an
SSR with the NOS of the SVM and KNN are shown in Table 2. These represent the star
catalogue’s quality. The catalogue generated by the KNN was better than the catalogue
generated by the SVM, in all of the above aspects. In other words, we introduced a new
classification algorithm for selecting a GSC, which is better than the most commonly used
classification method (i.e., SVM).



Sensors 2021, 21, 2647 14 of 16

（ a ）

（ b ）

（ c ）

（ d ）

Figure 9. Uniformity and density of the K-Nearest Neighbours (KNN)-generated star catalogue. (a) The distribution
density of KNN GSC; (b) the statistics of the NOS distributed in the direction of right ascension; (c) the statistics of the NOS
distributed in the direction of declination; (d) the nuclear density line of KNN GSC stars in the celestial sphere.

Table 2. Statistics of different guide star catalogues (GSCs) for a 12◦ × 12◦ FOV, tested in 10,000 random boresight directions.

Classifier Total Guide Stars Min Max Mean Std n ≤ 16 (1.05′′) n ≤ 17 (1.02′′) n ≥ 18 (<1′′)

MFM 38,562 40 337 106.79 41.09 0 0 10,000
SVM 18,627 15 163 50.92 19.38 1 1 9999
DC 19,315 19 163 53.18 20.34 0 0 10,000

GBC 19,315 19 163 53.18 20.34 0 0 10,000
KNN 16,689 15 143 44.73 15.62 3 3 9997
NN 38,562 40 337 106.73 41.09 0 0 10,000
RF 19,315 19 163 53.18 20.34 0 0 10,000

SGD 27,190 19 253 75.50 29.29 0 0 10,000

6. Discussion

In this paper, we considered the generation of a GSC as a classification problem and
used a variety of machine learning classification algorithms to generate GSCs. Overall,
the KNN was found to be the best classifier. All of the methods generated a GSC using
the same steps, the only difference being the classifier. The KNN algorithm is simple and
easy to implement; there is no need to estimate parameters, and it is suitable for rare event
classification; however, it displays poor interpretability (a common problem of machine
learning algorithms) and is highly dependent on data—wrong data may directly lead to
inaccurate predictions.

The reasons why the KNN was found to be the best method to generate a GSC herein
are as follows: (1) The sample set was classified with more crossed or overlapping class
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domains, as the KNN method mainly depends on a limited number of neighbouring
samples, rather than distinguishing class domains. Most of the star feature samples are
overlapped or crossed, which is suitable for a KNN. (2) Compared with big data, the
samples used to generate a GSC are relatively few, and the KNN algorithm is suitable for
small samples.

For different classification problems, machine learning classification algorithms have
different performance; further, KNN algorithms have the disadvantage of unexplainability.
These two points are recognised in the field of machine learning and need further research.
However, the KNN algorithm is exactly suitable for the guide star generation problem
studied in this paper.

The uniformity of the KNN GSC needs to be further improved. Somayehee
et al. [12] created a uniform GSC using a novel method of weighted k-means cluster-
ing (a machine learning algorithm) with geodesic criteria. However, the main work of
this paper was obtaining a machine learning classification that can satisfy high-precision
attitude measurement accuracy, for which we identified the KNN algorithm, based on
uniformity, completeness, and redundancy standards, which were based on a more com-
prehensive analysis. Further improvement in GSC uniformity will be pursued in future
research.

7. Conclusions

Differing from most other works, we focused on generating a uniform and complete
GSC, while ensuring that it can provide an accuracy of at least 1 arc second for an SSR.
First, we used the MFM method to create a basic GSC. Then, we constructed the training
and validation datasets (with a ratio of 3:1) and compared the accuracy of 7 different
machine learning classification algorithms, in order to determine the best method. KNN
and DC were the two best, both of which had an accuracy of 82.0%. After comparison,
KNN was determined as the best algorithm for generating a GSC. Three criteria—accuracy,
uniformity, and completeness—were considered. Accuracy was the basic criterion. After
10,000 Monte Carlo random experiments, a smaller capacity was obtained and a more
uniform GSC was generated by the KNN algorithm. The redundancy of the SSR was
also reduced. This method was shown to be much better than the commonly used SVM
classification methods. KNN algorithm is introduced for the first time in the construction
of a navigation star catalogue. Moreover, the mean NOS in the FOV was 44.73 and the
minimum NOS was 15. Both achieved an attitude accuracy of 1 arc second. There were
16,689 stars in the catalogue, providing slight redundancy for star identification, and the
proposed method can provide an accuracy of at least 1 arc second for an SSR, while also
providing robust uniformity and completeness.

In summary, GSC generation is vital for star identification, and is also vital for attitude
determination. Meanwhile, machine learning methods have incomparable advantages for
data processing. The KNN classification algorithm was shown to be better than the SVM
in generating a GSC. Furthermore, we added a new accuracy criterion to the generation
standard of the GSC. This method is suitable for high-accuracy attitude determination.
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