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Aim: Development of type 2 diabetes (T2DM) is associated with disturbances in immune and
metabolic status that may be reflected by an altered gene expression profile of peripheral
blood mononuclear cells (PBMC). To reveal a potential family predisposition to these
alterations, we investigated the regulation of gene expression profiles in circulating CD14+

and CD14- PBMC in fasting conditions and in response to oral glucose tolerance test (OGTT)
in glucose tolerant first-degree relatives (FDR) of T2DM patients and in control subjects.

Materials and Methods: This work is based on the clinical study LIMEX (NCT03155412).
Non-obese 12 non-diabetic (FDR), and 12 control men without family history of diabetes
matched for age and BMI underwent OGTT. Blood samples taken before and at the end of
OGTT were used for isolation of circulating CD14+ and CD14- PBMC. In these cells, mRNA
levels of 94 genes related to lipid and carbohydrate metabolism, immunity, and inflammation
were assessed by qPCR.

Results: Irrespectively of the group, the majority of analyzed genes had different mRNA
expression in CD14+ PBMC compared to CD14- PBMC in the basal (fasting) condition.
Seven genes (IRS1, TLR2, TNFa in CD14+ PBMC; ABCA1, ACOX1, ATGL, IL6 in CD14-

PBMC) had different expression in control vs. FDR groups. OGTT regulated mRNA levels
of nine genes selectively in CD14+ PBMC and of two genes (ABCA1, PFKL) selectively in
CD14-PBMC. Differences in OGTT-induced response between FDR and controls were
observed for EGR2, CCL2 in CD14+ PBMC and for ABCA1, ACOX1, DGAT2, MLCYD,
and PTGS2 in CD14- PBMC.

Conclusion: This study revealed a different impact of glucose challenge on gene
expression in CD14+ when compared with CD14- PBMC fractions and suggested
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possible impact of family predisposition to T2DM on basal and OGTT-induced gene
expression in these PBMC fractions. Future studies on these putative alterations of
inflammation and lipid metabolism in fractionated PBMC in larger groups of subjects
are warranted.
Keywords: oral glucose tolerance test, first-degree relatives, gene expression, peripheral blood mononuclear cells,
type 2 diabetes mellitus, CD14− cells, CD14+ cells
INTRODUCTION

Type 2 diabetes mellitus (T2DM) is associated with a number of
disturbances of immune status and metabolic pathways (1) that
can be detected not only in insulin sensitive tissue but also in
easily accessible peripheral blood mononuclear cells (PBMC).
PBMC from patients with T2DM have shown alterations in
mRNA levels of genes involved in the regulation of
inflammation, lipid and glucose metabolism, and several
signaling pathways (2–5). Development of T2DM is based on
both environmental and genetic factors. While the obesogenic
environment and the subsequent development of obesity is one
of the most important factors contributing to the development of
T2DM (6), the heritability of T2DM reaches 20%–80%, when
first-degree relatives (FDR) of T2DM patients are about 3 times
more likely to develop the disease than individuals without a
positive family history of the disease (7). Thus, it might be
hypothesized that alterations in gene expression are present
already in non-obese individuals with genetic predisposition to
T2DM, such as FDR. Indeed, a number of genes with
dysregulated expression was found in FDR when compared
with subjects without T2DM in antecedence, including
adiponectin in adipose tissue (8) and genes involved in insulin
signaling and fatty acid metabolism in skeletal muscle (9, 10).
Although PBMC proved to be a good surrogate marker of
systemic and adipose tissue metabolic state (11, 12), they
represent a mixture of cell types with considerably different
roles, behavior and metabolism, i.e. monocytes, dendritic cells
and lymphocytes (13) and analysis of PBMC population in whole
may limit the interpretation of results.

Therefore, the aim of our study was to examine the gene
expression profile in two major fractions of PBMC: CD14
positive (i.e. mostly monocytes, representing 10%–20% of
PBMC) and CD14 negative (i.e. mostly lymphocytes and
natural killer cells, representing 70%–90% and 5%–10% of
PBMC, resp.) in FDR in comparison with healthy controls
without diabetic relatives so that the differential behavior of
innate and acquired immunity systems could be revealed. The
selected genes covered immunity and inflammation pathways
and pathways of lipid and carbohydrate metabolism. Since we
hypothesized that the nutrient-induced response of the genes
might have a higher discriminative power than baseline values
when comparing FDR to the control group, we analyzed the
possible alteration of mRNA expression in these two PBMC
fractions also in response to the nutritional challenge represented
by OGTT.
n.org 2
MATERIAL AND METHODS

Subjects Characteristics
This work is based on the clinical study LIMEX (NCT03155412)
including 51 healthy non-obese men. The two groups of men - 1)
non-diabetic first-degree relatives of T2DMpatients (FDR); 2) control
group - subjects without any family history of diabetes (CON) - were
matched for age and BMI. Family history of diabetes was considered
as follows: two first-degree relatives (parents, siblings) or one first-
degree and one or more second-degree relatives (grandparents, uncle,
aunt) that were diagnosed with T2DM. Exclusion criteria for both
groups were: body weight change more than 3 kg within 3 months
preceding the study, smoking, any medication, hypertension,
hyperlipidaemia, and drug or alcohol abuse.

Subjects were examined at 8.00 h in the fasting state. Body
weight, waist, and hip circumferences were measured. Body
composition was assessed by bioimpedance (QuadScan 4000,
Bodystat, Douglas, British Isles). All men underwent an initial
examination consisting of OGTT. Based on OGTT results eight
subjects with impaired glucose tolerance were excluded. PBMC
were isolated from a subgroup of 37 men (control, n=18; FDR,
n=19). 13 subjects (control, n =6; FDR, n=7) were excluded
because of the insufficient amount of isolated RNA from at least
one fraction of PBMC in either of the time points of OGTT. Gene
expression analysis in PBMC was performed in 12 subjects from
the control group and 12 subjects from FDR group.

Oral Glucose Tolerance Test
Seventy-five grams of glucose was administered orally and blood
samples for routine analysis were taken at the time points 0, 30,
60, 90, and 120 min. PBMC were isolated from 9 ml of full blood
in time points 0 and 120 min and immunoseparated into CD14
positive and negative subpopulations using Dynabeads CD14
(Thermo Fisher, MA USA) as described before (14).

Plasma Analysis
Plasma samples were prepared from uncoagulated peripheral blood
by centrifugation. Plasma glucose was determined with a glucose
oxidase technique (Beckman Instruments, Fullerton, CA). Plasma
insulin was measured using an Insulin Irma kit (Immunotech,
Prague, Czech Republic). Lipid concentrations were determined
using standard biochemical methods in certified laboratories.

Gene Expression Analysis
Total RNAwas isolated fromCD14+ and CD14- subpopulation using
an RNeasy Mini kit (Qiagen, Germany). RNA concentration was
February 2021 | Volume 11 | Article 582732
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measured using Nanodrop1000 (Thermo Fisher Scientific, USA). To
remove genomic DNA, DNAse I (Invitrogen, USA) treatment was
applied. 300 ng of total RNA was reversely transcribed using High
Capacity cDNA Reverse Transcription Kit (Applied Biosystems,
USA). For microfluidics, 4 ng of cDNA were preamplified within
18 cycles to improve the detection of target genes during subsequent
Real Time qPCR (TaqMan Pre Amp Master Mix Kit, Applied
Biosystems, USA). For the preamplification, TaqMan gene
expression assays of all target genes (Supplemental Table 1) were
pooled together and diluted with water to the final concentration 0.2×
for each probe. Samples with preamplified cDNAs were diluted 20
times, qPCR was then performed on Biomark Real Time qPCR
system using a 96 × 96 array (Fluidigm, USA). Expression of seven
genes (AKT1, APOE, CXCL1, GZMB, MMP3, SLC2A4, MLXIPL)
was either below the detection limit or their amplification curves did
not pass the initial quality test (Supplementary Table 2). Data were
normalized to geomean of two reference genes (RPS13, TBP), 2-DCt

was calculated and used for statistical analysis. Genes with median of
2-DCt below 0.0001 were considered as genes with insignificant level of
expression and excluded from the analysis (CLIC3, IL2, IL6,
KIR2DL4, MMP2, SLC27A2, VCAM1 in CD14+ PBMC; CCL2,
FOS, IL10, IL2, MMP2, PPARg, SLC27A2, VCAM1 in CD14-

PBMC). Outliers were identified by ROUT method, with Q value
set to 0.5%. Genes with more than three missing values per group
were excluded from analysis (ACOX1, COX6C, and DGAT1 in
CD14+ PBMC). The effect of OGTT was in figures expressed as the
median of fold change – OGTT vs. basal- of each subject in the
control and FDR group.

Statistical Analysis
Data are presented as means ± SEM (anthropometric and
biochemical variables) or median with 25th and 75th percentile.
Frontiers in Endocrinology | www.frontiersin.org 3
Statistical analysis was performed using GraphPad Prism 9.0 for
Windows (LaJolla, USA). Differences in the baseline values of the
measured anthropometric, and biochemical variables were
evaluated by Multiple Unpaired t test with multiple
comparisons by False Discovery Rate (method by Benjamini,
Krieger, and Yekutieli) set to 5%. Differences in mRNA levels
(2-DCt) and responses to OGTT (mRNA fold changes) between
groups (FDR vs. controls) were evaluated by Multiple Mann-
Whitney tests, with multiple comparisons by False Discovery
Rate (method by Benjamini, Krieger, and Yekutieli) set to 5%.
Evolution of log2 transformed glucose and insulin levels during
OGTT was evaluated by Two Way ANOVA with Sidak multiple
comparison test. Effects of OGTT on mRNA levels within each of
the two groups were evaluated by Multiple Wilcoxon matched
pairs signed rank tests, with multiple comparisons by False
Discovery Rate (method by Benjamini, Krieger, and Yekutieli)
set to 5%. The Spearman rank-order correlation coefficient was
calculated in correlation analysis. The level of significance was set
at p <0.05 and q value <0.05.
RESULTS

Subjects Characteristics
Anthropometric and laboratory characteristics of both groups of
subjects are presented in Table 1. The groups were not different
in respect to age, body weight, waist circumference, BMI, relative
fat mass, fat free mass, plasma triacylglycerol (TAG), LDL,
cholesterol and uric acid. Plasma HDL was higher in the
control group. Fasting plasma glucose and insulin were higher
in FDR. Similarly, plasma glucose and insulin were higher at
120 min of OGTT. Time evolution of glucose and insulin levels
TABLE 1 | Anthropometric and biochemical characteristics of the subjects.

Controls (n = 12) FDR (n=12) p value q value

Age (years) 34.3± 3.5 37.0 ± 3.8 NS NS
Body weight (kg) 82.6 ± 2.1 86.2 ± 1.2 NS NS
BMI (kg/m2) 24.7 ± 0.5 26.0 ± 0.5 NS NS
Waist circumference (cm) 84.0 ± 1.2 88.0 ± 1.6 NS NS
Fat Mass (%) 17.8 ± 3.4 17.8 ± 5.4 NS NS
Fat Mass (kg) 13.6 ± 1.0 16.9 ± 1.0 NS NS
Fat Free Mass (kg) 68.8 ± 1.2 68.6 ± 1.0 NS NS
Cholesterol (mmol/l) 4.34 ± 0.2 5.05 ± 0.27 NS NS
HDL cholesterol (mmol/l) 1.43 ± 0.05 1.09 ± 0.06 0.005 0.021
LDL cholesterol (mmol/l) 2.41 ± 0.16 3.05 ± 0.2 NS NS
TAG (mmol/l) 1.17 ± 0.27 1.89 ± 0.43 NS NS
Uric Acid (µmol/l) 342 ± 19 336 ± 13 NS NS
Fasting glucose (mmol/l) 5.10 ± 0.07 5.61 ± 0.10 0.006 0.021
Fasting insulin (mU/l) 5.30 ± 0.67 10.93 ± 1.10 0.002 0.016
Glucose at 120 min of OGTT (mmol/l) 4.80 ± 0.20 6.17 ± 0.26 0.006 0.021
Insulin at 120 min of OGTT (mU/l) 17.20 ± 5.90 43.01 ± 6.94 0.021 NS
Glucose AUC OGTT (mmol-h/l) 770 ± 24 860 ± 29 NS NS
Insulin AUC OGTT(mU-h/l) 4381 ± 333 7212 ± 883 0.05 NS
HOMA-IR 1.21 ± 0.16 2.79 ± 0.32 0.002 0.016
Matsuda index 9.91 ± 1.83 5.71 ± 0.97 0.023 NS
February
 2021 | Volume 11 | Article
Data are shown as mean ± SEM. Statistical difference between the groups evaluated by Multiple Unpaired t tests, with multiple comparisons by Benjamini, Krieger, and Yekutieli method of
False Discovery Rate. Level of significance for both p and q value was set to <0.05. AUC, area under the curve; BMI, Body mass index; FDR, first degree relatives of T2DM patients; HDL,
high density lipoprotein; HOMA-IR, homeostasis model assessment of insulin resistance; LDL, low density lipoproteins; NS, not significant; TAG, triglycerides.
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during OGTT are shown in Supplemental Figure 1. Calculated
indices of insulin resistance, HOMA-IR and Matsuda index (15)
suggested lower whole body insulin sensitivity in FDR.

Basal Expression in PBMC Subpopulations
Comparison CD14+ vs. CD14- PBMC.When gene expression was
analyzed in all samples, irrespectively of the group, the majority
of genes were differentially expressed in CD14+ vs. CD14- PBMC
(only four genes had a similar expression level in both PBMC
fractions) (Supplemental Table 1). Four genes (CCL2, FOS,
IL10, and PPARg) were detected only in CD14+ PBMC and six
genes (CD36, EGR1, EGR2, IL1b, TLR2, TLR4) had more than
20 times higher level of expression in CD14+ vs. CD14- PBMC.
Six genes (ACOX1, CLIC3, COX6C, DGAT1, IL6, KIR2DL4)
were detected only in CD14- PBMC and three genes (CCL5,
PRF1, and SLC2A1) had more than 20 times higher level of
expression in CD14- vs. CD14+ PBMC (Supplemental Table 1).

Comparison FDR vs. Controls. In the basal (fasting) state,
majority of the analyzed genes in PBMC subpopulations had
similar mRNA levels in control and FDR groups, except for seven
genes. CD14+ PBMC exhibited lower basal mRNA expression of
TLR2 and TNFa genes and higher expression of IRS1 gene in FDR
group (Figure 1A). Expression of neither of these genes correlated
with HOMA-IR or Matsuda index (not shown). CD14- PBMC
isolated from FDR exhibited lower basal expression of ABCA1,
ACOX1, and ATGL and higher expression of IL6 when compared
Frontiers in Endocrinology | www.frontiersin.org 4
to controls (Figure 1B). Expression of ATGL (in CD14- PBMC
from all subjects) correlated with the expression of markers of de
novo lipogenesis (FASN, ACACA) and b oxidation (ACOX1)
(Figure 1C). However, when applying correction for multiple
testing we did not confirm these seven genes as significantly
different between the groups.

Effect of OGTT on Gene Expression
in PBMC Subpopulations
mRNA expression of pyruvate dehydrogenase kinase isozyme 4
(PDK4) was used as a positive control for the OGTT response
since glucose inhibits PDK4 expression (12, 16). A significant
down-regulation of PDK4 mRNA expression in response to
OGTT was found in both experimental groups as well as in
both PBMC fractions.

In CD14+ PBMC, 21 genes were regulated in response to
OGTT in at least one group of subjects (Table 2). Among them,
11 genes were significantly changed in both groups. In nine genes
(CD36, DUSP1, GOT2, HIF1a, ICAM1, IRS1, PCK2, TCF7L2,
and TGFb1) the response to OGTT was specific for CD14+

fraction (i.e. the change was not present in CD14- PBMC). Only
EGR2 and CCL2 genes were differentially regulated in FDR vs.
controls in response to OGTT, i.e. fold changes of mRNA were
higher in FDR compared to controls (Figure 2A). In the case of
EGR2, mRNA expression was significantly upregulated in FDR
but not control group (Table 2). OGTT induced changes of
A

B

C

FIGURE 1 | Effect of group (FDR vs. controls) on gene expression in CD14+ (A) and CD14- (B) peripheral blood mononuclear cells (PBMC) in the fasting (basal)
conditions. Gene expression was normalized to the geomean of reference genes RPS13 and TBP and evaluated by Multiple Mann-Whitney tests, with multiple
comparisons by False Discovery Rate (method by Benjamini, Krieger, and Yekutieli). Level of significance for both p and q value was set to <0.05. Box plots show
the medians with 25th and 75th percentiles, whiskers show min and max values. (C) Correlations of basal gene expressions (2-DCt) of ATGL and other genes involved
in lipid handling in CD14- PBMC. The Spearman rank-order correlation coefficient is shown.
February 2021 | Volume 11 | Article 582732
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mRNA levels of these two genes were positively correlated with
each other and the change of EGR2 was correlated with 2h
OGTT glucose levels (Figure 2A). However, it should be noted
that the significant differences in the OGTT-induced response
between the groups (FDR vs. control) were not confirmed after
correction for multiple testing.

In CD14- PBMC, 17 genes were regulated in response to OGTT
in at least one group of subjects (Table 2), when two genes (ABCA1,
PDK4) were significantly changed in both groups. This change was
Frontiers in Endocrinology | www.frontiersin.org 5
specific for CD14- PBMC fraction in the case of ABCA1. There were
five genes for which the OGTT-induced change in expression was
different in the FDR group when compared with controls
(Figure 2B). Out of these genes, fold changes of ACOX1,
DGAT2, MLCYD, and PTGS2 mRNA were higher in FDR
compared to controls. In the case of DGAT2 and PTGS2 mRNA
expression was significantly upregulated in FDR but not control
group (Table 2). ABCA1 was down-regulated in both groups,
the downregulation being less pronounced in FDR (Figure 2B,
TABLE 2 | Effect of oral glucose tolerance test (OGTT) on gene expression.

CD14+ PBMC Control FDR Group difference

Gene Fold change 75th - 25th percentiles p value q value Fold change 75th - 25th percentiles p value q value p value q value

ACACA 0.873 0.993-0.691 0.0269 NS 1.497 2.997-0.541 0.0015 0.0104 NS NS
CCL2 0.820 0.908-0.639 NS NS 1.046 1.412-0.877 NS NS 0.0205 NS
CD36 1.344 1.595-1.076 0.0034 0.0230 1.226 1.423-1.072 0.001 0.0078 NS NS
CPT1a 0.682 1.131-0.548 0.0210 NS 0.696 0.906-0.600 0.0034 0.0182 NS NS
DUSP1 1.148 1.941-1.079 0.0093 0.0445 1.296 1.432-1.049 0.0034 0.0182 NS NS
EGR2 0.931 1.203-0.444 NS NS 2.060 2.352-0.991 0.0137 0.0486 0.0045 NS
GOT2 1.078 1.132-1.028 0.0034 0.0230 1.130 1.269-1.073 0.001 0.0078 NS NS
HIF1a 0.905 0.928-0.732 0.0068 0.0353 0.785 0.853-0.652 0.0137 0.0486 NS NS
ICAM1 1.215 1.437-1.083 0.0020 0.0230 1.156 1.329-1.084 0.0093 0.0371 NS NS
IL10 1.874 2.543-1.065 0.0420 NS 2.693 3.668-1.132 0.0068 0.0313 NS NS
IRS1 1.462 1.715-1.387 0.0024 0.0230 1.367 1.598-1.277 0.001 0.0078 NS NS
JUN 1.237 1.547-1.187 0.0068 0.0353 1.188 1.556-0.968 NS NS NS NS
MMP9 1.285 2.046-0.892 NS NS 1.509 2.154-1.342 0.001 0.0078 NS NS
p53 1.116 1.149-1.043 0.0029 0.0230 1.039 1.143-0.935 NS NS NS NS
PCK2 1.244 1.299-1.161 0.0005 0.0164 1.193 1.331-1.129 0.0005 0.0078 NS NS
PDK4 0.201 0.264-0.079 0.005 0.0164 0.143 0.250-0.088 0.0005 0.0078 NS NS
PLIN2 0.809 0.887-0.617 0.001 0.0219 0.700 0.818-0.595 0.0005 0.0078 NS NS
PPARa 1.088 1.158-1.028 0.0244 NS 1.169 1.243-1.083 0.0034 0.0182 NS NS
SLC27A1 1.147 1.288-1.088 0.0068 0.0353 1.065 1.262-.966 NS NS NS NS
SLC2A1 1.217 1.333-0.995 0.0210 NS 1.281 1.723-1.050 0.0068 0.0313 NS NS
TCF7L2 1.453 1.631-1.207 0.0015 0.0230 1.511 1.585-1.224 0.001 0.0078 NS NS
TGF-b1 1.108 1.164-1.040 0.0034 0.0230 1.069 1.164-1.000 0.0093 0.0371 NS NS

CD14+ PBMC Control FDR Group difference

Gene Fold change 75th - 25th percentiles p value q value Fold change 75th - 25th percentiles p value q value p value q value

ABCA1 0.448 0.544-0.320 0.002 0.0167 0.546 0.718-0.474 0.002 0.0379 0.0433 NS
ACOX1 0.899 1.002-0.558 0.0342 NS 1.080 1.217-0.946 NS NS 0.0106 NS
ATF4 1.125 1.200-1.034 0.0024 0.0167 1.231 1.402-1.031 0.0098 NS NS NS
CPT1a 0.739 0.885-0.485 0.0024 0.0167 0.723 0.985-0.653 0.0322 NS NS NS
DGAT2 1.070 1.356-0.660 NS NS 1.511 2.118-1.323 0.001 0.0379 0.0045 NS
EGR2 1.723 2.231-1.212 0.0015 0.0167 1.338 2.193-0.924 NS NS NS NS
H6PD 1.261 1.572-1.072 0.0029 0.0182 1.285 1.350-0.941 NS NS NS NS
IL8 1.070 3.691-0.629 NS NS 2.927 4.349-1.767 0.0029 0.0455 NS NS
JUN 1.230 1.387-1.136 0.0049 0.0256 1.137 1.385-0.856 NS NS NS NS
KCNQ1 1.127 1.337-0.993 0.0068 0.03333 1.259 1.354-1.017 NS NS NS NS
KIR2DL4 0.534 0.790-0.321 0.0039 0.0222 0.686 1.412-0.494 NS NS NS NS
MLCYD 0.910 1.123-0.808 NS NS 1.136 1.527-0.952 NS NS 0.0439 NS
PDK4 0.285 0.488-0.187 0.0005 0.0111 0.245 0.412-0.170 0.001 0.0379 NS NS
PFKL 0.765 0.794-0.695 0.001 0.0133 0.674 0.791-0.579 0.0039 NS NS NS
PLIN2 0.793 0.897-0.724 0.001 0.0133 0.758 0.971-0.711 0.0068 NS NS NS
PTGS2 0.989 1.618-0.583 NS NS 2.402 2.862-1.273 0.002 0.0379 0.0295 NS
SREBP1 1.313 1.486-1.153 0.0005 0.0111 1.219 1.390-1.106 0.0322 NS NS NS
STAT1 1.170 1.250-1.127 0.0005 0.0111 1.216 1.318-1.144 NS NS NS NS
TNFa 1.922 3.145-1.136 0.0024 0.0167 1.614 2.227-0.615 NS NS NS NS
February 2021 | Volume
 11 | Article
OGTT – induced regulation of gene expression is expressed as a fold change in circulating CD14+ PBMC and CD14- PBMC in first degree relatives of T2DM diabetic patients (FDR) and in
controls. Data are presented as median and 75th–25th percentile range of fold change (2h OGTT vs. basal gene expression). Effects of OGTT on mRNA levels within individual groups were
evaluated by paired Multiple Wilcoxon matched pairs signed rank tests, Multiple Mann-Whitney tests were used to analyze difference in OGTT-induced fold change between the groups.
Both tests were corrected to multiple comparisons by False Discovery Rate (method by Benjamini, Krieger, and Yekutieli). Level of significance for both p and q value was set to <0.05.
FDR, first-degree relatives of T2DM patients; NS, not significant; PBMC, peripheral blood mononuclear cells. Genes found to have a differential response to OGTT in FDR vs. controls
are in bold.
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Table 2). OGTT induced changes of PTGS2 mRNA were positively
correlated with the changes of another pro-inflammatory gene IL8
(Figure 2B). However the correction for multiple testing did not
confirm that the change of mRNA expression of above described
genes in response to OGTT was significantly different between FDR
and control subjects.
DISCUSSION

In this study we investigated the impact of family history of
T2DM on mRNA gene expression in circulating CD14+ and
CD14- PBMC in the fasting conditions and in response to
OGTT. FDR subjects included in our study were non-obese
and with normal glucose tolerance, but they already showed
markers of metabolic impairment: they had higher fasting and
post-OGTT glucose and insulin levels and higher HOMA-IR
index. Thus, blood cells of these FDR are chronically exposed to
mildly higher insulin and glucose levels and, consequently, may
react differently to glucose challenge. Indeed, our study suggested
that several genes could have different basal expression and/or
could be differentially regulated in response to OGTT in FDR
when compared to controls, in agreement with several previous
studies showing that the changes of gene expression in PBMC
Frontiers in Endocrinology | www.frontiersin.org 6
induced by glucose intake reflect the metabolic status of the
individual (12, 16, 17).

Importantly, we demonstrated that the detected alterations in
basal gene expression and its OGTT-induced regulation were
different in respect to the type of immune cell population, i.e.
CD14+ and CD14- PBMC. Among the genes that could be
considered as markers of one of the PBMC fractions (i.e., they
were expressed only in one fraction or had more than 20 times
higher/lower level of expression in CD14+ vs. CD14- PBMC), we
identified genes already recognized for its predominant
expression in CD14+ PBMC (CCL2, TLR2/4) or CD14- PBMC
(CCL5, PRF1) (18) but also genes that were not previously
recognized as markers of circulating CD14+ PBMC, namely
two members of EGR family of transcription factors (EGR1,
EGR2) and CD36, a transporter of fatty acids. These findings are
generally in accordance with the recently published dataset by
Monaco et al. who performed RNASeq in 29 subpopulations of
PBMC (19).

Although correction for multiple testing of mRNA levels in
the basal state revealed no differences between experimental
groups in either PBMC fraction, according to individual Mann
Whitney comparison, we found rather contra intuitive
alterations of IRS1, TLR2 and TNFa expression in CD14+

PBMC from FDR when compared with cells from controls.
A

B

FIGURE 2 | Effect of group (FDR vs controls) on oral glucose tolerance test (OGTT) –induced gene expression changes in circulating CD14+ (A) and CD14- PBMC
(B). The effect is presented as fold change (OGTT vs. basal) in each group. Gene expression was normalized to the geomean of reference genes RPS13 and TBP.
Box plots show the medians with 25th and 75th percentiles, whiskers show min and max values. Effects of OGTT on mRNA levels within individual groups were
evaluated by Multiple Mann-Whitney tests, with multiple comparisons by False Discovery Rate (method by Benjamini, Krieger, and Yekutieli). Correlations of changes
in gene expressions (fold change) and glucose levels at the end of OGTT (Spearman rank-order correlation coefficient) are shown. Level of significance for both
p and q value was set to <0.05.
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Higher mRNA levels of IRS-1, which we found in CD14+ PBMC
from FDR, are linked to higher insulin sensitivity and fewer
vascular complications in adipose tissue (20), i.e. to better
metabolic and cardiovascular health. Nevertheless overall levels
of IRS1 in monocytes were very low and together with
undetectable levels of GLUT4, it is unlikely that this difference
in IRS1 expression in CD14+ PBMC from FDR could have a
major impact on glucose metabolism in FDR. Similarly, lower
expression of pro-inflammatory TNFa and TLR2 detected in
monocytes from FDR could be considered as a sign of lower
inflammation but lower expression of these genes was not
associated with increased insulin resistance as evaluated by
HOMA-IR and Matsuda index (not shown).

FDR CD14- PBMC exhibited also lower expression of ATGL, a
lipase that was found to regulate phagocytosis by macrophages (21)
and the production of arachidonic acid in neutrophils andmast cells
(22). Although the role of ATGL in CD14- PBMC remains
unknown, ATGL mRNA levels in CD14- PBMC correlated
strongly with mRNA for genes involved in lipogenesis (FASN,
ACACA) as well as genes implicated with b oxidation (ACOX1,
Figure 1C). This nicely supports the existence of a newly discovered
metabolic interplay among lipogenesis, b oxidation, and lipolysis in
lymphocytes (abundant in CD14- fraction of PBMC), which
appears to be necessary for their activation, proliferation, and
differentiation, as fatty acids serve not only as a source of energy
but are also important building blocks for membrane synthesis
required for lymphocyte function and survival (23).

Results of our study suggest that FDR could differ from controls
by the response of gene expression in circulating CD14+ and CD14-

PBMC to OGTT. Although the alteration of the dynamic response
to glucose challenge in FDR was more pronounced in CD14-

PBMC, two genes expressed predominantly in CD14+ PBMC, i.e.
CCL2 and EGR2, were dysregulated in FDR vs. controls in response
to OGTT. EGR2 belongs to a zing-finger containing family of
transcription factors and plays a role in the activation of monocytes
and polarization of macrophages (24, 25). CCL2 is a well–known
chemoattractant for CD14+ PBMC, triggering their infiltration to
tissues and differentiation into macrophages (26). Thus, the
dysregulation of CCL2 expression in FDR could contribute to the
increased infiltration of CD206 negative monocytes/macrophages
into adipose tissue, which we observed previously in response to
experimental hyperglycaemia in obese women (27). In fact,
regulation of both, CCL2 and EGR2 mRNA expression, by higher
concentrations of glucose was previously demonstrated on the
model of THP1 macrophages (28) and on PBMC in newly
diagnosed pediatric patients with T1DM and T2DM suffering
from hyperglycaemia (3). Thus, the higher expression of EGR2 in
response to OGTT in FDR could lead to an aberrant immune
activation of monocytes after meals rich in simple carbohydrates.

In CD14- PBMC, glucose challenge uncovered an immunity-
related gene PTGS2 with potentially differential behavior in FDR
compared to controls. PTGS2 is involved in the conversion of
arachidonic acid to prostaglandins regulating the immune response
to inflammation (29). In T lymphocytes, PTGS2 expression is
induced upon T cell receptor activation by nuclear factor of
activated T-cells (NFAT) C2 (30, 31). Since NFAT transcription
Frontiers in Endocrinology | www.frontiersin.org 7
factors were shown to be glucose responsive in various cells,
including b cells producing insulin (32), PTGS2 upregulation
could be dependent on NFAT glucose sensing. Interestingly, the
changes induced by OGTT in PGST2 were correlated with those of
IL8, a well-known pro-inflammatory cytokine supporting the
recruitment and infiltration of neutrophils and T cells into local
inflammatory sites (33) and with glucose levels in 2 h OGTT
(Figure 1C). This suggests that not only CD14+ but also CD14-

PBMC of FDR could be predisposed to pro-inflammatory activation
by glucose challenge.

Nevertheless, majority of genes with differential behavior in
CD14- PBMC in response to glucose challenge in FDR vs. control
were associated with lipid metabolism. Despite the fact that the
regulation of lipid metabolism appears to be crucial for
the activation of lymphocytes (34), not much is known about
the possible link between glucose challenge, T2DM development
and lymphocyte activation. First, we observed an alteration of
OGTT-induced response of DGAT2, a gene involved in
lipogenesis, in FDR. Lipogenesis has been recently demonstrated
to be required for the survival, proliferation, and differentiation of
various types of lymphocytes (23, 34). Expression of DGAT2, the
enzyme catalyzing the terminal step in triglyceride synthesis, was
shown to be higher in leucocytes from T2DM patients and to
correlate with plasma glucose levels (35). Thus, it could be
envisioned that the higher glucose and insulin levels seen in
FDR (vs. controls) at the end of OGTT might stimulate
lipogenesis in lymphocytes through activation of SREBPs. These
transcription factors are, similarly to NFAT, expressed in
lymphocytes and function as sensitive glucose sensors (36).

Next, we found that not only lipogenesis but also lipid efflux
could be dysregulated in FDR lymphocytes since the expression
of ABCA1, a transporter enabling cholesterol export from the
cells to HDL particle (34), was lower in FDR lymphocytes in
basal conditions, and it was less suppressed in response to
glucose challenge. These results are in line with similar
findings described previously in macrophages - the deficit of
ABCA1 was detected in macrophage-derived foam cells and
peritoneal macrophages of diabetic mice (37) and human
macrophages in response to glucose (38). Although the data on
the role of ABCA1 or cholesterol efflux in lymphocytes are
scarce, the impairment of cholesterol efflux has been shown to
stimulate the proliferation of CD4+ T lymphocytes, which are
implicated in the development of atherosclerosis (39).

The last two genes with higher OGTT-induced response in
CD14- PBMC from FDR were ACOX1 and MLCYD, i.e. genes
implicated in b oxidation of fatty acids. ACOX1 is the first
enzyme of b-oxidation while MLCYD reduces levels of malonyl
CoA, a potent allosteric inhibitor of CPT1 activity, and thus
indirectly stimulates b oxidation. Both enzymes are present
prevalently in peroxisomes, which are involved in the
metabolism of long-chain and very-long-chain fatty acids (40).
Interestingly, peroxisomal oxidation has been suggested as a
compensatory mechanism to metabolize straight medium- and
long-chain fatty acids in cases of mitochondrial fatty acid b-
oxidation defects (41), which were observed in cells from T2DM
patients (42). Although peroxisomes have been identified as
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pivotal regulators of immune function and inflammation (40),
the detailed consequences of altered peroxisomal b oxidation in
lymphocytes have not been thoroughly investigated yet.
Together, as lipid synthesis and accumulation tend to drive a
pro-inflammatory phenotype, while pathways augmenting b-
oxidation and lipid efflux support an anti-inflammatory
phenotype of immune cells (34), the assessment of lipid
content and analysis of lipid turnover in FDR CD14- PBMC in
further studies is of great interest.

Although this is one of the rare studies enabling the
assessment of the nutrient challenge in circulating CD14+ and
CD14- PBMC in human subjects with or without T2DM family
background, it is, at the same time, subject to several limitations.
Namely, it is a low number of subjects (given by the thorough
matching of the two groups and insufficient RNA amount
isolated from CD14+ PBMC). Indeed, correction for multiple
testing revealed the lower statistical power of the results (higher
risk of false discovery), which is probably due to the combination
of low number of subjects and large number of analyzed genes.
Another limitation is the fact that only one sex (men) was
included in the study despite evidences that OGTT- induced
effects may be sex-dependent (43). In addition, the splitting of
PBMC into only two populations of cells limited the
interpretations as possible variations in the gene expression of
individual lymphocyte subtypes, dendritic and NK cells, which
could not be detected by this study, might have important
functional consequences on immunity but also the
development of T2DM. Nevertheless, the separation of PBMC
into two major subpopulations represents a simple strategy to
obtain cells of innate vs. adaptive immunity. Finally,
predisposition to T2DM was based only on the family history
of T2DM and was not assessed by the analysis of risk variants of
alleles known to contribute to T2DM development. Thus, we
cannot exclude that these subjects could be predisposed by the
exposition to the same environmental factors as their family
members with T2DM. In every way, FDR included in the study
exerted signs of worsened glucose metabolism showing that the
increased risk of T2DM in these subjects is biologically relevant.

In conclusion, although limited by a lower number of examined
subjects, our data suggest an altered basal and glucose-intake-
induced response of expression of genes involved in the control of
inflammation and lipid metabolism in both CD14+ (mostly
monocytes) and CD14- (mostly lymphocytes) PBMC in FDR of
T2DM patients when compared with controls. Importantly, the
gene regulation appeared to be PBMC-fraction dependent: it was
different in CD14+ PBMCwhen compared with CD14- PBMC. This
suggests essential differences in metabolism of CD14+ PBMC when
compared with CD14- PBMC and points at pathways sensitive to
the nutritional challenge represented by glucose intake. Future
studies on cell-specific gene regulation of PBMC in larger groups
of subjects are warranted.
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This is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums is
permitted, provided the original author(s) and the copyright owner(s) are credited and
that the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does not
comply with these terms.
February 2021 | Volume 11 | Article 582732

https://doi.org/10.3858/emm.2009.41.2.015
https://doi.org/10.1161/ATVBAHA.114.305144
https://doi.org/10.3390/ijms20163877
https://doi.org/10.1016/j.bbalip.2013.06.007
https://doi.org/10.1186/1758-5996-6-129
https://doi.org/10.1016/j.physbeh.2017.08.016
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles

	Signs of Deregulated Gene Expression Are Present in Both CD14+ and CD14- PBMC From Non-Obese Men With Family History of T2DM
	Introduction
	Material and Methods
	Subjects Characteristics
	Oral Glucose Tolerance Test
	Plasma Analysis
	Gene Expression Analysis
	Statistical Analysis

	Results
	Subjects Characteristics
	Basal Expression in PBMC Subpopulations
	Effect of OGTT on Gene Expression in PBMC Subpopulations

	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	FUnding
	Acknowledgments
	Supplementary Material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




