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ABSTRACT Adlercreutzia equolifaciens subsp. celatus DSM 18785 was isolated from
the cecal contents of a rat and is an obligately anaerobic equol-producing bacte-
rium. Here, we report the finished and annotated genome sequence of this orga-
nism, which has a genome size of 2,929,991 bp and a G1C content of 63.2%.

A dlercreutzia equolifaciens subsp. celatus DSM 18785 (Asaccharobacter celatus DSM
18785) is a Gram-positive, non-spore-forming, and obligately anaerobic bacterium

which has been isolated from the cecal contents of a rat in Japan (1). Strain DSM 18785
produces equol from the soy isoflavone daidzein, which is an agonist of the female
hormone estrogen (1). The estrogen-like action of soy isoflavones and their metabo-
lites has long been thought to have health benefits. Equol is one of the metabolites of
soy isoflavones converted by gut microbes. Recently, it has been the focus of research
due to its physiological action (2, 3).

In this study, strain DSM 18785 was obtained from the Japan Collection of
Microorganisms (JCM), RIKEN BRC, which participates in the National BioResource Project
of the MEXT, Japan. A single colony was cultured overnight at 37°C and grown in Gifu
anaerobic medium (GAM) broth (Nissui) supplemented with 0.5% arginine (adjusted to a
pH of 7 by 1N HCl) (4). Genomic DNA was extracted and purified using a Genomic-tip
20/G kit (Qiagen) according to the manufacturer’s protocol. A long-read sequencing
library was prepared using a rapid barcoding sequencing kit (product number SQK-
RBK004; Oxford Nanopore Technologies) and sequenced using a FLO-MIN106 flow cell
on a GridION device (Oxford Nanopore Technologies). The reads were base called,
demultiplexed, and adapter trimmed using GridION v.20.06.17 software with Guppy
high-accuracy mode.

From a total of 728.4Mb long reads (N50, 13.4 kbp) sequenced, reads over 20 kbp
(287Mbp in total, for an estimated coverage of 100�) were used for assembly with
Canu v.2.1.1 (5). The reads were not filtered by quality nor error corrected prior to as-
sembly. The genome was assembled into a single contig and was circularized manually
by deleting the overlapping end. The draft assembly was subsequently error corrected
with one round of Pilon v.1.23 (6), polished using 59.9 million raw Illumina short reads
obtained from Sequence Read Archive (SRA) data (accession number SRX5082739)
(7) in the National Center for Biotechnology Information (NCBI) (8) mapped to the
Canu assembly using the Burrows-Wheeler Aligner (BWA) v.0.7.11 (9). The genome
completeness was assessed using the CheckM tool provided by the DDBJ Fast
Annotation and Submission Tool (DFAST) (10, 11), resulting in 100% completeness
with the Coriobacteriaceae taxon. The genes were annotated using DFAST, and the
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genome was rotated according to the location of the dnaA gene. The final genome size is
2,929,991bp, with a G1C content of 63.2%, containing 2,466 putative coding sequences
(CDSs), 9 rRNAs, and 51 tRNAs. Default parameters were used for all software unless
otherwise specified.

As previous reported, the equol production genes daidzein reductase (dzr), dihydro-
daidzein reductase (ddr), tetrahydrodaidzein reductase (tdr), and dihydrodaidzein race-
mase which present in A. equolifaciens subsp. equolifaciens DSM 19450T (12) were also
found in A. equolifaciens subsp. celatus DSM 18785 (13). The homologs of two giant
genes, AEQU_0093 and AEQU_1251, encoding putative extracellular surface proteins
in A. equolifaciens subsp. equolifaciens DSM 19450T (14) were found in A. equolifaciens
subsp. celatus DSM 18785 as well. However, the sizes of the open reading frames were
smaller, 37,689 bp and 61,890 bp, respectively. The complete genome sequence
reported in this study will enable comparative analysis with closely related species to
elucidate the mechanisms allowing the production of equol.

Data availability. The chromosome sequence reported here was deposited in the
DDBJ under accession number AP024470, and the raw reads were deposited in the
Sequence Read Archive (SRA) under BioProject accession number PRJNA698616.
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