http://genomebiology.com/2000/|/2/research/0003. |

Research

‘Gene shaving’ as a method for identifying distinct sets of genes
with similar expression patterns

Trevor Hastie*', Robert Tibshirani™, Michael B Eisen*, Ash Alizadehs,
Ronald Levy', Louis Staudt!l, Wing C Chan*, David Botstein¥

and Patrick Brown3

Addresses: *Department of Statistics, and "Department of Health Research and Policy, Sequoia Hall, Stanford University, Stanford, CA
94305, USA. *Life Sciences Division, Lawrence Orlando Berkeley National Laboratories, and Department of Molecular and Cell Biology,
University of California, Berkeley, CA 94305, USA. $Department of Biochemistry, Stanford University, Stanford, CA 94305, USA.
TDepartment of Medicine, Division of Oncology, Stanford University, Stanford, CA 94305, USA. |IMetabolism Branch, DCS, National Cancer
Institute, Bethesda, MD 20892, USA. #Department of Pathology, University of Nebraska Medical Center, Omaha, NE 68198, USA.
¥Department of Genetics, Stanford University, Stanford, CA 94305, USA.

Correspondence: Robert Tibshirani. E-mail: tibs@stat.stanford.edu
Received: 16 March 2000

Revised: 16 May 2000
Accepted: 18 May 2000

Published: 4 August 2000
Genome Biology 2000, 1(2):research0003.1-0003.21

The electronic version of this article is the complete one and can be
found online at http://genomebiology.com/2000/|/2/research/0003

© GenomeBiology.com (Print ISSN 1465-6906; Online ISSN 1465-6914)

Abstract

Background: Large gene expression studies, such as those conducted using DNA arrays, often
provide millions of different pieces of data. To address the problem of analyzing such data, we
describe a statistical method, which we have called ‘gene shaving’. The method identifies subsets of
genes with coherent expression patterns and large variation across conditions. Gene shaving
differs from hierarchical clustering and other widely used methods for analyzing gene expression
studies in that genes may belong to more than one cluster, and the clustering may be supervised by
an outcome measure. The technique can be ‘unsupervised’, that is, the genes and samples are
treated as unlabeled, or partially or fully supervised by using known properties of the genes or
samples to assist in finding meaningful groupings.
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Results: We illustrate the use of the gene shaving method to analyze gene expression
measurements made on samples from patients with diffuse large B-cell lymphoma. The method
identifies a small cluster of genes whose expression is highly predictive of survival.

Conclusions: The gene shaving method is a potentially useful tool for exploration of gene expression
data and identification of interesting clusters of genes worth further investigation.

Background

Through the use of recently developed DNA arrays, it is
now possible to obtain accurate, quantitative (relative)
measurements of a large proportion of the mRNA species
present in a biological sample. DNA arrays have been used
to monitor changes in gene expression during important

biological processes (for example, cellular replication and
the response to changes in the environment), and to study
variation in gene expression across collections of related
samples (such as tumor samples from patients with
cancer). A major challenge in interpreting these results is
to understand the structure of the data produced by such
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The DLCL expression matrix, in no particular row or column order. The display is a heat map, ranging from bright green

(negative, underexpressed) to bright red (positive, overexpressed). The gray cells indicate missing measurements.
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The DLCL expression matrix with rows and columns ordered according to a hierarchical clustering applied separately to the

rows and columns.

Figure 2
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Figure 3
The first three gene clusters found for the DLCL data. Each is a collection of genes showing similar and strong (high variance)
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Figure 4

-dimensional

and ordered by a hierarchical clustering in this three

mean genes together,

space. The lower panel is similar, except here we show all the genes in each cluster, 33 in all.

The top panel shows the three signed

relevant groupings of genes and samples [1-13]. Although
the underlying principles and computational details of
these methods differ, they share the goal of organizing the

studies, which often consist of millions of measurements. A
variety of clustering techniques have been applied to such

data, and have proved useful for identifying biologically
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Figure 5
Schematic of the gene shaving process.

elements under consideration (such as genes) into groups
(clusters) with coherent behavior across relevant measure-
ments (such as samples). Generally absent is any consider-
ation of the nature of the coherent variation. For example,
one might want to identify groups of genes that have coher-
ent patterns of expression with large variance across
samples, or groups of genes that optimally separate
samples into predefined classes (such as different clinical

response groups in tumor samples). Here, we introduce a
new statistical method, which we call gene shaving, that
attempts to identify groups of elements (genes) that have
coherent expression and are optimal for various properties
of the variation in their expression.

Figure 1 shows the dataset used in our study, which con-
sisted of 4673 gene expression measurements on 48 patients
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Figure 6

Scatterplot matrix of the three column averages, or ‘super genes’, from each cluster.

with diffuse large B-cell lymphoma (DLCL). These data have
been described in detail previously [14]. The column labels
refer to different patients, and the rows correspond to genes.
The order of rows and columns is arbitrary.

Some authors have recently explored the use of clustering
methods to arrange the genes in some systematic way, with
similar genes placed close together (see [2] for developments
and [15] for an overview). In Figure 2, we have applied hier-
archical clustering to the genes and samples separately. Each
clustering produces a (non-unique) ordering, one that
ensures that the branches of the corresponding dendrogram
do not cross. Figure 2 displays the original data, with rows
and columns ordered accordingly.

Some structure is evident in Figure 2, and this method can be
used to recognize relationships among the genes and samples.

With any method that reduces the dimension of the data,
however, finer structure can be lost. For example, suppose the
expression of some subset of genes divides the samples in an
informative way, correlating with the rate of proliferation of
tumor cells, for example, whereas another subset of genes
divides the samples a different way, representing the immune
response, for example. Then methods such as two-way hierar-
chical clustering, which seek a single reordering of the samples
for all genes, cannot find such structure.

The method of gene shaving we describe here is designed to
extract coherent and typically small clusters of genes that
vary as much as possible across the samples. Figure 3 shows
three gene clusters for the DLCL data, found using shaving.
Some of the genes within each cluster lie close to each other
in the hierarchical clustering of Figure 2, but others, and the
clusters themselves, are quite far apart.
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1. Start with the entire expression matrix X, each row
centered to have zero mean.

2. Compute the leading principal component of the rows
of X.

3. Shave off the proportion o (typically 10%) of the genes
having smallest absolute inner-product with the
leading principal component.

4. Repeat steps 2 and 3 until only one gene remains.

5. This produces a nested sequence of gene clusters

SyD28,D2S8. DS, D-..-DS, where S, denotes a

1 2 A

cluster of k genes. Estimate the optimal cluster size k

using the gap statistic described in the section on the
gap estimate.

6. Orthogonalize each row of X with respect to X, the
average gene in Sy.

7. Repeat steps 1-5 above with the orthogonalized data, to
find the second optimal cluster. This process is
continued until a maximum of M clusters are found,
where M is chosen a priori.

Box |
The shaving algorithm.

In Figure 3 the samples have been ordered by values of the
average gene expression. This average gene is a good repre-
sentative of the cluster, as all the members are so similar.
The variance measures at the top of each cluster are dis-
cussed in more detail later. The clusters are all of different
sizes. We use an automatic method for determining the size
of the clusters, based on a randomization procedure that
protects us from looking too hard in the large sea of genes
and finding spurious structure. The three cluster-average
genes, one from each cluster, are reasonably uncorrelated
(see below and Figure 6). This is another aspect of the
shaving process - it seeks different clusters, where difference
is measured by correlation of the cluster mean. Figure 4
shows the results of a hierarchical clustering applied to the
three column-average genes. Whereas hierarchical cluster-
ing suggests two main gene groupings, the shaving process
may suggest more useful groupings.

This article is organized as follows. In the section ‘Gene
shaving’ we describe the method itself. The section entitled
‘The gap estimate of cluster size’ outlines the gap test for
choosing the cluster size. In the section ‘Predicting patient
survival’ we try to predict patient survival from gene cluster
averages. ‘Supervised shaving’ is discussed in the following
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Figure 7

Percent of gene variance explained by first j gene shaving
column averages (j = 1,2, ... 0) (solid curve), and by first j
principal components (broken curve). For the shaving
results, the total number of genes in the first j clusters is
also indicated.

section. Finally, in the ‘Conclusions’ we propose some
further generalizations. A more statistical treatment of gene
shaving is given in [16].

Results

Gene shaving

In this section we describe in detail our technique for finding
clusters like the example in Figure 3. A gene expression
matrix is an N x p matrix of real-valued measurements
X =x; The rows are genes, the columns are samples, and X
is the measured (log) expression, relative to a baseline. Typi-
cally there are missing entries in X. We use a technique
described in [17], an iterative algorithm based on the singular
value decomposition, for imputing missing expression values;
our analysis here assumes that X has no missing values.

Let S, be the indices of a cluster of k genes, and

1 1 1
3_(‘Sk: ( ;EXU’ ZEXI-Q, ey IEXI'P)

i€s, i€s, i€s,

be the collection of p column averages of the expression
values for this cluster. Then for each cluster size k, gene
shaving seeks a cluster S, having the highest variance of the
column averages:
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The three gene clusters from unsupervised shaving

Gene number ClonelD Description

Cluster |

2866 “139009” “Fibronectin 1”

2867 “358168” “Unknown UG Hs.106127 ESTs, Highly similar to (defline not available 4689136) [H. sapiens]”

2868 “323656” “MMP-2=Matrix metalloproteinase 2=72 kD type IV collagenase precursor=72 kD gelatinase=gelatinase A=TBE-1"
2907 “897910” “OSF-2os=osteoblast-specific factor=putative bone adhesion protein with homology with the insect protein fasciclin I”
2869 “359412” “Cyclin D2/KIAK0002=overlaps with middle of KIAK0002 cDNA”

2871 “754106” “TIMP-3=Tissue inhibitor of metalloproteinase 3”

2865 “526335” “MMP-9=Matrix metalloproteinase 9=92 kD Gelatinase B=92 KD type IV collagenase”

2870 “487878” “osteonectin=SPARC=basement membrane protein”

Cluster 2

2820 “753794” “BLC=BCA-1=B lymphocyte chemoattractant BLC=CXC chemokine”

785 “1334260” “Unknown UG Hs.120716 ESTs”

2521 “713158” “Unknown UG Hs.89104 ESTs”

801 “701361” “Similar to FXI-T I=FX-induced thymoma transcript”

2720 “814655” “Similar to retinol dehydrogenase type | (RODH I)”

2721 “701122” “Unknown UG Hs.119410 Homo sapiens cytokine receptor related protein 4 (CYTOR4) mRNA, complete cds”
2522 “1272196” “IRF-4=LSIRF=Mum | =homologue of Pip=Lymphoid-specific interferon regulatory factor =Multiple myeloma oncogene 1”
2659 “685177” “PTP-1B=phosphotyrosyl-protein phosphatase”

774 “701606” “CD10=CALLA=Neprilysin=enkepalinase”

771 “1305913” “Unknown UG Hs.106771 ESTs”

432 “417048” “Similar to human endogenous retrovirus-4”

781 “1367994” “myb-related gene A=A-myb”

2539 “182764” “EBI2=Epstein-Barr virus induced G-protein coupled receptor=Putative chemokine receptor”

757 “683405” “SA3=nuclear protein”

793 “1353041” “Unknown 166”

2494 “1357360” “Cyclin D2/KIAK0002=3\325 end of KIAK0002 cDNA”

2929 “469297” “DECI =basic helix-loop-helix protein”

728 “1338981” “Unknown UG Hs.137038 EST”

2656 “814768” “Unknown UG Hs.193857 ESTs”

787 “1338448” “Unknown UG Hs.224323 ESTs, Moderately similar to alternatively spliced product using exon 13A [H. sapiens]”
720 “815539” “JAW | =lymphoid-restricted membrane protein”

772 “700718” “Unknown UG Hs.202588 ESTs”

777 “1352112” “FMR2=Fragile X mental retardation 2=putative transcription factor=LAF-4 and AF-4 homologue”

Cluster 3

546 “725263” “immunoglobulin kappa light chain”

547 “1172268” “HKG7=cell surface protein in NK and T cells=G-CSF-induced gene”

The first value given is the gene number in the set of 3624. The second value is the ClonelD. Cross-referencing of this Clone ID with the Accession
number is available in the data tables at http://lIimpp.nih.gov/lymphoma/data.shtml

S; maximizes Var(¥ Sk) (1)

The important question of how to choose the cluster size k is
addressed in the next section.

Our procedure generates a sequence of nested clusters S, in
a top-down manner, starting with k = N, the total number
of genes, and decreasing down to k = 1 gene. At each stage
the largest principal component of the current cluster of
genes is computed. This eigen gene is the normalized linear
combination of genes with largest variance across the
samples. We then compute the inner product (essentially
the correlation) of each gene with the eigen gene, and
discard (‘shave off’) a fraction of the genes having lowest
(absolute) inner product. The process is repeated on the
reduced cluster of genes. The shaving algorithm is depicted
in Figure 5 and given in detail in Box 1.

There are a number of duplicate genes in the dataset. In
some cases the sequence for a given gene appears on the
microarray more than once, either by design or by acci-
dent. In other cases, more than one different EST
(expressed sequence tag) is present for the same gene.
Gene shaving can be affected by duplicate genes, since they
are highly correlated with each other. We therefore aver-
aged expression profiles for the duplicate genes, leaving
3624 unique gene profiles.

The sequence of operations 1-5 in Box 1 gives the first cluster
of rows - the first ribbon in Figure 3. Step 6 orthogonalizes
the data to encourage discovery of a different (uncorrelated)
second cluster. Note that although we work with the orthog-
onalized matrix in the shaving process for the second and
subsequent clusters, the derived clusters and their averages
involve the original genes.
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(@) Variance plots for real and randomized data. The percent variance explained by each cluster, both for the original data,
and for an average over three randomized versions. (b) Gap estimates of cluster size. The gap curve, which highlights the

difference between the pair of curves, is shown.

The shaving process requires repeated computation of the
largest principal component of a large set of variables. If
naively implemented, this requires the construction of a
N x N sample covariance matrix X of the genes, and the
computation of its largest eigenvector. We can avoid the
computational burden by working in the dual space, where
the matrices have dimension p x p. Furthermore, as we
require only the largest eigenvector, the computations can be
reduced even further by using the power method, using the
eigenvector of the previous cluster as a starting value.

The three resulting clusters are shown in Figure 3 and again
in Figure 4. Figure 6 shows the pairwise scatterplots of each
of the three column averages (‘super genes’) from the clus-
ters. The absolute correlations range from 0.27 to 0.68. The
full gene names for the members of the first three clusters
are given in Table 1.

It is useful to evaluate how much of the dimensionality of the
gene expression variation is captured by the clusters derived
from gene shaving. We can approximate the expression
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Average (absolute) gene correlation and Cox model p value,
for clusters of size 200 from supervised shaving and for
different values of o.. The value of Qa = 0. seems best, and
is used in the gene shaving procedure.

profile for each gene in the complete dataset as a linear com-
bination of the three super genes from each cluster (which
are simple averages of the genes in each cluster). The
percent variance explained by the first j = 1,2, ...10 super
genes is shown in Figure 7.

Thus the three gene clusters, involving a total of 33 genes,
explain about 20% of the variation. The percent variance
explained by the first j principal components (broken curve)
exceeds that from gene shaving. Each principal component
gives a non-zero weight to all 3624 genes, however.

The gap estimate of cluster size

Each shaving sequence produces a nested set of gene clus-
ters S, starting with the entire expression matrix and then
proceeding down to some minimum cluster size (typically 1).
If we applied this procedure to null data, in which the rows
and columns were independent of each other, we could still
find some interesting-looking patterns in the resulting
blocks. Hence, we need to calibrate this process so that we
can differentiate real patterns from spurious ones. Even in
the case of real structure, it is unlikely that a distinct set of
genes is correct for a cluster, and the rest not. More likely
there is a graduation of membership eligibility, and we have
to decide where to draw the line. Here we describe a proce-
dure based on randomization that helps us select a reason-
able cluster size.

Our method requires a quality measure for a cluster. We
favor both high-variance clusters, and high coherence

http://genomebiology.com/2000/1/2/research/0003.1 |

between members of the cluster. As the generation of the
cluster sequence was driven strongly by the former, we focus
on the latter in selecting a good cluster. By analogy with the
analysis of variance for grouped data, we define the follow-
ing measures of variance for a cluster S;:

1 1 _
Viw=— E [; 2 (g — X)) } Within Variance (2)
P = ies,
L2
Vp=— E(’_‘ ,—X)*  Between Variance (3)
Jj=1
) p
Vp=— E E (x; —X)* Total Variance (4
kpics, i=
=V +Vp

The between variance is the variance of the (signed) mean
gene. The within variance measures the variability of each
gene about the cluster average, also averaged over samples.
As this can be small if the overall variance is small, a more
pertinent measure is the between-to-within variance ratio
Vg / Vi, or alternatively, the percent variance explained

VB
v Y
R2=1008 = v = 5)
VT 1+ V—B

w

A large value of R? implies a tight cluster of coherent genes.
This is the quality measure we use to select a cluster from the
shaving sequence S,.

Let S, index the clusters of a given shaving sequence (with k
being the number of genes). Let D, be the R? measure for the
kth member of sequence. We wish to know whether D, is
larger than we would expect by chance, if the rows and
columns of the data were independent.

Let X be a permuted data matrix, obtained by permuting
the elements within each row of X. We form B such matrices,
indexed by b = 1,2, ... B. Let D, be the R? measure for
cluster S;®. Denote by D," the average of D, over b. The
Gap function is defined by

Gap (k) = D, - D;, (6)

We then select as the optimal number of genes that value of
k producing the largest gap:

k = argmax, Gap(k) (7)

The idea is that at the value k the observed variance is the
most ahead of expected. Multiple clusters are produced for the
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Figure 10
Cluster of 234 genes from supervised shaving.

DLCL-0013

DLCL-0018
DLCL-0014
DLCL-0010
DLCL-0039
DLCL-0020
DLCL-0027
DLCL-0004
DLCL-0034
DLCL-0005
DLCL-0051
DLCL-0037
DLCL-0030
DLCL-0001
DLCL-0008
DLCL-0011
DLCL-0032
DLCL-0052
DLCL-0009
DLCL-0029

randomized data just like for the original data, and the gap
test is used repeatedly to select the cluster size at each stage.

For the DLCL data, the maximum for the first cluster occurs
at eight genes. Figure 8 shows the percent-variance curves,
D, for both the original and randomized tumor data as a
function of size, and the gap curves used to select the specific
cluster sizes in Figure 3.

Predicting patient survival

One important motivation for developing gene shaving was
the wish to identify distinct sets of genes whose variation
in expression could be related to a biological property of
the samples. In the present example, finding genes whose
expression correlates with patient survival is an obvious
challenge. Group factors g, g, g, were created by splitting

each gene cluster in Figure 3 into two groups of 24
patients. We used each of these groupings as a factor in
Cox’s proportional hazards model for predicting overall
survival [18]. Of the group factors only g, was significant,
at the 0.05 level (p = 0.04).

In [14], a cluster of 380 genes was chosen on the basis of
their large variation over samples, and their ‘germinal
center B-like’or ‘activated B-like’ expression profiles. Using
these 380 genes, a hierarchical clustering produced two
groups of patients which were (just) statistically different in
survival. Close inspection shows that 18 of the 23 genes in
the second cluster above also fall into this cluster of 380
genes. Hence, gene shaving can find clinically and biologi-
cally relevant subdivisions in gene expression data in an
unsupervised fashion.
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Figure 12

The two groups of samples that showed highest and lowest expression of the gene cluster associated with survival.

It may be fortuitous that one of these groupings correlates
with survival, as the clusters were not chosen with survival in
mind. We next describe a modification of gene shaving that
explicitly looks for clusters that are related to patient survival.

Supervised shaving

The methods discussed so far have not used information about
the columns to ‘supervise’ the shaving of rows. Here we gener-
alize gene shaving to incorporate full or partial supervision.

As in Equation (1), we consider a cluster of genes S, having
column average vector Xg.. Let y = (y,, Y, .. y,) be a set of
auxiliary measurements available for the samples. For

example each y; might be a survival time for the patient cor-
responding to sample j or a class label for each sample, such
as a diagnosis category. Supervised shaving maximizes a
weighted combination of column variance and an informa-
tion measure J(x S y):

msax[(l — )« Var (xg) + o+ J(xg, Y] (8)
k

for fixed 0 <o <1. The value o =1 gives full supervision;
values between 0 and 1 provide partial supervision.

Choice of the measure J(x S0 y) depends on the nature of the
auxiliary information y. If the y codes class labels, J(xg, , y)
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Table 2

Cluster from supervised shaving applied to full set of 3624 genes

Position ClonelD Description

“-685” “712937” “hPMS1=DNA mismatch repair protein=mutL homologue”

“-3531” “1186043” “Unknown UG Hs.134746 ESTs,

“1661” “1352820” “Unknown UG Hs.231825 ESTs”

“-2667" “1356433” “Unknown 645”

*4798” “814622” “Unknown UG Hs.49614 ESTs”

“-3545” “713080” “CLK-2=cdc2/CDC28-like protein kinase-2"

* 4153 “1339106” “XE7=B-lymphocyte surface protein”

*4824” “1356501” “Unknown UG Hs.130721 ESTs”

“-3414” “1319801” “Similar to non-erythropoietic porphobilinogen deaminase (hydroxymethylbilane synt EC4.3.1.8)”
“-1577” “1353785” “Unknown UG Hs.| 19769 ESTs”

“-3242” “376942” “Ro ribonucleoprotein autoantigen (Ro/SS-A)=autoantigen calreticulin”
*4.3535” “1336373” “Similar to High mobility group (nonhistone chromosomal) protein isoforms | and Y”
“-3412” “344219” “5’-terminal region of UMK”

“-673” “279363” “Adenosine kinase”

“920” “1355987” “Unknown UG Hs.180836 EST”

*“800” “1358163” “Phosphatidylinositol 3-kinase p 110 catalytic, gamma isoform”

*4823” “1319062” “WIP/HS PRPL-2=WASP interacting protein”

*4799” “1339726” “Unknown |68”

*4788” “825199” “Unknown 164"

“-3544” “1285581” “Similar to myb-related gene A-myb 5’-region”

“-68” “589589” “homolog of Drosophila splicing regulator suppressor-of-white-apricot”

* 4759 “1333557” “Unknown 161"

“339” “1336946” “Unknown 80”

“-178” “1354703” “Unknown UG Hs.150458 ESTs”

*-933” “1184133” “CASPASE-3=CPP32 isoform alpha=yama=cysteine protease”

“.2714” “149994” “BI12 protein=tumor necrosis factor-alpha-induced endothelial primary response gene
“-3364” “271976” “ACY |=aminoacylase-1"

“118” “145409” “Low-affinity 1gG Fc receptor II-B and C isoforms (multiple orthologous genes)”
*ee71” “1317098” “tyrosine kinase (Tnkl)”

“-2623” “324973” “9G8 splicing factor”

* 783" “814601” “Unknown UG Hs.161905 EST”

“2421” “1370055” “Unknown 602”

“1855” “1358160” “Unknown 428”

*4813” “23173” “JNK3=Stress-activated protein kinase”

“-1412” “22438” “RYK receptor-like tyrosine kinase”

“1104” “1336779” “Unknown 2217

“1521” “1670861” “Unknown UG Hs.32533 ESTs”

“2568” “1184568” “Unknown UG Hs.120785 ESTs”

“3161” “365358” “pM5 protein=homology to conserved regions of the collagenase gene family”
“279” “1367883” “KIAA0430”

“338” “1336591” “Unknown UG Hs.180644 ESTs”

* 163" “746300” “Unknown UG Hs.136345 ESTs”

* 12661 “1302032” “Deoxycytidylate deaminase”

* 4787 “1338448” “Unknown UG Hs.224323 ESTs, Moderately similar to alternatively spliced product exon |3A [H.sapiens]”
“2567” “1354788” “Unknown 627”

*4758” “1333558” “Unknown 160”

“-3264” “704732” “Unknown 699”

“.2654” “724397” “lymphopain=C| peptidase expressed in natural killer and cytotoxic T cells”
“1132” “1354522” “Unknown UG Hs. 125285 ESTs, Highly similar to (defline not available 4200446) [Mlus]”
* 415957 “1186040” “Unknown UG Hs.136589 ESTs”

2320”7 “241481” “CASPASE- 0=Mch4=FLICE2”

“-3345” “502761” “Phosphoribosylglycinamide formyltransferase, phosphoribosylglycinamide synthetase phoribosylaminoimidazole synthetase”
“-33” 268727” “MYH=DNA mismatch repair protein=mutY homologue”

*4774” “701606” “CD10=CALLA=Neprilysin=enkepalinase”

“-533” “276483” “(2’-5’) oligoadenylate synthetase E”

“1388” “1350824” “Unknown UG Hs.163773 ESTs”

“-3244” “488754” “DAP-|=putative mediator of the gamma interferon-induced cell death”

“3097” “686331” “DCHT=Similar to rat pancreatic serine threonine kinase”

“-2641” “1355868” “Unknown 643”

“-3135” “199018” “P120=proliferating-cell nucleolar protein”

“-1578” “713301” “Unknown UG Hs.32218 ESTs,

“.2502” “153355” “LD78 beta=almost identical to MIP-1 alpha=chemokine”

Continued
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Table 2

Continued

Position ClonelD Description

“2328” “1341026” *“yotiao=protein of neuronal and neuromuscular synapses that interacts with specific variants of NMDA receptor subunit NR1”

“1863” “1357676” “Unknown UG Hs.19121 | ESTs”

“1399” “1356420” “Unknown UG Hs.207995 ESTs”

“-3401” “844479” “Pig8=p53 inducible gene=etoposide-induced mMRNA=Similar to E|124 = p53 responsive (sculus)”

“-3040” “1368740” “Unknown UG Hs.125307 EST”

“-3193” “152653” “C-1-Tetrahydrofolate Synthase, cytoplasmic”

“-3437” “814765” “kinase A anchor protein”

“1387” “1318821” “Unknown UG Hs.108614 Homo sapiens mRNA for KIAAQ0627 protein, partial cds”

“.2527” “1357085” “Acidic 82 kDa protein”

*1400” “682995” “Unknown 298”

*4724” “1286796” “Unknown UG Hs.61506 ESTs”

“413” “1334297” “Unknown 98”

* 789" “825217” “Unknown UG Hs.169565 ESTs,

“.2754” “1318136” “5’-AMP-activated protein kinase, gamma-| subunit”

“1052” “1240803” “Unknown 2117

“278” “815671” “Unknown UG Hs.101340 ESTs”

“-2501” “346550” “MIP-1 alpha=LD78 alpha=pAT464=Small inducible cytokine A3=macrophage inflammatory in (GOSI9-1)=chemokine”

“1988” “1320268” “Unknown 480”

“-903” “704637” “Unknown UG Hs.5354 ESTs”

“-2649” “181998” “NFAT3=NFATc4”

“.2648” “171693” “Lst-1=IC7=interferon-gamma-inducible gene present in lymphoid tissues, T cells, macrophages, and histiocyte cell lines
encoding a transmembrane protein”

“2373” “1338072” “Unknown 592”

“223” “1352327” “Unknown 52”

“1269” “1339210” “Unknown 261”

“-3004” *1289545” “Unknown UG Hs.187869 ESTs”

“1177” “700949” “Similar to myosin-IXb”

*4779” “703735” “Unknown UG Hs.28355 ESTs”

* 464" “685761” “Unknown 1117

“1229” “700643” “Unknown UG Hs.104492 ESTs”

“-3482” “51058” “E2F-4=pRB-binding transcription factor”

“-3584” “1358191” “Similar to DNA polymerase beta=DNA alkylation repair protein”

* 14297 “35356” “Neurotrophic tyrosine kinase, receptor, type 3 (TrkC)”

“-3136” 265590” “NFI=Neurofibromin”

“956” “1289384” “Unknown 198”

“2491” “814251” “SLAM=signaling lymphocytic activation molecule”

2083” “1353083” “Unknown UG Hs.136972 EST”

“1102” “1372068” “KIAA0603=Similar to TBCI”

“-1010” “595474” “Pak|=p2I-activated protein kinase”

“-3594” “1269836” “BCL-7B”

“-2270” 265267 “HSP70”

“-944” “1337124” “Unknown UG Hs.81248 CUG triplet repeat, RNA-binding protein |”

“-3330” “1301224” “Elongin B=RNA polymerase Il transcription factor Slll p18 subunit”

“1658” “1241118” “Unknown 346”

“-3140” “841361” “GRO2=GRO beta=MIP2 alpha=macrophage inflammatory protein-2 alpha=chemokine”

“-2651” “525540” “BCL-3”

“-3350” “rigel4” “Unknown UG Hs.| 16447 EST”

“-2990” “1289569” “Unknown UG Hs.146165 ESTs”

*4809” “1270618” “Unknown UG Hs.208970 EST, Weakly similar to neuronal thread protein AD7c-NTP [ens]”

“-3160” “703707” “Protein disulfide isomerase-related protein (PDIR)”

“874” “1320313” “Unknown UG Hs.132458 ESTs”

“-3390” “1339763” “Unknown 710”

“1343” “1318717” “LOK=lymphocyte oriented kinase=STE20-like protein kinase that is expressed predominantly in lymphocytes”

“-179” “301551” “Integrin, alpha V (vitronectin receptor, alpha polypeptide, antigen CD51)”

* 4723”7 “824754” “Unknown UG Hs.145058 ESTs”

“-3406” “1300230” “Unknown UG Hs.56421 ESTs, Weakly similar to Similarity to H.influenza ribonucl H [C.elegans]”

“.573” “1341161” “Similar to rhoGap protein”

* 47227 “1341225” “Unknown UG Hs.186709 ESTs,! [H.sapiens]”

‘22127 “1350784” “Unknown UG Hs.163202 EST”

“-3478” “417897” “cleavage stimulation factor 77kDa subunit=polyadenylation factor subunit=homolog the Drosophila suppressor of
forked protein”

“-887” “756965” “RGS14=regulator of G protein signaling”
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Table 2

Continued

Position ClonelD Description

“1344” “825333” “Unknown UG Hs.193017 ESTs, Highly similar to (defline not available 4220898) [ens]”

* 47437 “1358192” “Unknown UG Hs.228205 EST,

“1850” “1353072” “Unknown 426”

“-3391” “1340604” “Unknown UG Hs.127121 ESTs”

“-236” “686771” “tubulin-gamma”

“-3343” “293934” “CAS=chromosome segregation gene homolog”

“2566” “1350728” “Unknown 626”

“.2984” “955354” “putative cell surface ligand for T1/ST2 receptor (related to IL-1 receptors)”

“-3149” “366713” “GSK3=glycogen synthase kinase 3”

* 47207 “815539” “JAW I =lymphoid-restricted membrane protein”

“3177” “378364” “PRODH=proline dehydrogenase/proline oxidase=p53-induced gene”

“1268” “1339305” “Unknown 260”

“-3616” “1302092” “Unknown UG Hs.214428 ESTs”

“1210” “685368” “Unknown 243”

“2330” “1240688” “Unknown 577”

“259” “1369262” “KIAAO0019=similar to transforming protein tre”-2528" “| 18441 1” “MINOR=mitogen induced nuclear orphan
receptor=NOR-1=Nur77 orphan nuclear receptor family member”

“-3586” “1309295” “Unknown UG Hs.136985 ESTs”

2045” “1352570” “Unknown 494”

2067 “1320316” “Unknown 508”

“-3533” 298303” “TECK chemokine”

“-3530” “1355240” “Unknown UG Hs.130849 ESTs”

* 424697 “417226” “c-myc”

“1784” “1355354” “Unknown 394”

“-3023” *700772” “Smad2=Madr2=JV18-1=Homologue of Mothers Against Decapentaplegic (MAD)=Activated beta”

* 4793”7 “1353041” “Unknown 166”

“-3162” “1289546” “Similar to arginine/aspartate-rich 37.3K protein”

*1.2669” “1186215” “Unknown UG Hs.190288 EST”

“113” “1337185” “KIAA0037”

“-3434” “1338032” “CPR2=cell cycle progression 2”

“.2621” “1338456” “c-myc binding protein”

“1333” “824376” “Similar to (AF016450) Similar to acyltransferase”

“-3405” “1334813” “Unknown UG Hs.17883 protein phosphatase |G (formerly 2C), magnesium-dependent, isoform”

“2301” “300051” “myosin light chain-2”

“1144” “1372011” “Unknown UG Hs.209146 ESTs”

“-3436” “485171” “methionine adenosyltransferase alpha subunit”

“1339” “1355713” “Unknown 277”

“1156” “1351290” “Similar to (Z49125) C47G2.4”

*4721” “1353015” “Unknown 154”

“-3125” “86040” “Cytochrome P450, subfamily |, polypeptide 2 (aromatic compound-inducible)”

“258” “1367988” “Unknown 617

“-3258” “1304523” “APRT=adenine phosphoribosyltransferase”

“-3548” “1340120” “Unknown 733”

“I511” “1351701” “Unknown UG Hs.124230 ESTs”

“-3280” “826594” “replication factor C”

“-3363” “293035” “APEX=apurinic endonuclease=DNA alkylation repair protein”

“1190” “1371313” “Similar to G-protein coupled receptor pH218”

“1321” “1309301” “Unknown UG Hs.136987 EST”

“-3180” “591683” “GADDA45 alpha=growth arrest and DNA-damage-inducible protein alpha”

“1748” “1371159” “Unknown 377”

“-2781” “1288183” “BAK=BCL-2 family member”

“108” “1370125” “Unknown 22”

“-2941” “742132” “Interferon-induced 17 KD protein”

“-2994” “1271685” “Unknown UG Hs.176669 ESTs”

“1287” “1353226” “Unknown UG Hs.30209 Homo sapiens mRNA for KIAA0854 protein, complete cds”

“1039” “1671442” “Unknown UG Hs.171096 ESTs, Weakly similar to (defline not available 4456988) [ens]”

* 483" “52408” “ABR=guanine nucleotide regulatory protein”

“3624” “1355859” “Similar to myosin |IE heavy chain”

“-2746” “1350736” “IRF-3=interferon regulatory factor-3”

“1303” “665682” “Inkk2=JNK kinase 2=MAP kinase kinase”

“877” “1367968” “Unknown UG Hs.105072 ESTs”

“-3344” “1341245” “CD73=5’ nucleotidase”

Continued
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Table 2

Continued

Position ClonelD Description

“1191” “1371317” “Similar to arylacetyltransferase”

*4.310” “154493” “HNPP=nuclear phosphoprotein”

“1976” “1334933” “Unknown UG Hs.144684 ESTs”

“-2609” “1670958” “SRF=c-fos serum response element-binding transcription factor”

“405” “701689” “putative tumor suppressor (LUCAIS5)”

“-3319” “1307997” “Similar to bromodeoxyuridine-sensitive transcript protein=px|9”

“-3255” “810743” “MLF2=myelodysplasia/myeloid leukemia factor 2”

“2150” “1353466” “Unknown UG Hs.124360 EST”

“-2650” “511407” “69 kDa 2’5’ oligoadenylate synthetase (P69 2-5A synthetase)”

*252” “1356345” “Unknown UG Hs.49500 Homo sapiens mRNA for KIAAQ746 protein, partial cds”

“1337” “1367875” “Unknown UG Hs.128127 ESTs”

“1302” “1351266” “Unknown UG Hs.134197 ESTs, Moderately similar to FAM [M.musculus]”

“1386” “815165” “Unknown UG Hs.188732 ESTs”

“-31477 “549277” “cell cycle protein p38-2G4 homolog (hG4-1)”

“-3349” “1355524” “Similar to rapamycin-binding protein (FKBP25)”

“-173” “1287032” “Similar to Drosophila female sterile homeotic (FSH) homologue”

*TTT “1352112”7 “FMR2=Fragile X mental retardation 2=putative transcription factor=LAF-4 and AF-4 ogue”

“-3334” “346948” “nm23-H2=NDP kinase B=Nucleoside dephophate kinase B”

“-3256” “1303575” “Unknown UG Hs.123304 ESTs”

“1289” “704690” “Dyrké=Ser/Thr protein kinase”

“1133” “1351498” “Unknown UG Hs.189063 ESTs”

“2058” “1339890” “Unknown 503”

*-2927” 342647 “MAPKAP kinase (3pK)”

“1324” “687198” “Unknown UG Hs.125860 ESTs”

“-3047” “203704” “flavin-containing monooxygenase (FMO1)”

“.2662” “1288102” “Similar to nuclear-encoded mitochondrial NADH-ubiquinone reductase 24Kd subunit”

“1852” “1371200” “Similar to (Z78012) C52E4.6”

“1383” “1319529” “Unknown 293”

“-3360” “1671396” “Similar to friend of GATA-| (FOG)=zinc finger GATA-| coactivator in erythroid and megakaryocyte lineages”

“1228” “1336501” “Unknown 249”

“1353” “1356762” “Unknown UG Hs.127480 ESTs”

*“.575” “490387” “zinc finger protein 42 MZF-1”

“1242” “1031754” “Protein-tyrosine phosphatase 2C”

“1201” “1372274 “Unknown UG Hs.208983 ESTs,

*-2759” “489438” “MyD88=myeloid differentiation primary response protein=death domain-containing p

“1227” “1334962” “Similar to KIAA0437” i
“260” “1341211” “Unknown UG Hs.191209 ESTs” %
“-31377 “1250770” “Purine nucleoside phophorylase=Inosine phosphorylase=PNP” 2
“1385” “1371029” “Unknown 295” -
“1808” “1372833” “Unknown 403” o
“.2762” “1184153” “Unknown UG Hs.230206 EST” 3
“1046” “1352940” “Unknown 208” §.
“.2766” “756452” “tyk2=non-receptor protein tyrosine kinase”

“1204” “1370570” “Lamin B receptor (LBR)”

“1201” “1241671” “Similar to (AE000860) conserved protein [Methanobacterium thermoautotrophicum]”

* 47357 “686893” “Unknown UG Hs.226955 ESTs”

“1338” “1370103” “Unknown 276”

“255” “1338624” “Unknown UG Hs.192864 ESTs”

“1200” “1352335” “Unknown UG Hs.99701 ESTs”

“2133” “1340880” “Cancer associated surface antigen (RCASI)”

Genes are ordered from strongest to weakest correlation with survival. The first number is the position in the hierarchical clustering ordering (a minus
sign indicates the sign of the gene is to be flipped before averaging); * indicates a gene that also falls in the 380 gene cluster from Alizadeh et al. [14].

can be taken as the sum of squared differences between the
category averages X . For censored survival times y, think of
3_‘3,( as a covariate in a Cox (proportional hazards) model. If
the score vector from this model is g, we set J(xg, , y) = g9,
a p x p matrix. Computationally we first scale the genes so
that the within-risk set variance is 1.

When fully supervised, the shaving procedure reduces to
simply ranking the genes from largest to smallest Cox model
score test. Thus there is no role for principal components or
top-down shaving in this case. However, to encourage coher-
ence within the gene clusters, it can be better to use a partially
supervised criterion, which does use principal components
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Supervised gene shaving from full gene set. (a,c) Partially supervised with o. = 0.10; (b,d) fully supervised (o = 1). (a,b)
Training set p values; (c,d) permutation p values for the cluster average as a function of cluster size. The chosen cluster size of

234 is indicated.

and top-down shaving. This is demonstrated in the example
below. One can also include other prognostic factors in the
model, and direct shaving to find a gene cluster whose column
average is a strong predictor in the model. This can be done
with other models, for example a linear regression model for a
quantitative measurement. Operationally, all of these choices
for J are quadratic functions of the column averages Xg,, and
gene shaving can be carried out via principal components of a
suitably modified variance matrix.

We applied supervised shaving to the set of 3624 genes
from the DLCL samples. Figure 9 examines the effect of
different values of the supervision weight o, showing the
average (absolute) gene correlation and Cox model p value
for each choice. From this plot we chose the value
o = 0.10, which gives a good mix of high gene correlation
and low p value. Partially supervised gene shaving pro-
duced a cluster with 234 genes, shown in Figure 10 and in
Table 2.
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Overall probability of survival
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Kaplan-Meier survival curves in the two groups defined by the cluster of 234 genes shown in Figure 10, stratified by IPI.
Group | has high expression of positive genes and low expression of negative genes in Figure 9, and vice-versa for Group 2.

Table 3

Table 4

Cross-tabulation of gene shaving groups with IPI index

IPI
Low High
Gene shaving groups
| 7 7
2 I 7

Some of the genes are close together in the hierarchical clus-
tering order (indicated by the first number in Table 2), many
are not. Some genes have a negative sign, and others have no
sign. We will call these ‘negative’ and ‘positive’ genes respec-
tively. The negative genes have their expression values
flipped before being averaged with other gene expression
profiles. Figure 11a shows the gap curve, suggesting a cluster
size of 35. However, further analysis below suggests the
better cluster size of 234.

The cluster of 234 genes contains many of the strongest indi-
vidual genes for predicting survival. For example, 130 of the
strongest 200 genes are in the cluster. Some weaker genes
are, however, also in the cluster, the weakest being the
1332nd strongest gene among the full list of 3624. Figure 11b
shows the survival curves stratified by the low and high
expression of this gene cluster, using the median of the cut-
off point. The two resulting groups are shown in Figure 12.

A comparison of the patient groups obtained by gene shaving
with those obtained previously [14]

Patient groups of Alizadeh et al. [14]

Low High
Gene shaving groups
| 13 5
2 6 12

Using this grouping as a predictor in the Cox model for sur-
vival gave a highly significant p value (0.00042). However,
this p value must be scrutinized. Figure 13a,b shows the Cox
model p value as a function of the cluster size, for both par-
tially and fully supervised shaving. We will call these the
‘training set p values’. As the gene shaving process was
supervised by the survival times, the training set p values
will be biased downward, and it is important to adjust them
appropriately. We permuted the survival times, re-ran the
shaving process and computed the corresponding p values.
This was repeated 100 times, and for each cluster size we
computed the proportion of times the permutation p values
were less than or equal to the training set p values. These
proportions are shown in Figure 13c,d, and are unbiased
estimates of the true p values. Fully supervised shaving is too
aggressive, and the upward adjustment of the p values is
large. As a result the p value is around 0.05 for the full set of
genes, but none of the smaller clusters is significant at the

-
@
[
e
o
0
o
-
0
4
0
i)
8
(o]
s




20 Genome Biology Vol | No2 Hastie et al.

0.05 level. For partially supervised shaving, many of the p
values are below 0.05, and from this we chose the cluster
size of 234 near the minimum.

Using the full set of genes, flipping each to have positive cor-
relation with survival, averaging their expression values and
finally cutting at the median, gave a grouping nearly the
same as Groups 1 and 2 in Figure 12. The only change was a
swap between DLCL-0014 and DLCL-0018, and these two
samples are right at the median cutpoint between the two
groups in Figure 10.

The international prognostic index (IPI) A score was also
available for these patients. Components of the IPI include
age, level of the enzyme lactate dehydrogenase (LDH) and
the number of extranodal sites. As in [14], we dichotomized
IPI scores into low (0, 1 or 2) and high (3, 4 or 5). The result-
ing grouping seems to be about as predictive as the IPI
index, and is quite independent from it, as Table 3 indicates.

When added to a Cox model containing IPI, this grouping
had a training set p value of 0.0006. Figure 14 shows the
Kaplan-Meier survival curves for each group, stratified by
low and high IPI.

In [14], two patient groups were defined from a hierarchical
clustering tree grown from a 380-gene cluster. As a predic-
tor, the grouping was just significant in the low IPI group
only, at the 0.05 level. Table 4 gives a cross-tabulation of
that grouping with the one used in this paper in Figure 10.

Thus 25/36 = 69% of the patients are classified the same way
by both groupings. The patient grouping of Alizadeh et al.
[14] was based on a cluster of 380 genes, chosen for their
large variation over the samples. Our cluster of 234 genes
has 38 genes in common with this cluster of 380, and they
are indicated by an asterisk in Table 2. Five of the 234 genes
also appear in the unsupervised clusters found earlier, in the
second of the three clusters.

Conclusions

We have proposed a set of ‘shaving’ methods for isolating
interesting clusters of genes from a set of DNA microarray
experiments. The methods may be unsupervised, or may be
supervised - that is, use information available about the
samples such as a class label or survival time. The pro-
posed shaving methods search for clusters of genes
showing both high variation across the samples, and coher-
ence (correlation) across the genes. Both of these aspects
are important and cannot be captured by simple clustering
of the genes, or thresholding of individual genes based on
the variation over samples.

With our model-based approach for supervised shaving, one
can incorporate other prognostic factors in the search for

interesting gene clusters. If an outcome such as survival time
is available for each sample, the method searches for a gene
cluster whose column average gene X has a significant effect,
possibly the presence of other prognostic factors, for predict-
ing the outcome.

The microarray data x; we have considered are real-valued

expression levels. However, other kinds of arrays produce dif-
ferent kinds of data. In particular, some arrays detect the pres-
ence or absence of single-nucleotide polymorphisms (SNPs),
so that the x; values take on one of k > 2 unordered values.
The shaving methods described can be easily modified to
handle this kind of data. In detail, we construct k data matri-
ces X, X, ... X}, each of size n x m. The jjth element of X; is 1 if
X falls in class j, and zero otherwise. Letting % j=1,2,..kbe
the n x n covariance matrices of the genes in each X;, we
simply apply principal component shaving, using §=1 3; as
the variance matrix for the penalty. This can be done unsuper-
vised, or a supervision term can also be added.
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