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The mid-1970s and early 1980s have witnessed a burst of 
interest in fibrinolytic proteases as it became clear, primar-
ily through the pioneering work of Edward Reich and his 
coworkers (The Rockefeller University) that these enzymes 
might play an important role in tumor invasion and metas-
tasis [1–5]. The observation that oncogenic transformation 
leads to loss of fibronectin and reduced adhesion of tumor 
cells, the hypothesis that loss of fibronectin is due to its pro-
teolytic degradation, have further increased interest in the 
role of extracellular matrix proteins and proteases in tumor 
metastasis [6, 7].

The first major advances in the structural biology of 
fibrinolytic enzymes and fibronectin were made by the 
laboratory of Staffan Magnusson (University of Aarhus). 
Magnusson and coworkers have determined the primary 
sequence of plasminogen and have shown that five regions 
in the non-protease part of this protein show significant 
sequence homology with two internally homologous struc-
tures of prothrombin [8–10]. They have used the term 
kringle for these homologous regions since the two dimen-
sional representation of their disulfide-bridged structures 
resemble the classical shape of this Scandinavian cake 
[8–10]. The Magnusson lab has also determined the primary 
sequence of fibronectin. This large protein was found to have 
three types of internal homology regions (type I, type II and 
type III repeats), indicating that a number of partial internal 
gene duplications have occurred during the evolution of this 
multidomain protein [11, 12].

Our research group was attracted to this field at the end of 
the 70s with a view of clarifying structure-function aspects 
of plasminogen, plasminogen activators and fibronectin, 
focusing on kringles of plasminogen and the three types 
of internal homology units of fibronectin. We have dem-
onstrated that the kringle 5 domain of human plasminogen 

carries a benzamidine-binding site [13], but we focused pri-
marily on kringles 1 and 4 that were known to be responsible 
for the lysine-affinity of plasminogen. Based on chemical 
modification studies, we have demonstrated that the primary 
determinants of the lysine-binding site of kringle 4 are Argi-
nine 70 and Aspartic acid 56 that provide the positive and 
negative charges necessary for electrostatic binding of the 
ligand’s carboxylate and ammonium groups [14]. In the case 
of kringle 1 domain of plasminogen, we have shown that 
Arginines 32 and 34 are essential for the fibrin affinity of this 
domain [15]. Parallel with these structure-function studies, 
at the suggestion of Robert Williams (University of Oxford) 
we have started a collaboration to solve the solution structure 
of kringle 4 by NMR spectroscopy. Comparison of the NMR 
spectrum of kringle 4 with the spectra of various kringle 4 
species chemically modified at defined positions has permit-
ted the assignment of several resonances to specific resi-
dues in the kringle 4 sequence [16, 17]. The NOE studies on 
kringle 4 revealed that Leucine 45 is in close proximity of 
the sequentially distant Trp25/Trp61 residue pair, delineat-
ing a key structural feature of the kringle-fold. The binding 
of 6-aminohexanoic acid to kringle 4 was shown to cause 
shifts in the resonances of Trp71 (neighboring the ligand-
binding Arginine 70), suggesting that it may be lining the 
ω-aminocarboxylic acid binding site of the kringle. This 
localization of the binding site was in harmony with the 
result of Hochschwender and Laursen that modification of 
Trp71 results in loss of ligand affinity of kringle 4 [18].

During the course of these studies we have become aware 
of the collaborative efforts of the lab of Richard Laursen 
(Boston University) and the lab of Miguel Llinás (Carnegie-
Mellon University) to study the structure of plasminogen 
kringles by NMR spectroscopy [19–21]. In agreement with 
Robert Williams, we have decided to join forces, rather than 
duplicate efforts on kringle 4 [22]. We have participated 
in a collaboration with Miguel in a comparative study of 
human, porcine, bovine and chicken kringle 4 domains that 
has significantly facilitated resonance assignment [23–25]. 
Miguel continued his impressive NMR studies on kringle 
1and kringle 4 of plasminogen with the Laursen lab [26–32], 
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but he has also extended his studies to kringle 3 [33] and 
kringle 5 of plasminogen [34–37], the kringle 2 domain 
of the tissue-type plasminogen activator [38–41] and the 
kringle of urokinase [42, 43], making him an unquestionable 
authority on kringles.

 In the late 1980s the focus of our research has moved 
to other fields, therefore our work on kringles and our col-
laboration with Miguel, temporarily, has ended in 1988. We 
have, however, learned an important lesson from our studies 
on kringles: the conservation of residues in different, non-
orthologous kringles reflects their relative importance for the 
folding autonomy of kringle fold [44]. In this respect, it was 
noteworthy that the most highly conserved Trp25, Leucine 
45 and Trp61 residues of kringles interact to form the core 
of the kringle-fold [16]. In other words, since the accept-
ance of mutations in a fold family depends on the role and 
importance of the affected residues in the protein fold, the 
pattern of conserved residues, variable sequences, regions 
that tolerate gap events etc. are characteristic of a protein 
fold. Accordingly, ‘consensus sequences’ incorporating 
these features may be used to decide whether a sequence has 
the features typical of the given protein fold, therefore they 
may be used to detect distant homologies [45]. The applica-
tion of this principle allowed us to detect numerous “sur-
prising” homologies, some of which were relevant for both 
fibronectin and the proteases of the fibrinolytic system. For 
example, we have demonstrated that the type I repeats (fin-
ger domains) of fibronectin are homologous with a domain 
of tissue-type plasminogen activator [46], whereas the type 
II repeats present in the gelatin-binding region of fibronectin 
are homologous with the kringle domains of proteases [47].

The latter finding has led us to initiate a new round of col-
laboration with Miguel’s group, this time on fibronectin type 
II repeats. Initially, the primary goal of this collaboration 
was to explore whether the distant homology of type II units 
and kringles is supported by their structural and functional 
similarities. In the first part of our work, we have studied a 
type II domain of the collagen binding bovine seminal fluid 
protein PDC-109, resulting in the first structure of a type II 
domain [48–50].

Our project on type II domains, however, gained addi-
tional interest when it turned out that gelatinases also con-
tain type II domains. These metalloproteases play a key role 
in matrix remodeling, degradation of basement membranes 
and contribute significantly to the metastatic potential of 
tumor cells; they appeared promising targets for tumor 
therapy. Significantly, the three tandem type II domains of 
gelatinase A were shown to be responsible for the high affin-
ity of the enzyme for collagen [51].

The NMR spectroscopic studies of Miguel on the vari-
ous type II domains of gelatinase A [52–58] have provided 
important insight into the structure and function of these 
collagen-binding modules. These studies confirmed that 

kringle modules and fibronectin type II modules are related 
both in structure and function. This conclusion is now gen-
erally accepted; according to SCOP classification (http:// 
scop. mrc- lmb. cam. ac. uk), kringle modules and fibronectin 
type II modules represent two families of the kringle-like 
superfamily.

Although our collaboration with Miguel Llinás was pri-
marily through exchange of research materials via mail, 
exchanging ideas via email, we had regular personal con-
tacts at the biannual meetings of the International Society 
for Fibrinolysis & Proteolysis (that has a kringle image in 
its logo) or at the various Plasminogen Activator workshops. 
I enjoyed his company as he had a good sense of humor, 
appreciated the pleasant aspects of life and had a broad inter-
est in culture, history, music. He was an admirer of Bartók so 
I am glad that when he visited us in Hungary, I could show 
him the Béla Bartók Memorial House to get an impression 
about the life of this genius.

With Miguel’s passing, science has lost a dedicated sci-
entist and I have lost one of the best friends I acquainted 
with during the heydays of Plasminogen Activation research.
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