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ABSTRACT  Pyoverdines are fluorescent siderophores of pseudomonads that 
play important roles for growth under iron-limiting conditions. The produc-
tion of pyoverdines by fluorescent pseudomonads permits their colonization 
of hosts ranging from humans to plants. Prominent examples include patho-
genic or non-pathogenic species such as Pseudomonas aeruginosa, P. putida, 
P. syringae, or P. fluorescens. Many distinct pyoverdines have been identified, 
all of which have a dihydroxyquinoline fluorophore in common, derived from 
oxidative cyclizations of non-ribosomal peptides. These serve as precursor of 
pyoverdines and are commonly known as ferribactins. Ferribactins of distinct 
species or even strains often differ in their sequence, resulting in a large vari-
ety of pyoverdines. However, synthesis of all ferribactins begins with an L-
Glu/D-Tyr/L-Dab sequence, and the fluorophore is generated from the D-
Tyr/L-Dab residues. In addition, the initial L-Glu residue is modified to various 
acids and amides that are responsible for the range of distinguishable pyo-
verdines in individual strains. While ferribactin synthesis is a cytoplasmic pro-
cess, the maturation to the fluorescent pyoverdine as well as the tailoring of 
the initial glutamate are exclusively periplasmic processes that have been a 
mystery until recently. Here we review the current knowledge of pyoverdine 
biosynthesis with a focus on the recent advancements regarding the 
periplasmic maturation and tailoring reactions. 
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A BRIEF HISTORY OF PYOVERDINE RESEARCH 
In 1892, Gessard discovered yellow-green fluorescent pig-
ments of bacterial origin that he termed fluorescins [1]. 
These pigments, which later have been renamed pyover-
dines by Turfreijer [2], could be discolored by acidification, 
and they recovered their color upon neutralization [1]. It 
was proposed by Turfitt in 1936 that the ability to produce 
these green pigments may be used for classification pur-
poses [3]. Pyoverdine-producing bacteria are known today 
to belong to the genus Pseudomonas and form a subgroup 
therein, referred to as “fluorescent pseudomonads”. Pyo-
verdines from various strains have also been termed 
“pseudobactins”, beginning with a publication that intro-
duced this term based on claimed but not further detailed 
chemical and physical differences to known siderophores 

[4]. Subsequent structural analyses did not reveal any dis-
tinguishing characteristics to pyoverdines [5]. In fact, the 
“pseudobactin” structure was the first solved structure of a 
pyoverdine, but the name pseudobactin still occasionally 
occurs in literature. 

First functional insights were based on studies by King 
and coworkers who described in 1948 the induction of 
fluorescin (= pyoverdine) production by P. aeruginosa un-
der iron limitation [6]. Totter and Moseley found in 1952 
that the production is inversely correlated with the loga-
rithm of the iron concentration over a wide range [7]. It 
took 26 years, until the next major progresses regarding 
pyoverdine function were made. In 1978, Meyer and 
coworkers first determined the extremely high affinity of 
pyoverdine to iron that is in the range of 1032 [8], before 
they finally revealed the function of pyoverdine in iron 
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homoserine lactone, 
C4-HSL - N-butanoyl-L-homoserine 
lactone, 
L-ASA - L-aspartate β-semialdehyde, 
L-Dab - L-2,4-diaminobutyrate, 
L-fOHOrn - L-N5-formyl-N5-hydroxy 
ornithine, 
NRPS - non-ribosomal peptide 
synthetase, 
Ntn - N-terminal nucleophile, 
PLP - pyridoxal 5’-phosphate. 
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uptake [9]. It was concluded that pyoverdines are sidero-
phores, which are iron-binding chelators involved in iron-
transport into the cell [10]. In agreement with this function, 
it later turned out that the production of pyoverdines is 
tightly regulated in response to iron by the regulator Fur 
[11, 12]. This review focuses on the biosynthesis and secre-
tion of pyoverdines as summarized in Figure 1. For a more 
detailed summary on the discovery and earlier studies of 
pyoverdines, the reader is referred to an earlier excellent 
review [13]. 

 

CYTOPLASMIC INITIATION OF PYOVERDINE BIOGENE-
SIS  
The elucidation of the first pyoverdine structure [5] led to a 
new era in pyoverdine research that focused on the bio-
synthesis. Pyoverdines (Figure 2A) are generally composed 
of i) a characteristic 2,3-diamino-6,7-dihydroxyquinoline 
fluorophore, ii) a variable acyl side chain attached to the 3-
amino group of the fluorophore, and iii) a strain-specific 
peptide backbone, usually bound to the C1-carboxyl group 
of the ring system (reviewed in [14, 15]), although so called 

FIGURE 1: Current model for the biosynthesis, secretion, uptake and recycling of pyoverdines in P. fluorescens A506. The acylated ferri-
bactin precursor is synthesized in the cytoplasm by NRPSs and auxiliary enzymes organized in membrane associated complexes termed 
“siderosomes”. The cytoplasmic synthesis is detailed in the box at the bottom. PvdL synthesizes the conserved N-terminal tripeptide with 
its acylation, the other NRPS are responsible for rest of the peptide and therefore vary between strains with distinct sequences. The auxil-
iary enzymes MbtH, PvdG, PvdH, PvdA, PvdF, and PvdD play the indicated roles (see text for details). The acylated ferribactin is exported 
most likely by PvdE into the periplasm, where it is deacylated by the Ntn-type hydrolase PvdQ. Subsequently, PvdP catalyzes the oxidative 
cyclization, resulting in dihydropyoverdine. PvdO, possibly in conjunction with other proteins, facilitates the final oxidation, yielding the 
characteristic pyoverdine chromophore. Thereafter, side-chain modification-pathways transform the original L-glutamic acid side chain 
either to the succinamide, catalyzed by PvdN, or the α-ketoglutarate, catalyzed by PtaA. The modified pyoverdines are then secreted via 
various transport systems such as PvdRT-OmpQ, and bind outside ferric iron. The complex binds to FpvA and is TonB-dependently taken 
up. FpvF and FpvC reduce and dechelate the iron, which is taken up by the FpvDE transporter. The apo pyoverdine is recycled. See text for 
details. 
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isopyoverdines exist that have the peptide backbone at-
tached to the C3-carboxyl group [16, 17]. The strain-specific 
peptide backbone varies in its sequence and can either be 
linear or (partially) intramolecularly cyclized. Furthermore, 
it can contain a number of unusual amino acids, such as β-
hydroxy aspartic acid, β-hydroxy histidine, ornithine, cyclo-
N5-hydroxy ornithine, N5-formyl-N5-hydroxy ornithine, N5- 
acetyl-N5-hydroxy ornithine and N5-hydroxybutyryl-N5-
hydroxy ornithine, of which the hydroxamates or β-
hydroxy carboxylates contribute to iron-chelation. Addi-
tionally, the amino acids in the peptide backbone may also 
be isomerized to the D-enantiomeric form [13, 14]. 

Pyoverdine biogenesis starts in the cytoplasm, where 
non-ribosomal peptide synthetases (NRPSs) such as PvdL 
[18], PvdI [19] and PvdD [20, 21] (depending on the strain) 
assemble an initially acylated ferribactin, the peptide pre-
cursor for pyoverdines [22]. NRPSs are modular enzymes 
that add specific amino acids, one per module, to a grow-
ing peptide [23]. Each module first adenylates its cognate 
amino acid at an adenylation domain and transfers it to a 
free thiol of a covalently bound phosphopantetheine co-
factor. The peptide bonds are formed at condensation do-
mains of the modules, thereby transferring growing pep-
tides onto the phosphopantetheine-bound amino acid of 
the next module. Additional tayloring reactions and epi-
merizations can be catalyzed by specific domains [24]. Fi-
nally, a thioesterase must cleave the thioester bond to 
release the peptide from the phosphopantetheine cofactor 
of the last module. Module 1 of PvdL incorporates either a 
myristic- or myristoleic acid side-chain instead of an amino 
acid as first building block [25, 26], which is why ferribactin 
is acylated on the free amino group of the first incorpo-
rated amino acid. The first three amino acids of ferribactins, 
which are also incorporated by PvdL, are always L-glutamic 
acid (L-Glu), coupled via its γ-carboxy group to D-tyrosine 
(D-Tyr) and L-2,4-diaminobutyrate (L-Dab). This is im-
portant as the characteristic chromophore is derived from 
the D-Tyr and L-Dab residues, and we will later see that 
also the L-Glu residue at the N-terminus seems to be im-
portant, as several enzymes are produced that modify this 
residue.  

The unusual amino acids in ferribactin are synthesized 
by pyoverdine-specific biosynthetic enzymes. L-Dab is pro-
duced by PvdH from L-aspartate β-semialdehyde (L-ASA) 
[27], whilst L-N5-formyl-N5-hydroxy ornithine (L-fOHOrn) is 
produced in two steps from L-ornithin by PvdA-dependent 
hydroxylation [28–31] and PvdF-dependent formylation 
[32]. It has been proposed that all these enzymes, together 
with the NRPSs, may form a membrane associated complex 
termed “siderosome”, which could circumvent cytoplasmic 
toxicity [33, 34].  

Beside these enzymes, a small MbtH like protein has al-
so been found to be associated with NRPSs  of cytoplasmic 
ferribactin synthesis [35]. The structure of this protein 
from P. aeruginosa has been solved and it was demon-
strated to play a role in pyoverdine production or secretion 
[36]. MbtH proteins have been shown to enhance the ac-
tivity of NRPS adenylation domains to a variable extent [35, 
37], but the specific function of the MbtH like protein in 

ferribactin biosynthesis is unclear. Also, a soluble thi-
oesterase PvdG has been implied to be involved in pyover-
dine production [38]. The corresponding gene pvdG is or-
ganized together with pvdL, and an interposon mutagene-
sis of pvdG abolished pyoverdine production [38]. As only 
the last NRPSs of ferribactin synthesis, PvdD, has been 
shown to possess its own thioesterase active site motif [20], 
it may be that PvdG provides that functionality in trans for 
PvdL and possibly also for PvdI (Figure 1). PvdG might have 
overlapping function with a potential second soluble thi-
oesterase (PA2411) [39], which could explain why its ge-
netic inactivation did not abolish pyoverdine production 
[38]. In specific strains, further auxiliary enzymes can be 
involved in cytoplasmic ferribactin biosynthesis steps. For 
example, there exist P. aeruginosa strains that produce a 
pyoverdine with an N-hydroxy-cyclo-ornithine residue, the 
so-called type-II pyoverdine, and a specific acylationprotein, 
PvdYII, is responsible for this [40]. It is believed that most 
likely an acetylation of N-hydroxy-ornithine is required for 
the cyclization at some stage before the peptide is released 
from the NRPS [40]. 

 

PERIPLASMIC COMPLETION OF PYOVERDINE 
SYNTHESIS 
Transport of the ferribactin precursor – some questions 
remain 
The acylated ferribactin is most likely immediately translo-
cated across the cytoplasmic membrane into the periplasm 
by the ABC transporter PvdE [41, 42]. The best evidence for 
this role comes from genetic studies that demonstrated 
abolished pyoverdine secretion in a PvdE interposon dele-
tion mutant of strain P. aeruginosa PAO1, and the com-
plementation of this phenotype by expression of the pvdE 
gene [42]. Notably, that study showed that the pvdE mu-
tant also did not display any periplasmic pyoverdine fluo-
rescence anymore, indicating that PvdE must interfere with 
a step prior to fluorophore formation, which could well be 
ferribactin transport. A potential role in transport of the 
pyoverdine precursor has also been suggested in bioinfor-
matic studies, that categorized PvdE to a class of ABC 
transporters for modified cyclic peptides [43]. Interestingly, 
two older experimental studies had already inactivated the 
pvdE gene with somewhat different results. The inactiva-
tion of pvdE in P. aeruginosa OT11 resulted in complete 
absence of pyoverdine in culture supernatants [41], 
whereas a transposon mutagenesis study identified four 
clones of strain PAO1 MT1 with inactivating insertions in 
pvdE that all showed a specific lower fluorescence in the 
culture supernatant [44]. However, this fluorescence was 
not acid-quenchable and thus the compound was not pyo-
verdine. Instead it was speculated to represent a precursor 
of pyoverdine or a degradation product [44]. A transport of 
acylated ferribactin by PvdE has not yet been demonstrat-
ed in vitro, and the absence of fluorescence in the 
periplasm might certainly also have other reasons, albeit 
the transporter function is definitively the most likely sce-
nario.  
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FIGURE 2: Structural aspects of pyoverdines. (A) The structure of pyoverdine from P. fluorescens A506. (B) The condensation occurring in 
ferribactins. (C) Current model of periplasmic pyoverdine fluorophore biosynthesis. Note that the exact position of the hydroxyl group 
(black/grey) in malamide or malic acid is not resolved. See text for details. R2 (blue) designates the peptide moiety. 
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Deacylation of the ferribactin precursor – quorum signal-
ing meets pyoverdine production 
In the periplasm, the acylation of ferribactin is removed by 
the Ntn-type hydrolase PvdQ [25, 45]. This now established 
function was first proposed by Visca et al. [23]. PvdQ was 
initially discovered as quorum-quenching enzyme, which 
acts by deacylating the autoinducer N-(3-oxododecanoyl)-
L-homoserine lactone (3-Oxo-C12-HSL) by hydrolysis of its 
amide bond [46]. The enzyme is produced as a proenzyme 
that autoproteolytically cleaves itself in the periplasm by 
excising a 23-residue spacer forming an 18 kDa α-chain and 
a 60 kDa β-chain, which reassociate to form a functional 
heterodimer [46]. It is an interesting aspect that pathways 
of quorum sensing and pyoverdine production converge in 
PvdQ, which is a true bifunctional enzyme. The function of 
PvdQ in quorum sensing of P. aeruginosa is believed to 
alter the ratio between the two autoinducers found in this 
species, namely the PvdQ substrate 3-Oxo-C12-HSL and the 
short-chain autoinducer N-butanoyl-L-homoserine lactone 
(C4-HSL), which is believed to specifically adapt gene ex-
pression to specific host environments [47]. C4-HSL is not a 
substrate of PvdQ [48]. A good example for effects of an 
altered ratio between the two autoinducers may be the 
effect of markedly reduced pyocyanine production in re-
sponse to reduced 3-Oxo-C12-HSL levels [48]. Pyocyanine 
generates oxidative stress and harms host organs [49]. It 
thus might not be coincidental that pyoverdine production, 
which depends on the presence of PvdQ, is coupled with a 
reduction of host-threatening virulence: Both may serve to 
establish a permanent stable habitat in the host. A pheno-
typic analysis of a pvdQ deletion mutant of P. aeruginosa 
strain PAO1 indicated that PvdQ is required for swarming, 
biofilm formation and virulence [50]. While the swarming 
and virulence phenotypes could be attributed to the ab-
sence of pyoverdine, the biofilm defect could not be sup-
pressed by external addition of pyoverdine and thus may 
relate to quorum sensing. Interestingly, the production of 
PvdQ is tightly regulated and induced under iron-limiting 
conditions, which is another support for the idea that the 
effects of PvdQ on quorum sensing are specifically required 
when pyoverdines are produced [50]. It would be good to 
know why all ferribactins initially need to be acylated and 
deacylated again after transport. One reason could be a 
membrane attachment that could help to anchor the pre-
cursor compound at the cytoplasmic membrane, which 
may improve the efficiency of the synthesis at clustered 
siderosomes or help to avoid its diffusion into the cyto-
plasm and thereby could guarantee its efficient transport. 
Another reason could be some mechanistic requirement 
for the transport system. A third reason may simply be the 
introduction of a biogenesis step that is controlled by an 
enzyme, which coordinates pyoverdine production with 
quorum sensing and virulence. As PvdQ influences the ad-
aptation of fluorescent pseudomonads to host environ-
ments, it has been considered as target for inhibitors that 
hopefully may help to reduce the ability to thrive in hosts 
by blocking pyoverdine synthesis. After having solved the 
structure of PvdQ from P. aeruginosa, researchers suc-
ceeded in identifying such inhibitors, which were capable 

to inhibit growth of P. aeruginosa under iron-limiting con-
ditions [51–53]. 
 
Periplasmic formation of the fluorophore – the central 
roles of PvdP and PvdO 
After ferribactin is deacylated, the fluorescent dihy-
droxyquinoline ring system is generated, which transforms 
the ferribactin into a pyoverdine. This ring system is strictly 
conserved in pyoverdines and provides a planar scaffold 
for two oxo-ligands of the siderophore. As mentioned be-
fore, ferribactin is always synthesized with the three N-
terminal residues L-Glu/D-Tyr/L-Dab, and the tyrosine and 
diaminobutyrate residues of these form the fluorophore 
[54]. In ferribactin, L-Dab 4-amino group is condensed with 
the carbonyl group of the neighboring D-Tyr (Figure 2B). 
An oxidative cyclization cascade as proposed by Dorrestein 
et al. [55] likely results in the formation of the three-ring 
fluorophore (Figure 2C). In that oxidative cyclization cas-
cade, the tyrosine side chain is first hydroxylated to form a 
catechol that is then oxidized to an o-quinone. This facili-
tates the intramolecular addition, involving the 1-amino 
nitrogen atom from the neighboring L-Dab cycle and the 
quinone ring, resulting after tautomerization in the dihy-
dro-dihydroxyquinoline system of dihydropyoverdine. The 
initial hydroxylation and oxidation steps are catalyzed by 
the copper-containing tyrosinase PvdP [56], which thereby 
also promotes the cyclization and formation of the dihy-
dropyoverdine. This study observed a completion of the 
fluorescent fluorophore in the in vitro PvdP activity assays 
and suggested that PvdP is responsible for the complete 
fluorophore formation [56], which contrasted earlier stud-
ies that proposed the existence of an iron-enzyme-
catalyzed oxidation of dihydropyoverdine [57]. Also the 
detection of secreted dihydropyoverdine in a Pseudomo-
nas strain supported the view that a single enzyme does 
not catalyze the complete conversion of ferribactin to the 
final fluorophore [58]. Indeed, a rapid autoxidation can in 
principle complete the fluorophore under alkaline condi-
tions [59], but recent studies demonstrated that this does 
not occur under weakly acidic physiological conditions, as 
found in the periplasmic space [60]. It could be shown that 
a mutant strain lacking the putative oxidoreductase PvdO 
produced the dihydropyoverdines, indicating that PvdP 
catalyzes only the initial hydroxylation and first oxidation, 
whereas the final oxidation depends on PvdO [60]. PvdO as 
purified from a heterologous Escherichia coli system did 
not contain a detectable cofactor and was inactive [60]. It 
remains to be clarified whether active PvdO can be ob-
tained that carries out the second oxidation alone, or 
whether it needs to associate with other components, such 
as specific electron transport systems or possibly the en-
zyme PvdP. Importantly, PvdO and PvdP always occur to-
gether, and currently both seem to be the only enzymes 
that are directly involved in the formation of the pyover-
dine fluorophore [60].  

As alternative to the above described oxidative cycliza-
tion cascade [55], a mechanism has been postulated based 
on the observation of a trihydroxylated “pseudoverdin” 
that was produced by a pyoverdine deficient mutant of 
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P. aeruginosa PAO1, which was complemented by a cosmid 
gene bank clone to re-established fluorescence [61]. The 
trihydroxylated “pseudoverdin” in that strain was not func-
tional in iron acquisition and it was essentially an artificial 
system with unidentified genetic elements, but the result-
ing structure could permit an intramolecular Bucherer re-
action as basis for the ring formation. Based on the identi-
fication of dihydropyoverdine-7-sulfonic acids, it was also 
proposed that a sulfonation can occur to facilitate this in-
tramolecular Bucherer reaction [62, 63]. However, sul-
fonated dihydropyoverdines appear to be very lowly abun-
dant and they might represent adducts of media constitu-
ents to the reactive dihydropyoverdine. As the conversion 
of dihydropyoverdine to pyoverdine most likely requires 
only one further enzyme, PvdO, and as the pvdO mutant 
did not accumulate a sulfonated dihydropyoverdine, we 
think that the Bucherer pathway is unlikely to be realized 
in this biosynthesis. 

The electron transport pathways that are involved in 
the oxidation reactions are of fundamental importance and 
have not yet been clarified. Most relevant in this respect 
are studies with P. fluorescens ATCC17400, which show 
that the periplasmic membrane-associated oxidoreductase 
CcmC is involved [64–66]. CcmC is well-known for its role 
as hemochaperone in periplasmic c-type cytochrome bio-
genesis [67–70], but it does not seem to be the cyto-
chrome biogenesis role of CcmC that is relevant for its pyo-
verdine-related role. A very interesting mutagenesis study 
could dissect both functions of CcmC, indicating that dis-
tinct regions of this protein are involved in the two pro-
cesses [66]. The inactivation of CcmC has been described to 
reduce the level of thiol-oxidation in the periplasm, sug-
gesting that oxidized thiols or more generally the oxida-
tion-power in the periplasm may be relevant for pyover-
dine formation  [64]. In this context, it is interesting that 
the addition of cysteine to the growing ccmC mutant cul-
ture resulted in formation of ferribactin [64]. As it is now 
clear that PvdP is responsible for the conversion of ferri-
bactin to dihydropyoverdine, it is likely that electrons must 
be transferred from PvdP to a periplasmic redox active 
compound that requires CcmC functionality.  
 
The side chain modifications – surprising periplasmic 
reactions catalyzed by PvdN and PtaA 
While the conservation of the residues D-Tyr/L-Dab at posi-
tions 2 and 3 in all ferribactins is required for fluorophore 
biosynthesis, the conservation of the L-Glu at position 1 in 
ferribactins is not that easy rationalized. This acidic residue 
forms an amide bond via its γ-carboxylic group to D-Tyr 
and thus possesses free α-carboxy and α-amino groups. 
Importantly, mature pyoverdines usually do not contain 
these residues any more. Instead, depending on the strain 
analyzed, they usually possess a succinamide, succinate or 
α-ketoglutarate at this position, and sometimes malamide 
and malic acid are found, or even traces of intramolecular 
cyclized succinic acid (Figure 3). P. aeruginosa, for example, 
converts the glutamate completely to succinamide, succin-
ate or α-ketoglutarate. It is unknown, why these modifica-
tions are made, but it has been speculated that they could 

play a role under specific environmental conditions or 
niches that could so far not be mimicked in pure cultures 
under laboratory conditions [71]. 

Until recently, no enzyme could be identified as being 
responsible for these “tailoring” modifications. The reason 
for this was the fact that the candidate proteins, the func-
tionally uncharacterized periplasmic enzymes encoded in 
pyoverdine biosynthesis gene clusters, were believed to be 
essential for pyoverdine formation [38]. Three of these 
periplasmic enzymes, PvdM, PvdN, and PvdO, are usually 
encoded in an operon. Interposon mutagenesis of the cor-
responding genes in P. aeruginosa indicated essential roles 
of these genes in pyoverdine biosynthesis, although it was 
already noted in the first of these studies that complemen-
tation analyses were required to exclude polar effects in 
the pvdMNO operon [38, 42, 72]. In recent studies that 
used in frame deletions and complementations in P. fluo-
rescens strain A506, which produces the same pyoverdine 
modifications as P. aeruginosa, it turned out that only the 
first gene in this operon is indeed essential, whereas PvdO 
is not essential, being responsible only for the final oxida-
tion step of the fluorophore (see above), and the absence 
of PvdN resulted only in abolished formation of succina-
mide and succinic acid [71]. This study therefore revealed 
the first tailoring enzyme for the periplasmic glutamic acid 
modification. PvdN is an interesting enzyme for two rea-
sons: (i) It is a PLP-containing enzyme that catalyzes a new 
PLP-dependent reaction mechanism, a decarboxylation 
under retention of an amino group at the α-carbon atom 
[71], and (ii) it is transported by the twin-arginine translo-
cation system as folded protein that requires cytoplasmic 
PLP binding to be transport competent [71, 73]. When the 
active site lysine is mutated, PvdN remains stuck in the 
membrane, most likely due to transport-incompatible, 
unfolded hydrophobic regions [71]. As PvdN catalyzes the 
direct formation of succinamide from glutamate and is also 
required for the occurrence of succinate that is most likely 
the spontaneous hydrolysis product of succinamide, the 
formation of α-ketoglutarate from glutamate requires an-
other enzyme, which recently turned out to be a novel PLP-
containing transaminase, termed PtaA for “periplasmic 
transaminase A” [74]. PtaA is usually encoded outside the 
large pyoverdine gene clusters, but an interesting excep-
tion has been recognized (P. putida H8234) where its gene 
substitutes the gene encoding PvdN. There are pyoverdine-
producing pseudomonads that have both enzymes, PvdN 
and PtaA, some have only PvdN, and others only PtaA. 
Consequently, some strains produce the products of both 
biosynthesis branches, whereas others produce only prod-
ucts of one or the other branch [71, 74]. 

PtaA is a “normal” PLP-containing transaminase. As 
PtaA is also present in a number of species incapable of 
pyoverdine production, it has been suggested to also be 
involved in other periplasmic biosynthesis pathways, which 
is why it received the general name “periplasmic transami-
nase A” [74]. What is surprising and what makes this en-
zyme unusual is simply the fact that it is active in the 
periplasm. Like PvdN, PtaA is transported together with its 
PLP cofactor in a folded conformation via the twin-arginine  



M. Ringel and T. Brüser (2018)  Pyoverdine biosynthesis 

 
 

OPEN ACCESS | www.microbialcell.com 430 Microbial Cell | OCTOBER 2018 | Vol. 5 No. 10 

protein translocation pathway [74]. The cofactor thus en-
ters the periplasm together with its protein in a tightly 
bound form, and it can therefore be assumed that the PLP 
is somehow regenerated from pyridoxamine after each 
reaction cycle inside the periplasm. Together, the recent 
advancements in the field established that there are two 
independent branches for the glutamate substitution in 
P. aeruginosa and P. fluorescens strains, which are (i) the 
PvdN-dependent branch that results in the succinamide 
and succinic acid as well as the intramolecular cyclization 
product, and (ii) the PtaA-dependent branch that results in 
α-ketoglutarate. There is nothing known about the biosyn-
thesis of the rarely occurring malamide and malate forms 
of pyoverdines yet, which are not present in the current 
pyoverdine biosynthesis model organisms P. aeruginosa 
PAO1 and P. fluorescens A506. While it is likely that the 
malate is the hydrolysis product of the malamide, the mal-
amide could in principle be formed by an unknown hydrox-
ylating enzyme that acts on succinamide. The introduction 
of the hydroxyl group might also occur earlier, but a hy-
droxylated glutamate intermediate has never been found, 
suggesting some direct transformation of succinamide to 
malamide. 

Reactions of periplasmic pyoverdine biogenesis may not 
occur in a strict order 
When PvdN is removed, PtaA converts all the pyoverdine 
to its α-ketoglutarate form. Conversely, the lack of PtaA 
results in the succinamide and succinic acid forms generat-
ed by PvdN. Removal of both tailoring enzymes leaves the 
original glutamate unaltered [74]. It is tempting to assume 
that the tailoring steps occur after formation of the fully 
oxidized fluorescent pyoverdine. However, this may not be 
the case. The dihydropyoverdine formed by pvdO deletion 
strains is accepted by PvdN as well as by PtaA as the corre-
spondingly modified dihydropyoverdine forms have been 
found [60]. Apparently, the planarity of the attached ring 
system is not a prerequisite for substrate binding to these 
enzymes. Moreover, Budzikiewicz et al. detected a ferri-
bactin with a succinamide side-chain [75], demonstrating 
that PvdN may even accept ferribactin as substrate, which 
shows that the ring system is not really relevant for the 
tailoring enzymes PvdN and PtaA. It is so far unknown to 
which extent the intermediates can be channeled from one 
enzyme to the next, but there is no evidence yet for such a 
channeling that could impose an order of events. 

 

FIGURE 3: The branched periplasmic pathways for 
pyoverdine tailoring. PvdN generates the succin-
amide residue and PtaA the α-ketoglutarate resi-
due from glutamate. An unknown enzyme con-
verts succinamide (most likely) or possibly glutam-
ic acid to malamide in some species. The lower 
abundant succinic acid and malic acid pyoverdine 
forms are likely hydrolysis products of the corre-
sponding amides. Note that the exact position of 
the hydroxyl group in malamide and malic acid 
residues is not resolved. 
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GLOBAL TRADE ASPECTS – EXPORT, IMPORT, 
RECYCLING, AND REGULATION 
Export of pyoverdines – More than one way out  
After having summarized the knowledge about the enzy-
mology of the biosynthesis steps, aspects of export, uptake, 
recycling and regulation need to be addressed to under-
stand the physiology of pyoverdine biosynthesis. Pyover-
dines can be exported via a transport system consisting of 
PvdR, PvdT, and OpmQ [76–78]. This system has originally 
been shown to be involved in the secretion of pyoverdine 
that has been taken up from the environment and thus is 
recycled for multiple use [77, 78], and later its involvement 
in transport of de novo synthesized pyoverdine was 
demonstrated [76]. However, the PvdRT-OpmQ trans-
porter cannot be the only export route, as strains mutated 
in this system are still able to secrete pyoverdines, albeit 
an accumulation in the periplasm has been demonstrated 
in such strains [76]. Also a MexAB-OprM transporter has 
been implicated in pyoverdine secretion [79–81], but later 
studies indicate that the inactivation of this transporter 
had no significant effect on pyoverdine secretion [78]. 
However, that study also indicated that the inactivation of 
the PvdRT-OpmQ system reduced pyoverdine secretion 
only to about 50-60%, which shows that also other systems 
must be involved. In P. taiwanensis, a type VI secretion 
system has been shown to mediate secretion of newly syn-
thesized pyoverdine, and this study reports that the PvdRT-
OmpQ system is not relevant for this process in their or-
ganism [82]. Taken together, there is still considerable 
need to clarify under which conditions PvdRT-OmpQ sys-
tems are not only involved in recycling but also in secretion 
of de novo synthesized pyoverdines, and there is evidence 
that more not yet assigned transport systems are im-
portant. 
 
Import of pyoverdines – iron acquisition and siderophore 
recycling  
Organisms, especially those that live on or in host organ-
isms, compete for the limited iron resources. Therefore, 
siderophore-uptake systems are usually specific for the 
siderophore that is used by the organism. Pyoverdines 
possess a highly variable, often even strain specific peptide 
moiety that confers distinguishable properties to the si-
derophore that can be taken up by differing uptake sys-
tems [13, 83, 84]. Nonetheless, pyoverdine uptake systems 
exist that can use distinct pyoverdines of other strains [83]. 
In the outer membrane, FpvA has been identified to be the 
ferripyoverdine receptor that recognizes iron-loaded pyo-
verdines [85, 86]. Its gene was cloned in 1993 [87], and its 
structure was later elucidated in great detail [88–90]. A 
number of mutational studies tried to elucidate the resi-
dues involved in pyoverdine binding, signaling and 
transport [91–93]. In 2009 it could be demonstrated by 
Greenwald et al. [94], that the first amino acid residues in 
the peptide backbone of pyoverdine determine the binding 
affinity of pyoverdines to their cognate or non-cognate 
Fpv’s. The uptake is probably energized by the direct inter-
action of FpvA with the TonB-ExbBD complex at the ener-

gized inner membrane, which transduces sufficient energy 
to the outer membrane for transport [95, 96]. P. aerugino-
sa has two TonB homologs, and albeit TonB1 seems to be 
more important for iron uptake, TonB2 can partially fulfill 
the function of TonB1 [97]. 

FpvA not only binds ferripyoverdine but also to the 
iron-free apo-pyoverdine, which is not imported but ex-
changed by ferripyoverdine that is then imported [98–100]. 
The exchange appears to be accelerated by TonB [99]. 
However, it has been suggested that the observation re-
garding binding of apo-pyoverdine by FpvA might be an 
artifact and that the detected binding could be due to 
trace-contaminations of aluminum chelates [101, 102]. 
Indeed, FpvA can bind a wide range of other pyoverdine-
metal complexes that in case of Cu2+, Ga3+, Mn2+ and Ni2+ 
may even be imported, albeit with a reduced rate. Fur-
thermore, pyoverdine chelates of Al3+, Cu2+, Ga3+, Mn2+, Ni2+ 
and Zn2+ can induce pyoverdine production by binding to 
FpvA [103]. Some strains possess several FpvA homologs 
with distinct or overlapping specificities for pyoverdines. A 
very extensive investigation in this matter was performed 
by Hartney et al. in 2013, who demonstrated the specificity 
of a multitude of Fpv homologs and their pyoverdine-
scavenging potential in P. protegens Pf-5 [104].  

After import, pyoverdine is not degraded or modified, 
nor is it imported into the cytoplasm. Instead, Fe3+ is re-
duced to Fe2+ periplasmically, liberated from pyoverdine, 
and taken up by the ABC transporter FpvDE [105]. Involved 
components are encoded in the fpvGHJK and fpvCDEF op-
erons [106]. The inner membrane proteins FpvG and FpvH 
are essential for iron release, and there is indirect evidence 
that FpvG catalyzes the reduction step [106]. The other 
components, such as FpvJ, FpvK, or even the ABC trans-
porter FpvDE and its two soluble periplasmic binding pro-
teins FpvC and FpvF, affect the release partially [106]. As 
expected for a binding protein of a ferrous iron ABC trans-
porter, there is indirect experimental evidence for chela-
tion of ferrous iron by FpvC [106]. The thus recycled apo-
pyoverdine is reexported as described above into the ex-
tracellular compartment by OpmQ-PvdRT [77, 78]. It has 
also been reported that pyoverdine can be stored in the 
periplasmic compartment [42] but this process is not yet 
understood [107].  
 
Regulation of pyoverdine production – iron limitation and 
beyond  
As mentioned in the introduction, iron starvation is the key 
signal for pyoverdine production. The regulator Fur senses 
ferrous iron ions in the cytoplasm and represses genes 
involved in iron uptake, including those encoding the regu-
latory proteins FpvR, FpvI, and PvdS [11, 72, 108–110]. 
PvdS is a sigma factor required for the expression of pyo-
verdine biosynthesis genes and other, often virulence-
related genes [111–118], FpvI is a sigma factor required for 
the genes encoding the outer membrane pyoverdine re-
ceptor/importer FpvA [119, 120], and FpvR is an anti-sigma 
factor that binds to and thereby inactivates PvdS and FpvI 
[119, 121]. FpvR autoproteolytic cleaves itself at a 
periplasmic domain without any further degradation unless 
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it contacts ferripyoverdine-bound FpvA [122, 123]. When 
this FpvR/FpvA contact occurs, which involves the activity 
of TonB (the transport-energizing inner membrane protein; 
see section on import above) [124], further proteolytic 
events that engage the protease RseP result in liberation of 
PvdS and FpvI and activation of their regulated genes [119, 
120, 122, 123, 125, 126]. As the cascade begins with the 
sensing of a receptor-bound ferripyoverdine, it is notewor-
thy that some ferripyoverdine is required to activate the 
production of pyoverdine. In the absence of ferripyover-
dine, the system therefore adjusts a basal level of PvdS and 
FpvI dependent gene expression, caused by a low abun-
dance of FpvR, and this basal expression is required for the 
above described pyoverdine-dependent sensing pathway 
[127]. In agreement with this view, mutants defective in 
pyoverdine production cannot upregulate the PvdS regulon 
under iron-limiting conditions [128, 129]. Finally, it is im-
portant to emphasize that the regulatory pathways for the 
production of pyoverdine play important roles beyond 
pyoverdine production. As mentioned above, the PvdS 
regulon also includes genes that are not involved in pyo-
verdine biosynthesis. In P. aeruginosa, such genes are 
clearly contributing to virulence, as the suppressed viru-
lence of a pvdA deletion strain that lacks pyoverdines could 
be partially restored by deletion of the fpvR gene that en-
codes the anti-sigma factor FpvR [121]. This pvdA/fpvR 
double mutant strain constitutively expresses the PvdS-

dependent genes without producing pyoverdines. Pyover-
dines that are initially sensed by the regulatory cascade 
thus can serve as signaling molecules in host environments. 
The above principal signaling pathway is summarized in 
Figure 4. 

Interestingly, the regulation of pyoverdine biosynthesis 
is even more complex, because signals other than iron 
starvation have modulating effects. Among these are influ-
ences by the regulator CysB [130], which may imply a co-
ordination with sulfur availability or biofilm formation and 
alginate production [131]. Also phosphate starvation has 
been reported to trigger pyoverdine production in host 
environments [132, 133]. Additionally, the LexR type tran-
scriptional regulator AmpR, which affects expression of 
more than 500 genes related to metabolism and virulence 
in P. aeruginosa, has recently been implicated in the regu-
lation of pyoverdine production [134], and also the level of 
bis-(3’-5’)-cyclic dimeric guanosine monophosphate (c-di-
GMP) is reported to modulate pyoverdine production [135]. 
 
Concluding remarks 
Pyoverdines play important roles for many pathogenic and 
non-pathogenic pseudomonads that thrive in host habitats. 
It is important to understand the biosynthesis of pyover-
dines, and this review intends to give a brief survey about 
our current knowledge and the open questions. There are 
still some components unknown and some catalytic mech-

FIGURE 4: The key regulatory pathways for pyoverdine production in response to iron starvation. See text for details. 
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anisms not understood. Beside the basics of biosynthesis, 
the physiological aspects will become more important in 
future, as the process has to be understood in terms of cell 
biology, communication, and host interaction. One of these 
aspects is regulation, which seems to become more com-
plex and interwoven with multiple other regulatory path-
ways, ranging from biofilm formation to nutrient supply. 
Future will reveal what else we can learn from pyoverdines. 
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