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Fisher discriminant model based 
on LASSO logistic regression 
for computed tomography 
imaging diagnosis of pelvic 
rhabdomyosarcoma in children
Lu Tian1, Xiaomeng Li2, Helin Zheng2, Longlun Wang2, Yong Qin2,3* & Jinhua Cai2,3*

Computed tomography (CT) has been widely used for the diagnosis of pelvic rhabdomyosarcoma 
(RMS) in children. However, it is difficult to differentiate pelvic RMS from other pelvic malignancies. 
This study aimed to analyze and select CT features by using least absolute shrinkage and selection 
operator (LASSO) logistic regression and established a Fisher discriminant analysis (FDA) model 
for the quantitative diagnosis of pediatric pelvic RMS. A total of 121 pediatric patients who were 
diagnosed with pelvic neoplasms were included in this study. The patients were assigned to an 
RMS group (n = 36) and a non-RMS group (n = 85) according to the pathological results. LASSO 
logistic regression was used to select characteristic features, and an FDA model was constructed for 
quantitative diagnosis. Leave-one-out cross-validation and receiver operating characteristic (ROC) 
curve analysis were used to evaluate the diagnostic ability of the FDA model. Six characteristic 
variables were selected by LASSO logistic regression, all of which were CT morphological 
features. Using these CT features, the following diagnostic models were established: (RMS 
group)G
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 are lower than normal muscle density (1 = yes; 0 = no), multinodular fusion (1 = yes; 0 = no), 

enhancement at surrounding blood vessels (1 = yes; 0 = no), heterogeneous progressive centripetal 
enhancement (1 = yes; 0 = no), ring enhancement (1 = yes; 0 = no), and hemorrhage (1 = yes; 0 = no), 
respectively. The calculated area under the ROC curve (AUC) of the model was 0.992 (0.982–1.000), 
with a sensitivity of 94.4%, a specificity of 96.5%, and an accuracy of 95.9%. The calculated sensitivity, 
specificity and accuracy values were consistent with those from cross-validation. An FDA model 
based on the CT morphological features of pelvic RMS was established and could provide an easy and 
efficient method for the diagnosis and differential diagnosis of pelvic RMS in children.
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Rhabdomyosarcoma (RMS) is a soft tissue sarcoma that accounts for approximately 4.5% of pediatric cancer 
cases and is characterized by a high degree of malignancy, infiltration of adjacent tissues, and early lymph node 
and distant metastases1. The pelvic cavity is one of the most common sites, second only to the head and neck2. 
Accurate preoperative diagnosis is very important to provide appropriate planning for surgery and could lead 
to a better prognostic outcome. In recent years, medical imaging technology has made great progress and is 
playing an increasingly important role in the diagnosis of tumours. Of many imaging modalities, computed 
tomography (CT) has the advantages of noninvasiveness, high spatial and density resolution, and high scanning 
speed and has been widely applied for the assessment of tumours in the abdomen, pelvis and thorax. CT images 
allow radiologists not only to determine the extent of tumours but also to determine the absence or presence of 
bony destruction, calcification, haemorrhage and/or metastases3, However, in fact, during the course of routine 
radiology diagnosis, because RMS has the general radiological appearance of soft tissue tumors, it is difficult 
to distinguish it from other pelvic soft tissue malignancies. However, to our knowledge, there are currently few 
literature reports on the CT features of pelvic RMS4–9, and some reports have indicated that the CT findings 
of pelvic RMS lack specificity10–12. Therefore, it is imperative to investigate the CT features of pelvic RMS and 
establish an accurate diagnostic method for pelvic RMS in children.

Least absolute shrinkage and selection operator (LASSO), first proposed by Robert Tibshirani in 1996, is a 
regression analysis method to reduce the dimensionality of data. Serving as a regularized estimation, LASSO can 
shrink the coefficients of variables and force certain regression coefficients to 0 by constructing a penalty func-
tion, so it is often adopted for variable selection before establishing prediction and diagnostic models13,14. Fisher 
discriminant analysis (FDA) is a classic method for identifying linear functions of variables to distinguish samples 
of different groups15. It was proposed by Fisher in 1936 and serves as a dimensionality reduction method that 
finds a linear combination of features that maximizes the between-class differences and minimizes the within-
class variation16. FDA has been widely used in many fields, including medical research17. To date, a variety of stud-
ies have applied FDA to predict, diagnose or identify diseases18–20. A study by Ni et al.18 applied FDA to predict 
clinicopathological subtypes of breast cancer based on the radiological features of diffusion-weighted magnetic 
resonance imaging (MRI) and suggested that FDA was a promising method for predicting clinicopathological 
subtypes of breast cancer. In a report by Zou et al.19, FDA was applied to classify autism spectrum disorders 
(ASDs) based on folate-related metabolic markers, and the results showed that the FDA model could effectively 
distinguish ASD patients from healthy controls. Hao et al.20 used FDA to establish a discriminant formula to 
distinguish patients with gastric cancer and colorectal cancer from healthy controls and achieved good results.

In this study, we used LASSO logistic regression to evaluate and select valuable CT features. Based on these 
features, an FDA model for pelvic RMS diagnosis was established, and the diagnostic accuracy was validated. 
Our aim was to develop a simple and accurate diagnostic method for the quantitative diagnosis of pelvic RMS 
by means of mathematical statistics.

We present the following article in accordance with the Tripod Checklist.

Materials and methods
Clinical data and pathological results were obtained from patients’ medical records. Imaging data were retrieved 
from our picture archiving and communication system.

Study subjects.  A total of 121 pediatric patients who underwent abdominal contrast-enhanced CT scans 
and were diagnosed with pelvic tumors from January 2013 to January 2021 were included in this study. Accord-
ing to the pathological results, these patients were divided into RMS and non-RMS groups. The RMS group 
included 36 patients (14 males, 22 females) with ages ranging from 1 month to 16 years, and the non-RMS group 
included 85 patients (24 males, 61 females) with ages ranging from 1 month to 15 years. Those in the non-RMS 
group suffered from a variety of malignant tumors, including 19 patients with yolk sac tumors, 18 patients with 
malignant teratoma, 13 patients with neuroblastoma, 9 patients with lymphoma, 5 patients with Ewing sarcoma 
and 21 patients with other types of malignant reproductive tumors.

CT imaging and feature extraction.  All pediatric patients in our study underwent pelvic plain and 
contrast-enhanced CT examinations on a 256-slice spiral CT system (Philips Brilliance iCT, Philips, Nether-
lands) with a low tube voltage of 80–100 kV, a low tube current of 100–200 mA (the current varied during the 
acquisition and according to the child’s body weight), a rotation time of 0.4 s, a pitch of 0.925, a collimation 
of 128*0.625 mm, a slice thickness of 5.0 mm and a reconstruction layer thickness of 1 mm. To obtain arterial 
and venous phase contrast-enhanced images, dual-phase dynamic contrast-enhanced CT was performed at 30 
and 65 s, respectively, after intravenous injection of the contrast agent (Omnipaque, 350 mg/mL, Amersham 
Healthcare, Shanghai, China). The contrast agent was administered at a dose of 2 mL/kg body weight, with a 
maximum of 80 mL.

During the course of routine radiology diagnosis, for tumor lesions, we mainly need to pay attention to 
their morphology, density, margin, enhancement mode and metastasis. Therefore, our study mainly selected 
image features from these five aspects to explore the differences between the two groups (RMS group and non-
group). According to previous literature and diagnostic experience. The following CT features of the tumors were 
evaluated: (a) morphology (multinodular fusion/lobulated/round/orbicular); (b) density (lower or higher than 
normal muscle density/calcification/hemorrhage/necrosis); (c) margin (clear or unclear); (d) contrast enhance-
ment modes (surrounding blood vessels/homogeneous progressive centripetal enhancement/ring enhancement/
grape cluster reinforcement); (e) metastasis (lymphatic metastasis/bone erosion). The evaluation criteria for the 
above relatively special CT features are as follows: (1) multinodular fusion: in the CT images, multiple nodules 
of different sizes were observed in the pelvic cavity. Some of the nodules were fused together and fused into a 
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lobulated mass21; (2) surrounding blood vessels: multiple strip-like and punctate vascular shadows can be seen 
in the mass on CT enhanced scan images21; (3) homogeneous progressive centripetal enhancement: on dynamic 
contrast-enhanced CT images, the mass can be seen with peripheral annular inhomogeneous enhancement in 
the arterial phase, and gradually centripetal inhomogeneous enhancement in the venous and delayed phases21; 
(4) grape cluster reinforcement: when the mass is in a hollow structure (vaginal or bladder, etc.), a mass like a 
grape cluster will appear on the CT-enhanced image22; (5) lymph node metastasis: cervical lymph nodes I, II 
and inguinal lymph nodes short diameter ≥ 1.5 cm, other cervical lymph nodes short diameter ≥ 1 cm, or the 
degree of enhancement was significantly higher than muscle tissue23.

Prospective evaluation of the CT images for each patient was independently performed by two abdominal 
radiologists with 10–20 years of experience. The abdominal radiologists were blinded to patient characteristics 
and histologic results and evaluated the morphology, density, margin, enhancement modes and metastasis of 
the tumors. In case of disagreement between the two radiologists, a consensus was reached with a third senior 
abdominal radiologist and two other abdominal radiologists.

Statistical analysis.  The patients were divided into an RMS group and a non-RMS group according to 
the pathological results. For quantitative variables, continuous variables that followed a normal distribution are 
described as the mean and standard deviation (SD), and a parametric t test was used to determine the statistical 
significance between the two groups. Otherwise, the variables are described as medians and interquartile ranges 
(IQRs), and a nonparametric Mann–Whitney U test was used for comparisons between the two groups. Cat-
egorical variables are expressed as the number of patients and respective percentage, and the χ2 test or Fisher’s 
exact test was used to compare the rates.

LASSO logistic regression was used to select the optimal characteristic features for diagnosing RMS from the 
basic and CT morphological features of the patients. The penalty parameter λ was optimized, and the resulting 
nonzero coefficient variables in the model were selected as the diagnostic variables. Based on these findings, FDA 
was established as a quantitative diagnostic model of pediatric pelvic RMS. The diagnostic ability of this model 
was evaluated by the receiver operating characteristic (ROC) curve. Additionally, the cumulative diagnostic 
ability of the features was analyzed.

A two-tailed P < 0.05 was considered to be statistically significant. All statistical analyses were performed 
using R 3.6.1 software and SPSS 23.0 software (IBM, Armonk, New York, USA).

Establishing the model.  FDA is a classical approach to identify a linear function of variables to distinguish 
samples from different groups as much as possible13. In our study, patients with RMS and without RMS were set 
as the two groups: G1 (RMS group) and G2 (non-RMS group). A total of 6 CT features ( xi ) were used as diagnos-
tic variables to establish a linear discriminant function:

By using the discriminant rule, the result of the examination was found to belong to G1 or G2.
(1) Raw data matrix: Two matrices ( W1,W2 ) were constructed for G1 and, G2 , with CT features as the column 

vectors and pediatric patients as the row vectors.
Data matrix of G1:

Data matrix of G2:

(2) The mean column distributions of matrices W1 and W2 are as follows:

(3) The coefficients ci were calculated using the differential calculus method.
(4) The discriminant function is defined as:

(5) The discriminant values represented by G1 and G2 were calculated.
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(6) The value of the Fisher discrimination function at the centroids was obtained as follows:

(7) The above calculation was conducted using SPSS software with the following discriminant rule: If G1>G0 , 
the sample of G belongs to G1 , which means that the sample belongs to the RMS group. Otherwise, the sample 
belongs to G2 ; that is, the sample belongs to the non-RMS group.

(8) The resulting discriminant functions for classification were also calculated using SPSS.

The values of G1 and G2 were calculated by substituting the CT features into the function. By comparing the 
G1 and G2 values, the subjects were classified according to the following principle: if G1 > G2 , the subjects were 
classified into the RMS group; if G1< G2 , the subjects were classified into the non-RMS group.

Notations:
Gi : population of disease, i = 1, 2;
Wi : data matrix of Gi;
ci : coefficients of Fisher’s discriminant function, i = 0, 1, 2, · · · , 6;
G0 : values of Fisher discrimination function at centroids;
xij : content of the j CT feature in the i patient.

Model validation.  Leave-one-out cross-validation, in which each respective case is classified using all cases 
other than that case for deriving the classification formula, was used to validate the accuracy of the model. In 
addition, ROC curves were used to validate the accuracy of the model, where an area under the ROC curve 
(AUC) between 0.5 and 0.7 represented a low diagnostic value, that between 0.7 and 0.9 represented a medium 
diagnostic value, and that more than 0.9 represented a high diagnostic value24.

Ethical statement.  The study was conducted in accordance with the Declaration of Helsinki (as revised in 
2013). The study was approved by the Institutional Ethics Committee of Children’s Hospital Affiliated to Chong-
qing Medical University and individual consent for this retrospective analysis was waived.

Results
Basic and CT morphological features of the patients.  RMS (36/121, 29.7%) was the most common 
pelvic malignant tumor in our study, followed by yolk sac tumor (19/121, 15.7%), malignant teratoma (18/121, 
14.9%), neuroblastoma (13/121, 10.7%), lymphoma (9/121, 7.4%) and Ewing sarcoma (5/121, 4.1%). There was 
no significant difference in age or sex between the two groups (both P > 0.05). A comparison of the basic and CT 
morphological characteristics between the two groups is shown in Table 1.

Selection of diagnostic features.  LASSO logistic regression included a total of 16 basic factors (2/16) 
and CT morphological characteristics (14/16) of all patients to select potential diagnostic factors. The LASSO 
regression partial likelihood deviation and coefficient profiles against log (λ) are shown in Fig. 1. Six variables 
with nonzero coefficients were selected, all of which were CT morphological features, including lower than nor-
mal muscle density, multinodular fusion, enhancement at surrounding blood vessels, heterogeneous progres-
sive centripetal enhancement, ring enhancement and hemorrhage. These variables then served as the preferred 
features for the diagnosis of RMS.

Construction of the diagnostic model.  Through the construction of the fisher discriminant model, the 
discriminant functions of RMS and non-RMS were obtained as follows:

where x1 , x2 , … and x6 represent lower than normal muscle density (1 = yes; 0 = no), multinodular fusion (1 = yes; 
0 = no), enhancement at surrounding blood vessels (1 = yes; 0 = no), heterogeneous progressive centripetal 
enhancement (1 = yes; 0 = no), ring enhancement (1 = yes; 0 = no), and hemorrhage (1 = yes; 0 = no), respectively. 
Wilks’ lambda of the model = 0.245, χ2 = 163.237, df = 6, and P < 0.001. The function value at the model centroid 
was 2.676 in the RMS group and − 1.133 in the non-RMS group, and the critical value of the discriminant func-
tion was G0 = 0.800.
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G1 = −14.283+ 6.613x1 + 5.333x2 + 5.753x3 + 12.361x4 + 8.095x5 − 0.715x6;

G2 = −2.008+ 3.539x1 + 1.080x2 + 1.154x3 + 2.307x4 + 1.656x5 + 1.380x6;
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Accuracy and cross‑validation of the diagnostic model.  The ROC curve was used to verify the accu-
racy of the diagnostic model (Fig. 2). The AUC of the FDA score in this study was 0.992 (95% confidence inter-
val: 0.982–1.000; sensitivity: 94.4%, specificity: 96.5%), and the accuracy of the model was 95.9%. The result of 
the cross-validation also showed an accuracy rate of 95.9%. The model correctly classified 34 patients (94.4%) 
in the RMS group, with a misclassification rate of 5.6%, and 82 patients (96.5%) in the non-RMS group, with a 
misclassification rate of 3.5% (Table 2).

Single feature analysis and cumulative FDA.  The 6 selected CT morphological features were ordered 
by their importance according to the Fisher discriminant model as follows: heterogeneous progressive centrip-

Table 1.   Comparison of the basic and CT morphological characteristics between the RMS group and 
the non-RMS group. Q is the median age, Q1–Q3 are 25–75% quantiles. CT computed tomography, RMS 
rhabdomyosarcoma. a Using the M–U test. b Using the Chi-square test. c Using Fisher’s exact probability test.

RMS group (n = 36) Non-RMS group (n = 85) Statistic P value

Baseline

Age (year) Q (Q1–Q3) 2.5 (1–6.5) 6 (1–9) 1.767 a 0.077

Sex (male/female) 14/22 24/61 1.332 b 0.248

Density N (%)

Lower than normal muscle density 35 (97.2) 51 (60.4) 17.043 b  < 0.001

Calcification 1 (2.8) 23 (27.1) 9.377 b 0.002

Hemorrhage 5 (13.9) 28 (32.9) 4.628 b 0.031

Necrosis 35 (97.2) 71 (83.5) 0.066

Shape N (%)

Multinodular fusion 23 (63.9) 10 (11.8) 34.641 b  < 0.001

Lobulated 28 (77.8) 44 (51.8) 7.102 b 0.008

Round/orbicular 6 (16.7) 22 (25.9) 1.208 b 0.272

Margin N (%)

Unclear 8 (22.2) 26 (30.6) 0.876 b 0.349

Enhancement feature N (%)

Surrounding blood vessels 29 (80.6) 16 (18.8) 41.257 b  < 0.001

Heterogeneous progressive centripetal enhancement 31 (86.1) 10 (11.8) 62.395 b  < 0.001

Ring enhancement 5 (13.9) 6 (7.1) c 0.300

Grape cluster reinforcement 0 (0.0) 71 (0.0) – –

Metastasis N (%)

Lymphatic metastasis 12 (33.3) 14 (16.5) 4.263 b 0.039

Bone erosion 2 (5.6) 5 (5.9) c 1.000

Figure 1.   LASSO logistic regression plot. (A) Plot of partial likelihood deviance; (B) plot of LASSO coefficient 
profiles. Each colored curve represents the LASSO coefficient profile of a feature against the log (λ) sequence.
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etal enhancement, enhancement at surrounding blood vessels, multinodular fusion, lower than normal muscle 
density, hemorrhage and ring enhancement (Fig. 3). The sensitivity, specificity, AUC and 95% confidence inter-
val of the 6 selected features are shown in Table 3 in order of importance. The sensitivity, specificity and AUC of 
the FDA score were significantly higher than those of each single CT characteristic feature.

Next, the feature importance was further evaluated using cumulative fisher discriminant models following the 
previously determined order of importance (Fig. 4). After the fourth cumulated feature, there was no significant 
improvement in the diagnostic ability of the discriminant models. Namely, there was no significant difference 
in the resulting AUCs (all above 0.96) for the first 4 indicators, the first 5 indicators and all 6 indicators (all 

Figure 2.   Receiver operating characteristic (ROC) curve of the quantitative diagnostic model for pelvic RMS in 
children using Fisher discriminant analysis.

Table 2.   Results of the Fisher model and cross-validation.

Predicted (n, %)

RMS Non-RMS

Fisher model

RMS group 33 (91.7) 3 (8.3)

Non-RMS group 2 (2.4) 83 (97.6)

Cross-validation

RMS group 33 (91.7) 3 (8.3)

Non-RMS group 2 (2.4) 83 (97.6)

Figure 3.   Importance of fisher discriminant model features.
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P > 0.05). This result suggested that using fewer indicators can also accurately diagnose RMS, which is helpful 
to save resources.

Discussion
During routine radiological diagnosis, RMS is difficult to distinguish from other pelvic tumors except malignant 
teratoma, which involves characteristic calcification and fatty composition10. Previous studies have shown some 
CT features of RMS, such as tumoral necrosis, lower density than muscle, clear margin, and susceptibility to 
lymphatic node or/and bone metastasis25–37. However, the specificity and sensitivity of these CT features have 
not been systematically analyzed due to the limited number of study samples. In this study, we extracted the 
important CT features of pelvic RMS by using LASSO logistic regression and established a quantitative diagnostic 
model for pelvic RMS by FDA. This diagnostic model is easy to operate, has a high diagnostic accuracy and can 
be applied in the diagnosis of pelvic RMS and differentiation from other pelvic tumors in children.

Our study showed that a total of 8 CT features of RMS were significantly different from those of other pelvic 
malignancies. The differences in these CT features may be related to their pathological characteristics. Studies 
have shown that pelvic RMS in children is highly invasive and characterized by multicentric growth35–38. In the 
CT images, multiple nodules of different sizes were observed in the pelvic cavity, and some nodules fused together 
and formed a lobulated mass. Studies also found that some RMS tumor cells were distributed around the blood 
vessels using microscopes and that the blood vessels were gradually surrounded by tumor cells as they grew39,40. 
This pathological phenomenon is consistent with multiple vascular shadows shown in the contrast-enhanced 
CT images of pelvic RMS. Moreover, it has been shown that RMS contains abundant fibrous tissue and that the 
contrast agent gradually permeates into the tumor center over time, persisting in the tumor fibrous tissue for a 
long time41,42. This is possibly why RMS tends to have heterogeneous progressive centripetal enhancement. In 
addition, the rich mucus in RMS tumors could result in the CT feature of lower than normal muscle density, and 
rapid tumor growth with nutrient requirements exceeding the vessel supply could contribute to the CT feature 
of tumoral necrosis.

In this study, we selected 6 CT features with diagnostic value using LASSO logistic regression and established 
a quantitative diagnostic model of pelvic RMS in children through FDA.

The advantage of this model is that it is simple to operate and easy to implement in rou-
tine imaging diagnosis.  It  is  actual ly a simple mathematical  formula that is :  (RMS 
g r o u p )G1 = −14.283+ 6.613x1 + 5.333x2 + 5.753x3 + 12.361x4 + 8.095x5 − 0.715x6  ;  ( N o n - R M S 
group)G2 = −2.008+ 3.539x1 + 1.080x2 + 1.154x3 + 2.307x4 + 1.656x5 + 1.380x6 , where x1 , x2 , … and x6 are 
lower than normal muscle density (1 = yes; 0 = no), multinodular fusion (1 = yes; 0 = no), enhancement at sur-
rounding blood vessels (1 = yes; 0 = no), heterogeneous progressive centripetal enhancement (1 = yes; 0 = no), ring 
enhancement (1 = yes; 0 = no), and hemorrhage (1 = yes; 0 = no), respectively. After inserting the CT feature values 
into the model and calculating G1 and G2  values. By comparing the G1 and G2 values, subjects with unknown 

Table 3.   Sensitivity, specificity, AUC and 95% CI of the single characteristic features. Se sensitivity, Sp 
specificity, CI confidence interval, AUC​ area under the curve.

Se (95% CI) Sp (95% CI) AUC (95% CI)

Heterogeneous progressive centripetal enhancement 0.861 (0.697–0.948) 0.882 (0.790–0.939) 0.872 (0.795–0.948

Enhancement at surrounding blood vessels 0.806 (0.634–0.912) 0.812 (0.709–0.885) 0.809 (0.720–0.898)

Multinodular fusion 0.639 (0.462–0.787) 0.882 (0.790–0.939) 0.761 (0.658–0.864)

Lower than normal muscle density 0.972 (0.838–0.999) 0.400 (0.297–0.512) 0.686 (0.592–0.780)

Hemorrhage 0.861 (0.697–0.948) 0.329 (0.234–0.441) 0.595 (0.489–0.701)

Ring enhancement 0.139 (0.052–0.303) 0.929 (0.847–0.971) 0.534 (0.419–0.649)

Figure 4.   AUC of fisher’s discriminant model and its 95% CI accumulated according to the importance of the 
features. CI confidence interval, AUC​ area under the curve.
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classification were classified according to the following principles: if G1> G2 , the subjects were classified into the 
RMS group; if G1< G2 , the subjects were classified into the non-RMS group. Therefore clinicians or radiologists 
can insert this mathematical formula into an excel document to use it, or make a small software to use it. The 
ROC curve suggested that the model had a high diagnostic value. In addition, cross-validation showed that the 
model had a high diagnostic value. Our study also found that the AUC of the overall FDA model was higher 
than that of each CT characteristic feature. Cumulative FDA was carried out based on the importance of the 
features. There was no significant improvement in the discrimination performance of the FDA model when using 
the first 4 features, the first 5 features and all 6 features (in the order of importance: heterogeneous progressive 
centripetal enhancement, enhancement at surrounding blood vessels, multinodular fusion, lower than normal 
muscle density, hemorrhage and ring enhancement). Therefore, the number of diagnostic CT features can be 
reduced to 4, and RMS can still be accurately diagnosed, which is beneficial for saving resources. The establish-
ment of a diagnostic model allows us to go from image diagnosis based on human experiences to quantitative 
imaging diagnosis, which makes the diagnosis of pelvic RMS simpler and more accurate. In the future, we aim 
to use the CT diagnostic model of RMS to develop artificial intelligence diagnostic software for clinical practice.

There were some limitations in this study. First, this was a retrospective study, which may have inherent 
selection bias. Second, the sample size was small. RMS is not a common disease in children; therefore, in future 
research, we need to further expand the sample size to improve the accuracy of our model. Finally, our study 
summarized only CT features, and the diagnostic value of MRI for RMS needs to be further studied.

Conclusions
Our study showed that pelvic RMS in children has some specific CT features. Furthermore, LASSO logistic 
regression is a reliable method for selecting diagnostic features of RMS. The FDA model based on CT morpho-
logical features can accurately diagnose pelvic RMS in children, with promising cross-validation performance. 
This diagnostic model could provide an easy and efficient method for the diagnosis and differential diagnosis 
of pelvic RMS in children.

Data availability
All data generated or analysed during this study are included in this article and its supplementary information 
files.
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