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Epigenetic deregulation is a common finding in myeloid malignancies, and epigenetic 

therapies have been used successfully to treat patients with acute myeloid leukemia (AML) 

and myelodysplastic syndrome (MDS). Inactivating mutations of TET2 have been found in 
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myeloid cancers and impair the hydroxylation of 5-methylcytosine.
1
 A study of 104 

pediatric AML patients found only 4 patients (3.8%) with somatic mutations of TET2.
2 

There is, however, growing evidence that germline single nucleotide polymorphisms (SNPs) 

may also predict outcomes.
3, 4 Here we demonstrate that somatic mutations of TET2 are rare 

in pediatric AML, but we present novel evidence that the TET2 SNP rs2454206 (I1762V) is 

a prognostic marker for outcome in pediatric AML.

This study included 403 patients treated on Children’s Cancer Group study CCG-2961 

(N=169) or COG AAML03P1 (N=234). The CCG-2961 cohort was used as a discovery set 

and the prognostic biomarker (TET2 SNP rs2454206) was validated in the COG 

AAML03P1 cohort. Outcomes analyzed included overall survival (OS), event-free survival 

(EFS), relapse rate (RR) and non-relapse mortality (NRM). Hazard ratios (HRs) were 

determined in univariate and multivariate analyses including risk group (Supplementary 

Material).

DNA extracted from Ficoll enriched diagnostic material was subjected to PCR amplification 

of the entire coding sequence of TET2 using 17 primer pairs (Supplemental Table 1). 

Sequence data were analyzed to identify somatic mutations and SNPs (Supplemental 

Material). Expression quantitative trait loci (eQTL) analysis was performed to evaluate the 

association between TET2 SNP rs2454206 and all probes within 1 Mb (Supplemental 

Material).
5
 For replication, the MuTHER study was interrogated.

6
 SNPs in strong linkage 

disequilibrium with SNP rs2454206 were evaluated for effect on regulatory motifs.
7, 8 We 

performed principal component analysis (PCA) on whole-genome genotype data available 

for a random subset of the samples (n=69) to quantify their genomic ancestry.
9

In an initial cohort of 169 patients treated on CCG-2961, 26 germline variants were found in 

TET2 exons. (Supplemental Table 2). Sixteen SNPs were too rare (prevalence 0.58%–2.3%) 

to offer potential of significant correlation with outcome given the cohort size. Of the 10 

remaining SNPs with higher prevalence (4%–54%), only the most prevalent SNP, rs2454206 

(A>G, I1762V) was associated with survival. OS was significantly higher for patients with 

minor allele genotypes (TET2AG/GG) than those with TET2AA genotype (60±10% vs. 

38±11% at 5 years, log-rank P=0.013; Supplemental Figure 1a). This finding was validated 

in an independent cohort of 234 patients treated on COG AAML03P1 (5-year OS 73±8% for 

TET2AG/GG vs. 57±10% for TET2AA; log-rank P=0.031; Supplemental Figure 1b).

The prevalence of TET2AG/GG genotypes was similar in both studies (54% on CCG-2961 

and 50% on AAML03P1) and to that observed in the general population. Sequence analysis 

of a subset of remission samples confirmed the rs2454206 genotype as germline. As 

rs2454206 genotype had similar clinical consequences in both study cohorts, subsequent 

analyses were conducted on the combined cohort (n=403).

The prevalence of somatic mutations was only 1.7% (7/403), and these few mutations were 

not significantly associated with rs2454206 genotype. Three patients had nonsense 

mutations (Q917X, R1216X, S1798X), one patient had two nonsense mutations (Q958X and 

E1323X), and 2 patients had missense mutations (C171F, L1332P). One patient had a 

heterozygous single base insertion (ins1870-1871) causing a frame shift and early 
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termination (E637X). Among these 7 patients with TET2 somatic mutations, at the time of 

last follow-up 1 patient was alive without relapse and 6 patients had relapsed.

The rs2454206 genotype varied by race. TET2AA genotype was present in 79% of black 

patients vs. 39% of white patients (p<0.001) (Supplemental Figure 2). This is similar to the 

frequency reported in healthy individuals (http://browser.1000genomes.org). There was no 

difference in median age, gender, median WBC, median blast percentage, FAB groups, 

cytogenetic groups, mutations of CEBPA and WT1, FLT3-ITD or disease risk group 

between patients with TET2AG/GG and TET2AA genotypes. There was a lower prevalence of 

NPM1 mutations with TET2AG/GG compared to TET2AA (2.8% vs. 9.5%, P=0.009). Despite 

decreased prevalence of this favorable prognostic marker, the superior outcome in the 

TET2AG/GG group suggests this SNP is independent of current risk group markers, and this 

is supported by the multivariate analysis reported below.

Remission rate and relapse risk were similar for patients with TET2AG/GG and TET2AA 

genotypes, but OS and NRM differed significantly (Supplemental Table 3 and Figure 3). 

Five-year OS was significantly lower with TET2AA compared to TET2AG/GG (49±7% vs. 

68±7%, log-rank P=0.002). The NRM was significantly higher with TET2AA compared to 

TET2AG/GG (16% vs. 8%, P=0.035). Patient characteristics and outcomes were compared 

for patients who were homozygous (TET2GG; N=57) and heterozygous (TET2AG; N=152) 

for the minor allele of rs2454206 (Supplemental Material). There was no difference in OS or 

NRM, and these minor allele genotypes are grouped together for the following analyses.

Multivariate analyses demonstrated that TET2 SNP genotype was an independent predictor 

of OS and NRM when analyzed with cytogenetic/molecular risk factors and also a predictor 

of OS when analyzed with race (Table 1). To further explore the impact of race, patients 

were stratified into 4 groups by race and rs2454206 genotype. In this comparison, OS and 

NRM differed significantly (Figure 1). White patients with the TET2AA genotype had a 5-

year NRM of 14±7% and OS of 54±10% while those with TET2AG/GG genotypes had NRM 

of 8±4% (P=0.23) and OS of 68±7% (P=0.09). Among non-white patients, those with the 

TET2AA genotype had a NRM of 24±12% and OS of 40±14% while those with TET2AG/GG 

genotypes had a NRM of 10±14% (P=0.17) and OS of 63±22% (P=0.08). Further among 

non-white patients, the relapse rate trended lower at 27±14% for TET2AA compared to 

53±26% for TET2AG/GG (P=0.066).

Whole-genome data available from 69 patients in the cohort showed high concordance of 

self-reported race with the corresponding genomic ancestry derived from principal 

component analyses (PCA).
9
 Furthermore, association analyses between rs2454206 and 

outcome with the first two principal components as covariates showed that the resulting 

hazard ratios were in the direction and magnitude expected though not significant likely due 

to the reduced sample size (Supplemental Table 4).

A detailed analysis of the causes of NRM and non-lethal toxicities was performed 

(Supplemental Material and Tables 5–8). In summary, infections were the major cause of 

NRM for the entire cohort, but patients with TET2AA genotype experienced a greater 

proportion of infection related NRM. There was no association between rs2454206 and 
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organ system toxicities. The TET2AA genotype, however, was associated with increased 

number of ICU days and higher NRM in specific chemotherapy courses.

We sought to functionally characterize rs2454206 using expression quantitative trait loci 

(eQTL) information derived from a comprehensive transcriptome study of the HapMap3 

LCLs.
5
 The SNP rs2454206 was found to be a cis eQTL (p=0.0004 with Bonferroni 

significance threshold of 0.007) for CXXC Finger Protein 4 (CXXC4) in the MEX samples, 

with each additional G allele associated with increased expression of the gene (Supplemental 

Figure 4). Furthermore, the SNP showed consistent direction of effect in all other 

populations (CEU, CHB, GIH and LWK) although not significant (Supplemental Material). 

The cis eQTL association with CXXC4 was replicated using data from the MuTHER study 

(Supplemental Material and Figure 5). The association between the TET2 SNP and CXXC4 
expression is remarkable given that CXXC4 is a negative regulator of TET2.

10
 To further 

evaluate this long-range interaction, we interrogated Hi-C data (http://www.3dgenome.org) 

that enables genome-wide three dimensional proximity mapping.
11

 We found cell-type 

specific significant interaction between CXXC4 and TET2 in hematologic cells (GM12878 

LCL) that was not present in endothelial cells (HUVEC) or epithelial cells (HMEC) 

(Supplemental Figure 6).

We identified 19 SNPs in strong linkage disequilibrium (r2 ≥ 0.80) with SNP rs2454206 in 

the CEU samples of the 1000 Genomes Project. Alleles at these SNPs alter known 

regulatory motifs (Supplemental Table 9), showing that these variants are likely to affect 

transcription.
8
 In contrast, in the samples of African descent (YRI), no SNP passed the same 

r2 threshold for linkage disequilibrium with SNP rs2454206, suggesting that the SNP is 

likely to be the causal variant at this locus.

Thus, while somatic mutations of TET2 are rare (1.7%) in our large cohort of over 400 

pediatric AML patients, we demonstrate that the minor allele of a common TET2 SNP 

(rs2454206) was associated with improved survival in two independent clinical trials. The 

superior OS was not due to differences in risk of relapse; rather, the TET2 genotypes were 

associated with differences in NRM, particularly due to infection.

The association between rs2454206 and NRM was consistent between racial groups. This 

suggests that the observed genetic association was unlikely to be due to confounding by 

population stratification. We observed that non-white patients with TET2AA genotype 

showed excess toxicity compared to those with TET2AG/GG genotype and white patients, 

predominantly due to increased infection rates. Access to chemotherapy, differences in 

supportive care or leukemia phenotype, and reduced compliance were unlikely explanations 

for the observed differences, as therapy was uniformly delivered in the inpatient setting for 

all patients according to CCG/COG protocols. Associations of specific host polymorphisms 

with drug toxicities is well documented, but are generally linked to alterations in function of 

drug metabolizing genes.
12–14

 Our observation cannot be directly accounted for by 

alterations in drug metabolism, and may suggest that they are associated with alternate 

mechanisms that confer host susceptibility to non-leukemic complications.
3, 15
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Our functional analysis did link rs2454206 to CXXC4 expression. CXXC4 has recently been 

reported to affect caspase activation and act as a negative regulator of TET2.
10

 This SNP 

may further serve as a marker of other polymorphisms that alter TET2 function as we found 

that it is in strong linkage disequilibrium with multiple SNPs that alter regulatory motifs. 

Validation of TET2 rs2454206 genotype as a marker of increased NRM, especially in the 

non-white population will allow more targeted monitoring and supportive care in a 

population that may be at elevated risk of NRM.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1a

Figure 1b

Figure 1. 
Kaplan-Meier curves of overall survival (a) and non-relapse mortality (b) by race and SNP 

rs2454206 genotype
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