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Static and dynamic analyses 
of free‑hinged‑hinged‑hinged‑free 
beam in non‑homogeneous 
gravitational field: application 
to gravity gradiometry
Alexey V. Veryaskin1,2 & Thomas J. Meyer3*

The first analytical evaluation of a free‑hinged‑hinged‑hinged‑free beam proposed for use as the 
primary sensing element of a new gravity gradiometer is presented. Results of the evaluation obtained 
in quadratures are applied to the beam’s structure, including locating the hinges that form the 
beam’s boundary conditions allowing only free rotations around its nodal axes. These are deliberately 
chosen to minimize the beam’s symmetric free ends deflections under the uniform body loading 
of gravity while simultaneously permitting the beam’s maximum possible mirror‑symmetric free 
ends deflections owing to a gravity gradient distributed along its length. The flexible triple‑hinged 
beam deformation from its nominal unloaded geometry is naturally elastically coupled throughout, 
including free ends, allowing synchronized mechanical displacement measurements at any deflection 
point. Some methods of manufacturing such sensing elements and their respective error mechanisms 
are also discussed and presented for the first time.

Distributed flexible mechanical objects such as  cantilevers1, flexures used in  MEMS2–4 and strings/ribbons5 
have been in use for quite a long time as primary sensing elements (test masses) for measuring gravitational 
acceleration and its spatial derivatives (gravity gradients). By measuring the latter, one could get, for example, 
valuable information about buried mineral deposits, hidden underground voids, tunnels and bunkers, and use 
the fine Earth’s gravity data for passive, not jammable, strategic submarine  navigation6. The difference between 
the primary sensing elements in the form of distributed flexible test masses (elongated beams and ribbons) and 
compact solid test masses (spheres, cylinders and the like) is that in the latter case the test masses are responsive 
to the local force of gravity applied to centres-of-mass, while in the former case they can be more receptive to the 
force-per-unit-length that is, by definition, directly proportional to gravity gradients. The distributed test masses 
allow for the construction of a continuous beam type gravity gradiometer where only one sensing element is 
needed for measuring a gravity gradient along its  length7. If compact test masses are used, a minimum of two of 
them are needed to measure the difference in the force of gravity acting upon them. In the latter case one needs 
to maintain a fixed spatial separation of the test masses or “baseline” which effectively determines sensitivity 
and size of the resulting gradiometer instrument. The stand-alone test masses and the corresponding sensing 
means, that translate their motion into a measurable physical quantity, must be matched with an unprecedented 
accuracy in order to meet a state-of-the-art measurement capability (typically within a few parts per billion for 
requisite ultra-precision) which, in turn, must be provided over the whole gradiometer run time, i.e. must be 
stable within reasonably long time intervals.

A primary sensing element having a single sensitivity axis is shown in Fig. 1 below. It comprises an elongated 
thin metal beam (ribbon or foil) which is hinged at three equally separated axes and having overhanging free 
 ends8. In beam theory it might be called a free-hinged-hinged-hinged-free beam. The hinges are connected to 
so-called zero-force frame of reference providing free beam’s rotational motion around their axes.
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The deflection of the beam’s free ends with respect to its unperturbed position can be measured by an appro-
priate mechanical-displacement-to-voltage conversion technique such as a moving plate capacitive  transducer9,10. 
The locations of the hinges are sought to simultaneously minimize the beam’s symmetric, with respect to the 
central axis, free ends deflection under the uniform force distribution while permitting the beam’s maximum 
possible mirror-symmetric deflection due to a gravity gradient along its length. The beam’s free-hinged-hinged-
hinged-free structure is heavily over-constrained, and to the best of the authors’ knowledge has not been ana-
lytically evaluated before in open publications. For the first time a static and dynamic analyses, including error 
factors, of such over-constrained beam loaded by a non-uniform force distribution is presented below.

Theoretical framework
There are well known theoretical frameworks that have been widely used to analyse the general transverse motion 
of elongated flexible beams under different boundary conditions, which are Euler–Bernoulli–Lagrange  theory11 
and Rayleigh-Timoshenko  theory12–14. In the static approximation, they coalesce to the same framework where 
the transverse displacement Z of every point of a beam under investigation and its bending slope θ are described 
by the following equations

where E is the beam’s Young modulus of elasticity, I is the beam’s area moment of inertia, η is the beam’s mass 
per unit length, gz is normal to the beam surface gravitational acceleration vector component and Γzx is a gravity 
gradient tensor component along the beam’s length

The beam’s area moment of inertia I is described by the following  equation15,16

where b and d are the width (base) and thickness of the beam accordingly, σ is Poisson ratio.
In Eqs. (1) and (2) an extra term Ŵzzz has been ignored in the first order series expansion of the gravitational 

acceleration component gz(x,z) over coordinates x and z, where Ŵzz is the vertical gravity gradient component. 
This term, if left there, would introduce so-called gravitational spring, that can be either positive or negative, 
since Z = z represents the beam’s transverse displacement variable. Including this term leads to unnecessary 
complication of the quasi-static analysis as the corresponding corrections are the second order of magnitude. 
Also, this term is a symmetric one with respect to x → −x coordinate transfer and therefore can not modify the 
beam’s deflection under the gradient term Ŵzx.

For the free-hinged-hinged-hinged-free beam the following boundary conditions are applied to Eqs. (1) 
and (2)
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Figure 1.  A mirror-symmetric profile of an elongated thin metal beam (the gray colored ribbon in the middle 
of a solid blue reference frame) which is hinged at three equally separated axes and having overhanging 
free ends. Such deformation profile also shown is the result of a linearly distributed force-per-unit-length, 
representing a pure gravity gradient load.
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Equation (8) above is the manifestation of the “three moment” theorem that is applicable to any flexible beam’s 
adjoint three-span  sections8. In the error-free model above, it is assumed that the hinges are aligned along the 
same XOY plane and separated by exactly the same spans. Also, the beam’s free ends are separated by exactly the 
same distance from the middle point x = 0 of the static coordinate system XYZ where the X-axis coincides with 
the unperturbed position of the beam. It is also assumed that the beam’s length (2L) is much larger compared to 
its width (b) and thickness (h) so the one-dimensional problem above is well-justified17.

The Eqs. (1) and (2) cannot be solved in quadratures for the whole length of the beam due to the number of 
boundary conditions vastly exceeding the order of the linear differential equations. However, they can be solved 
for each of the four spans along the beam’s length provided the continuity of the solutions at the nodal points 
is  preserved18.

It is worth noting that the bending moments EId θ/dx at the beam’s free ends do not vanish in the presence 
of the force gradient along the beam’s length. For the sake of simplicity, the details of solving Eqs. (1) and (2) for 
four adjoint spans independently are omitted here and the final results are shown below
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One can find the condition upon which the beam’s displacements at its free ends under the uniform force of 
gravity vanish ( Ll ). One has

It yields

It is interestingly enough to note that the positions ± l  in Eq. (24) match closely with free-free beam’s nodal 
locations of the first mirror-symmetric eigenmode as shown in Fig. 2  below19.

The deflections of the free-hinged-hinged-hinged-free beam’s ends with the locations of the hinges as per 
Eq. (24) are as follows

where m is the total mass of the beam and mL4/EI can be treated as the beam’s intrinsic gradiometric gain hav-
ing the dimension of the product of time squared and distance. It is also interesting to note that this parameter 
can be measured quite accurately for particular dimensions and material. As an example, the product EI can be 
extracted from measuring the resonant frequencies (say, the first resonant mode) of a standard cantilever fixed-
free beam of the same material and cross section. In turn, this means that absolute gravity gradient measurements 
are possible provided that the deflection of the beam from its force-free position can also be calibrated in absolute 
units by measuring them at the locations (calibration stations) where the local gravity gradients are well known.

In Fig. 3 below, two beam’s spatial profiles show its deflection under full-g body load and, independently, 
under 10E gravity gradient along its length (g = − 9.8 m/s2 is the Earth’s gravitational acceleration chosen to 
be directed downwards, 1E = 1Eotvos =  10–9 1/s2 is the unit of gravity gradients, b = 0.01 m,   d= 0.00025  m, 
l = ±

(

2− 21/3
)

L).

Design and manufacturing error analysis (static)
Manufacturing processes are not perfect, and the ideal scenario outlined above can be modified to account for 
several imperfections, including:
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Figure 2.  Mirror-symmetric eigenmodes of a free-free 30 cm thin beam. The first, second, third and fourth 
mirror-symmetric eigenmodes are depicted in blue, maroon, gold and green consequently. The eigenmode’s 
zero-crossing locations are at 0, ± 11.0368 cm compared to 0, ± 11.1012 cm derived from Eq. (24) for the free-
hinged-hinged-hinged-free beam of the same length.
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• Asymmetric positioning of the left–right side hinges with respect to the central one, so the beam’s spans are 
not equal to each other;

• The beam’s mass per unit length is not the same at every cross-section of the beam (major contributions are 
beam’s manufacturing tolerances and its density variations);

One can prove that all such effects result in mixing the true gravity gradient related deflection of the beam with 
the one caused by the uniform force of gravity distribution. As an example, the deflection of the beam’s right 
end, including an error term caused by the mispositioning of the right-side hinge ℓ+ δℓ and asymmetric right 
end L+ δL , is as follows

where α and β are numerical factors of the order of unity and  Z0 is a zero-force offset due to a residual stress 
embedded into the beam. In real life, there always will be some small residual curvature of the beam’s plane due 
to the remaining (built-in) stress embedded into its atomic structure and caused by its history of mechanical 
and thermal treatment during manufacturing. If the stress is constant (frozen) in time, then this appears as the 
presence of a constant uniform load or a constant gravity gradient along the ribbon’s length independent of the 
environmental conditions. These will result in a systematic error in measuring gravity gradients in absolute 
units, namely, a measurement bias—a difficult situation. As with most sensitive equipment, relative measure-
ments are much easier to deal with provided the relevant gradiometer’s set-up is stable—the requirement that 
makes the development of practical gravity gradiometers look similar to ”impossible” grade missions. However, 
in the case of such spatially distributed flexible sensing element, i.e. a free-hinged-hinged-hinged-free beam, the 
biased deflections of its different spans can be measured independently and combined (in real time or in a post-
processing stage) in such a way that this would cancel out the systematic errors mentioned above. A simple way 
of measuring and maximally removing the systematic errors is to rotate the sensor in the horizontal plane by 180 
degree and sum-up the results of the measurements. The gz proportional term will not change its sign while the 
gradient term will be eliminated due to its asymmetry along the X-axis. Combining dynamic deflections of the 
sensor’s different spans would also cancel out such dynamic effects (see the dynamic analysis section below) as 
mixing desired signals with linear acceleration if a gradiometer is mounted on a moving platform (airborne grav-
ity gradiometry as an example). The latter is possible since the forced mechanical displacements (either resonant 
or non-resonant) of every infinitesimally small cross section of vibrating beams are superposed as a weighted 
sum of all possible eigenmodes, formed by beam’s boundary conditions, and representing true standing  waves20.

The design and manufacture of free-hinged-hinged-hinged-free beams is a challenging engineering problem. 
The analysis above assumes the hinges are solid structures that do not possess any intrinsic torsional spring con-
stant. Such hinges can be made as solid micro-shafts allowing only free rotation of the beam around the nodal 
axes and connected to an external frame of reference in a manner that used in the precision wrist-watch making 
technique, e.g. certified mechanical chronometers. Jewel-bearing spring-loaded insertions using synthetic sap-
phire and holding rotating shafts have been widely used in precision instruments where extremely low friction, 
long life and dimensional accuracy are important. The latter also allows for a self-alignment of the beam’s nodal 
axes along the zero-force plane (XOY in the case above). Such technique can also mitigate a residual mismatch 
of the thermal expansion, caused by thermal gradients, of the materials used to make a beam, shafts and their 
holders and the frame of reference. All such materials must have very closely matched thermal expansion coef-
ficients. A typical way of further reducing the effects of thermal gradients around the sensor assembly is to keep 
it in a medium level vacuum or in a locked space filled with gaseous helium at a low pressure. The latter provides 
almost instant thermal alignment along the sensor assembly due to its ultra-fast speed of establishing thermal 
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Figure 3.  (a) – the symmetric deflection of the free-hinged-hinged-hinged-free beam under the full projection 
of the Earth’s gravity; (b) – the mirror-symmetric deflection of the beam under 10E gravity gradient (all 
numbers are in metres, material is Phosphor Bronze).
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equilibrium at optimum pressure  values32. An example of a solid shaft-based design of a free-hinged-hinged-
hinged-free beam is depicted in Fig. 4 below.

Another design of a free-hinged-hinged-hinged-free beam is depicted in Fig. 5 below. The whole structure 
is EDM wire cut with about 3–5 microns tolerance from a single piece of flat metal foil. In this case, the hinges 
represent micro-pivots of an optimum cross section connecting the middle flexible section (ribbon) to the rest 
of the foil that form a zero-force frame of reference. In turn, the latter can be firmly mounted upon another 
solid frame made of the same material as the foil. The pivots possess an intrinsic torsional spring constant and 
this changes the boundary conditions of the true hinged beam  design21,22. Analytical evaluation becomes a bit 
more complicated as the additional torsional rigidity is not well known and must therefore be idealized. During 
the EDM processing time, the fine pivot structure experiences not well-defined treatment by heating the foil 
material in a water basin, which is the standard processing environment for the EDM technique. The effect of the 
latter upon a particular chosen material is not well known either. The cutting wire material does matter as well. 
Software modelling is needed to simulate these effects and compare the results with experimental data. A detailed 
error analysis of a prototype gravity gradiometer along with experimental data will be published elsewhere.

Dynamic analysis of free‑hinged‑hinged‑hinged‑free beam
The dynamic analysis of free-hinged-hinged-hinged-free beam is different for the Rayleigh-Timoshenko the-
ory and for the Euler–Bernoulli-Lagrange theory. Timoshenko introduced corrections to the latter taking into 
account rotary inertia and shear deformation which leads to two linear differential equations for beam’s trans-
verse deflection and its bending  slope23. This gives better results in dynamic analyses for beam’s high frequency 
eigenmodes. However, for the multi-span thin beam under consideration the latter are vastly suppressed and only 
a few low frequency eigenmodes do matter for practical applications. Assuming the Euler–Bernoulli-Lagrange 
theory is still accurate enough to analyse the dynamic behaviour of the beam under  consideration24, one has the 
following dynamic Euler–Lagrange equations for the beam’s transverse displacement and bending slope

(27)η
∂2Z

∂t2
+ h

∂Z

∂t
+ EI

∂4Z

∂x4
= −ηa(t)+ ηŴ̃zxx + FL(x, t)

(28)η
∂2θ

∂t2
+ h

∂θ

∂t
+ EI

∂4θ

∂x4
= ηŴ̃zx +

∂

∂x
FL(x, t)

(29)Ŵ̃zx = −
d�y

dt
−�z�x

Figure 4.  A free-hinged-hinged-hinged-free beam made by sliding a straight long ribbon into ultra-small and 
almost weightless shafts manufactured by experienced wrist-watch makers [http:// www. wcawa. org. au]. The 
shafts are locked from both sides and held inside sapphire-bearing spring-loaded threaded insertions fixed 
in shaft holders at nodal positions along the beam’s length within a few micrometres tolerance. The thermal 
expansion coefficients of all materials used in this assembly including fasteners are closely matched.

Figure 5.  A free-hinged-hinged-hinged-free beam made by precision EDM process. The whole structure is 
wire cut with about 3–5 microns tolerance from a single piece of flat metal foil. In this case, the hinges represent 
micro-pivots of an optimum cross section connecting the middle flexible section (ribbon) to the rest of the 
frame. Material shown is a composite Tungsten/Copper alloy.

http://www.wcawa.org.au
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where h is the coefficient of friction per unit length (assumed to be the same along the beam’s length), FL(x,t) is 
the effective Langevin force per unit length forcing the beam to stay in thermal equilibrium with external environ-
ment with temperature T, a(t) and �X,Y ,Z are kinematic (linear) acceleration normal to the beam’s surface and 
angular velocity vector components of the beam’s reference frame respectively. The term Ŵ̃zx in the right side of 
Eqs. (27) and (28) is called a dynamic gradient that affects the measurement of real gravity gradients by gravity 
gradiometers mounted on moving platforms representing non-inertial reference  frames25.

As the beam represents a multi-mode mechanical resonator, its response to the noise driving force is not the 
same as that of a Brownian particle. The intensity of the effective Langevin force per unit length should be calcu-
lated from the condition that the mean energy for each mode n of the resonator will be given by �Wn� = kBT 26. 
A wave-function analysis applied to the free-hinged-hinged-hinged-free beam is presented below (see  also27,28). 
One has

The modal wave-functions ψ(+)
n (x) and ψ(−)

n (x) represent symmetric and mirror-symmetric eigenfunctions 
satisfying the following relations

These eigenfunctions are found by solving the following characteristic equation for each of the beam’s span

where k(±),n are the partial modal eigenvalues that depend on specific sets of boundary and continuity condi-
tions corresponding to the beam’s force-free vibration modes. The orthogonality of the modal eigenfunctions 
is automatically provided by the beam’s free ends boundary conditions (Eq. (35) and  (36) below) and by their 
symmetry (Eq. (33))

The boundary and continuity conditions at ±ℓ nodal locations for either symmetric or mirror-symmetric 
eigenfunctions are as follows
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After substituting Eq. (29) into Eq. (27) and performing trivial mathematical calculations, one finds

where τ = 2η/h is the beam’s relaxation time and ω(±),n = 2π f(±),n are its free-vibration angular resonant 
 frequencies29

The eigenvalues k(±),n are unambiguously determined from Eq. (34) which is manifestly invariant of the choice 
of normalisation of modal eigenfunctions

The exact solutions of the Eq. (33) for the free-hinged-hinged-hinged-free beam are presented in Supplemen-
tary Materials section of this article. The first four force-free eigenmodes of the beam under consideration are 
depicted in Fig. 6 below for L = 0.15 m and the locations of side hinges l = ±

(

2− 21/3
)

L:

Noise only driven free‑hinged‑hinged‑hinged‑free beam
The total energy of the free-hinged-hinged-hinged-free beam under consideration consists of a kinetic term and 
the potential energy stored in the beam’s atomic  structure29
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Figure 6.  (a) Symmetric eigenmodes of free-hinged-hinged-hinged-free beam (1st—black, 2nd—red, 3rd—
blue, 4th—magenta); (b) Mirror-symmetric eigenmodes of free-hinged-hinged-hinged-free beam (1st—black, 
2nd—red, 3rd—blue, 4th—magenta).
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By integrating the potential energy term in Eq. (51) by parts and replacing the beam’s transverse displace-
ment Z(x,t) by its modal series expansion in Eq. (29) (the beam’s free-ends boundary conditions are taken into 
account), one finds

Equation (52) above is the standard representation of the total energy of multi-mode mechanical oscillator 
where αn and βn are its modal mechanical displacement amplitudes. The spectral densities of the latter for the 
noise only driven beam under consideration are as follows

where DF is the intensity of the Langevin force:

If the beam is in thermal equilibrium with its environment with temperature T, the following requirement 
 holds30

The integration in Eq. (55) yields

It is possible now to estimate the thermal fluctuations imposed by the Langevin force upon, say, the mechani-
cal displacement of the beam’s free ends under a gravity gradient along its length. In turn, this would allow for 
an estimate of the thermal limit in measuring gravity gradients by the primary sensing element such as free-
hinged-hinged-hinged-free beam. One finds from Eqs. (30), (53) and (56)

where S(L,ω) is the displacement spectral noise of the beam’s free ends. Considering the quasi-static approxima-
tion only ( ω → 0 ), one has

By combining Eqs. (58), (49) and (25), one finds the equivalent gravity gradient spectral noise

It is worth noting that either Eqs. (58) or (59) are invariant of the eigenfunction normalisation factor in 
Eq. (50) (chosen to be 

√
2L ) as in the dynamic analysis the total mass of the beam is defined as

For the over-constrained free-hinged-hinged-hinged-free beam under consideration only the first (n = 1) mir-
ror-symmetric eigenmode ψ(−)

n  gives the major contribution to the right sides of Eqs. (59) and  (60). In case dif-
ferential displacement measurements are used to measure relative motion of the beam’s free ends (Z(L) − Z( − L)), 
then 3 dB noise reduction should be applied to Eq. (59). Table 1 below gives a few examples for a particular beam’s 
dimensions, materials, and the locations of the side hinges at l = ±

(

2− 21/3
)

L.

Paired static accelerometers versus free‑hinged‑hinged‑hinged‑free beam
The Common Mode Rejection Ratio (CMRR) in its classic meaning applies to any four-port measuring device 
where two independent non-measurable physical signals are applied to two input ports and then converted via 
input transfer functions into two output signals representing measurable physical quantities such as electric 
voltage. Non-measurable input signals can be atom-size mechanical displacements, gravitational and linear 
accelerations, temperature, pressure, light and the like. As an example, a relative gravity gradiometer can be set 
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up as a pair of linear static accelerometers, separated by a base line, where their output signals are subtracted in 
real time or in a post processing stage (output voltages can be digitized and analytically differentiated).

It must be noted that any single static accelerometer has zero CMRR. If paired, the differential output signal 
is as follows

where k1 and k2 are the accelerometer transfer functions, g1 and g2 are the gravitational accelerations at the two 
different locations occupied by the accelerometers separated by some base line, and

The CMRR in this case is

In gravity gradiometer design pursuits based on paired static accelerometers, transfer functions are matched 
electronically with a high precision and included in feedback loops to keep the balance  stable33. Without any 

(61)�V = V1 − V2 = k1g1 − k2g2 = k
(

g1 − g2
)

+ g(k1 − k2)

(62)k =
k1 + k2

2
, g =

g1 + g2

2

(63)CMRR ∼= 6+ 20Log

(

k1 − k2

k1 + k2

)

dB

Table 1.  Numerical parameters of free-hinged-hinged-hinged-beam with different lengths and cross sections 
for two different materials (Phosphor Bronze and Tungsten Copper alloys); Calculated the first two modal 
eigenvalues and mechanical resonant frequencies for both mirror-symmetric and symmetric eigenfunctions; 
calculated differential mechanical displacement of the beam’s free ends under 10 Eotvos gravity gradient and the 
thermally activated equivalent gravity gradient noise.

 
Material Phosphor 

Bronze 
Cu94 

Sn6 
 Tungsten 

Copper 
W80 

Cu20 
 

Length (2L, metres) 0.3 0.35 0.4 0.3 0.35 0.4 
Width (b, metres) 0.01 0.01 0.01 0.01 0.01 0.01 
Thickness (d, metres) 0.00025 0.00025 0.0003 0.00025 0.00025 0.0003 
Mass (m, kg) 0.0067 0.0078 0.011 0.011 0.013 0.018 
Thermally activated 
gravity gradient noise 
(E/√Hz, T=300K, 
τ=1sec) 

 
24 

 
19 

 
14 

 
18 

 
15 

 
11 

Free ends’ differential 
displacement under 10 
Eotvos gravity 
gradient (metres) 

 
4.6

× 10−14 

 
9.6

× 10−14 

 
1.3

× 10−13 

 
3.1

× 10−14 

 
6.4

× 10−14 

 
8.6

× 10−14 

(−), ( / ) 
 

(−), ( ) 

26.2 
 

28.4 

22.5 
 

20.9 

19.7 
 

19.2 

26.2 
 

35.3 

22.5 
 

25.9 

19.7 
 

23.8 
(−), ( / ) 

 

(−), ( ) 

66.7 
 

184.5 

57.3 
 

135.5 

50.1 
 

124.5 

66.7 
 

229.3 

57.3 
 

168.4 

50.1 
 

      154.8 
(+), ( / ) 

 

(+), ( ) 

46.9 
 

90.8 

40.2 
 

66.7 

35.2 
 

61.3 

46.9 
 

112.8 

40.2 
 

82.9 

35.2 
 

76.1 

(+), ( / ) 
 

(+), ( ) 

82.6 
 

281.8 

70.8 
 

207.1 

62 
 

190.2 

82.6 
 

350.2 

70.8 
 

257.3 

62 
 

236.4 
(−)

( ) 
(+)

( ) 

1.56 
 

0.84 

1.56 
 

0.84 
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0.84 
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0.84 
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0.84 
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electronic enhancement, the transfer functions (gains) of precision accelerometers can be matched to within a 
few parts in ten thousand at  best34. This results in the “initial” CMRR of approximately  − 70 dB or less.

In the case of free-hinged-hinged-hinged-free beam, Eq. (26) combined with Eq. (4) can be represented in 
a form like Eq. (61)

where

and

It is worth noting again that the mechanical displacement function Z(L) in Eqs. (26) and (64) is a non-meas-
urable quantity as no mechanical displacement sensing means are applied to free-hinged-hinged-hinged-free 
beam as the primary sensing element. The corresponding "internal" CMRR is

In Eq. (68) a new term δm/m is added, which represents a beam’s symmetry breaking point mass deposited at 
the positive end of the free-hinged-hinged-hinged-free beam. A non-uniform beam’s width and/or non-uniform 
mass per-unit-length can be reliably modelled by this local mass  deposition35. One can argue that vertical mis-
alignment of a nodal position, say the central one, will not contribute to the CMRR above as the beam’s sym-
metry is not broken for that case. There is always a plane defined through any two nodal axes so only one vertical 
misalignment needs to be considered. For typical machining tolerances, the latter is small enough such that it 
only increases the stiffness of a free-hinged-hinged-hinged-free beam’s vibration modes as a second order effect.

It is interesting to note that a negative point mass can be physically added to either side of the beam by using 
precision laser ablation (trimming)36. This can counterbalance the small errors caused by the misalignment of 
the nodal axes along the beam’s length and greatly increase the CMRR. It is feasible to achieve at least − 60 dB 
CMRR at the manufacturing stage and then another − 120 dB CMRR by using precision electronic gain matching 
techniques and other well-known means to get up to − 180 dB CMRR needed for mobile gravity gradiometry 
 applications6.

Concluding remarks
The static and dynamic analysis of the free-hinged-hinged-hinged-free beam is the first step in presenting a novel 
design of a primary sensing element having a single sensitivity axis that can be used in future advanced gravity 
gradiometers. The latter should be capable of operating in any orientation with respect to the Earth’s acceleration 
of gravity and in a limited space that is typical for such unmanned mobile platforms as UAVs (either airborne or 
submersible) and drones. From Table 1 above it follows that the beam’s length is the most critical factor for either 
increasing its sensitivity to a gravity gradient along its length or reducing the thermally activated gravity gradi-
ent noise. The latter is the limiting factor for this type of gravity gradiometer. A median baseline (2L) of 0.35 m, 
based on the free-hinged-hinged-hinged-free beam and made of a Tungsten/Copper composite alloy, would 
provide better than 10 Eotvos resolution at 3 s measurement time. The corresponding mechanical displacement 
measurements at the level of ~  10–14 m/√Hz can be provided by a number of currently available room-temperature 
techniques (capacitive, microwave, optical) including new emerging techniques such as quantum and quantum 
enabled  sensing31. As all existing gravity and gravity gradient front-end sensing elements, including the proposed 
triple-hinged beam design, can only provide quasi-static mechanical displacement measurements, the measured 
data sets always contain 1/f noise (zero-point drift) caused by temperature instabilities, mechanical creep in the 
primary sensing element, voltage drift in operational amplifiers and other electronic components. These effects 
can be removed by applying a modulation-demodulation  technique6,7 that can shift the operational frequency 
bandwidth to a white noise area where maximum signal-to-noise ratio is provided (this approach is currently 
under development and will be discussed elsewhere). The most important feature of the distributed sensing ele-
ment as the free-hinged-hinged-hinged-free beam is that it allows for simultaneous measurement of the dynamic 
displacements of the beam’s different spatial locations representing true standing waves. If combined in a proper 
manner, this could cancel out the effect of one of the most disturbing factors for gravity gradiometers, if being 
deployed on moving platforms, namely large kinematic and uniform gravitational accelerations applied to the 
primary sensing element and its frame of reference. This approach is entirely new in gravity gradiometry and 
may open the door to the most desired use of gravity gradiometers in the strapped-down mode onboard com-
mercial drones and other unmanned platforms.

(64)Z(L) = kint
(

gz(L)− gz(−L)
)

+ g(kint(L)− kint(−L))+ Z0(L)

(65)kint ∼= 5(10)−4mL3

EI

(66)g =
gz(L)+ gz(−L)

2

(67)kint(L)− kint(−L) ∼= 5(10)−3mL3

EI

(

α
δℓ

L
+ β

δL

L
+ γ

δm

m

)

(68)CMRR ∼= 20+ 20Log

(

α
δℓ

L
+ β

δL

L
+ γ

δm

m

)

dB,α,β , γ ≈ 1
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