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Background and objectives: Garlic and its number of preparations are known to be effective for treatment
of dyslipidemia, but the data about the specific active constituents of the garlic on the possible therapeu-
tic value is scarce. Therefore, the aim of this research was to evaluate the role of garlic oil (GO) and its
active element, diallyl disulphide (DADS) for obviating dyslipidemia in animal model.
Methods: High fat diet (HFD) was given to animals to induce dyslipidemia. Animals of HFD groups were
fed with atherogenic diet for 15 days prior to treatment. Animals in their respective groups received vehi-
cle, GO (50 and 100 mg/kg), and DADS (4.47 and 8.94 mg/kg) for five consecutive days. Lipid profiles were
estimated in serum, oxidant/antioxidant and liver profile were measured in liver tissue homogenate
(LTH).
Results: Animals fed on HFD developed significant increase in the serum levels of triglycerides (TG), total
cholesterol (TC), lactate dehydrogenase (LDL), malondialdehyde (MDA), glutathione peroxidase (GSHPx),
glutathione (GSH), and glutathione disulfide (GSSG) that reduced significantly in groups that received GO
and DADS treatments. Additionally, significant elevation in serum high density lipoprotein (HDL) level
was observed in animals that received GO and DADS. Moreover, hepatic markers such as alkaline phos-
phatase (ALP), aspartate aminotransferase (AST), and alanine transferase (ALT), that were abnormally
altered by high fat diet, were significantly restored to almost normal values with GO and DADS treat-
ments. Also, antioxidants such as superoxide dismutase (SOD), catalase (CAT), ferric reducing antioxidant
power (FRAP), and total thiol (SH) levels in LTH were increased significantly in GO and DADS treated
groups. When compared to DADS, GO showed better therapeutic effectiveness in terms of antihyperlipi-
demic and antioxidant properties.
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Conclusion: In hyperlipidemic rats, garlic and its principal active component, diallyl disulphide, were
effective in avoiding dyslipidemia and neutralizing reactive free radicals induced by a high fat diet. It’s
an intriguing observation that GO has a larger therapeutic influence than its active constituent, DADS.
These findings suggest that other constituents, in addition to GO’s DADS, are involved in the compound’s
synergistic antihyperlipidemic and antioxidant activities.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

In many regions of the world, cardiovascular morbidity is a
leading cause of death. Anti-hyperlipidemic medications are
already available to treat hyperlipidemia, but their use is limited
due to the increased risk of side effects (Nasri and Shirzad, 2013).
In comparison to synthetic drugs, plant-based therapies are
thought to possess less undesired effects. There are number of
studies that show an inverse relationship between a food that
has vegetables and the prevalence of ischemic heart illness
(Mozaffarian et al., 2003; Ruscica et al., 2021). As a result, it was
thought useful to investigate the impact of a regularly used plant
derived material and one of its main elements in obviating dyslipi-
demia using established animal models. Garlic (Allium sativum L.)
and its different forms are known since long time as an excellent
preventative and therapeutic medicinal agent in the traditional
system (Asdaq and Inamdar, 2009; Adaki et al., 2014; Ribeiro
et al., 2021). It is generally recognized in the form of spice and a
home remedy for variety of disorders (Tripathi, 2009). Many stud-
ies have found that chronic garlic usage lowers plasma lipids
(Asdaq et al., 2009), decreases pro-inflammatory cytokine produc-
tion, and reduces platelet activation state (Sonia et al., 2004). Raw
garlic, on the other hand, has a variety of harmful effects, including
anemia, weight loss, and growth retardation (Ray et al., 2011). Gar-
lic’s outstanding biological properties include oxidative radical
scavenging capability, cardioprotective qualities, and effectiveness
as an adjunct in the treatment of a variety of malignancies, as evi-
denced by several research studies conducted in recent decades
(Hayat et al., 2016). In addition, number of studies (Asdaq et al.,
2021; Batiha et al., 2020) examined the therapeutic benefits of
main elements contained in garlic preparations such as garlic oil,
and powder.

Garlic has number of beneficial ingredients that include
organosulfur substances in addition to saponins, and phenolic
compounds (Wang et al., 2018). Organosulfur compound, diallyl
disulfide (DADS), is one among the main active ingredients
reported in the literature (Mansingh et al., 2018). In addition to
DADS, diallyl thiosulfonate (allicin), diallyl sulfide (DAS), diallyl
trisulfide (DATS), SAC, and S-allyl-cystein sulfoxide are all reported
to be present in garlic oil with therapeutic efficacy (Mansingh et al.,
2018). However, we selected DADS based on our experience of its
therapeutic potential (Asdaq et al., 2021a; Asdaq et al., 2021b). Fur-
ther, garlic oil (GO) is shown to be effective in reducing body
weight by reducing low-density lipoprotein (LDL) (Yang et al.,
2018). Therefore, it was our interest to explore the potential bene-
fit of GO and its active constituent, DADS, in obviating dyslipidemia
using animal models.
2. Materials and methods

2.1. Experimental animals

Sprague-Dawley rats (220–250 g) were utilized, and they were
housed in an animal house that was kept in compliance with the
standards and ethical requirements of the local ethics commission
2521
(Research committee, College of Pharmacy, AlMaarefa University,
Riyadh, Saudi Arabia) that accepted our research project.
2.2. Experimental protocol

There were five groups each under NFD and HFD categories
(n = 8). The rats of the NFD group received standard pellet supplied
by standard supplier that had protein, oil, fibre, ash, and silica in a
percentage of 22.10, 4.13, 3.15, 5.15 and 1.12, respectively. The
HFD animals were given 68% normal fat diet in addition to dalda
(30%) and cholesterol (2%) (Guido and Joseph, 1992; Asdaq et al.,
2009) for 15 days prior to the commencement of treatment and
during the period of administration of drugs (five days).
2.3. Experimental steps

Animals in group I to V received normal fat diet and treated
orally with vehicle, GO (50 and 100 mg/kg) and DADS (4.47 and
8.94 mg/kg) (Asdaq et al., 2021), respectively for five days. Group
VI, VII, VIII, IX and X of HFD category were similarly administered
with vehicle, GO and DADS, respectively, for five days. The weights
of the animals were taken at the beginning and before they were
sacrificed, and the % change in weight was determined. Each ani-
mal’s daily feed consumption was also recorded in grams per day
(Asdaq, 2015).
2.4. Biochemical estimations in serum

A method described by Asdaq and Inamdar (2010) was used to
estimate protein levels and GSHPx, GSH and GSSG. An autoanalyzer
was employed to calculate TG, TC, HDL (El-Hazmi and Warsy,
2001). The LDL was calculated based on the amount of TC, HDL
and TG with a formula described by Friedwald’s et al. (1972). In
addition to this, AI was calculated based on the ratio between
LDL and HDL (Bahramikia and Yazdanparast, 2008). Additionally,
liver parameters such as AST, ALT, and ALP were measured.
2.5. Biochemical estimations in LTH

Livers were promptly separated from sacrificed rats, cleaned in
normal saline, and soaked using filter paper. Liver tissue homoge-
nate (LTH) was prepared in sucrose to estimate antioxidants. A
method to measure TBARS, FRAP, SH groups assay, SOD and CAT
described by Asdaq and Inamdar, 2010 was used in this study.
2.6. Data statistics

The values obtained in the study were statistically tested for
determining the level of significance. Any comparison between
the group where probability value was lower than 0.05 was termed
as significant.
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3. Results

3.1. Impact on lipid parameters

Table 1 explain the impact of five days of administration of gar-
lic oil and DADS in their respective groups on lipid profile. HFD
control animals showed significantly (P < 0.001) increased level
of triglycerides, LDL, and total cholesterol in comparison with the
normal control group. Similarly significant (P < 0.01) fall in the
HDL cholesterol level was observed in high fat diet control animals
compared to normal rats. Atherogenic index of animals under high
fat diet was significantly (P < 0.001) high compared to animals kept
on normal diet. Treatment of rats with GO, and DADS dose depen-
dently caused significant (P < 0.05 with low dose and P < 0.01 at
high dose) decrease in triglycerides (TG), total cholesterol (TC)
and LDL cholesterol levels when compared to normal control
group. Further, administration of GO and DADS, both low and high
doses, significantly (P < 0.001) decreased the elevated TG, TC and
LDL levels in the serum of animals who were fed with high fat diet
signifying their antihyperlipidemic potential in hyperlipidemic
animals. The results were further validated by atherogenic index
that was significantly (P < 0.001) lowered in animals that received
GO and DADs treatments.

3.2. Impact on liver parameters, body weight change (%) and daily diet
intake

In comparison to normal controls, rats treated with GO and
DADS had significantly (P < 0.001) lower AST, ALT, and ALP levels.
In addition, animals given high doses of GO and DADS had a signif-
icant (P < 0.01) reduction in daily diet intake (Table 2). A switch to
a high-fat diet resulted in significant (P < 0.001) increases in liver
enzymes, and body weight, as well as a decrease in daily diet
intake. When compared to a high fat diet control, GO and DADS
administration resulted in significant (P < 0.001) depletion of liver
enzymes, and body weight, as well as an increase in daily diet
intake (Table 2).

3.3. Impact on oxidative parameters

As demonstrated in Table 3, treatment of GO and DADS resulted
in a significantly (P < 0.001) decreased of serumMDA, GSHPx, GSH,
and GSSG levels in comparison to the control group. Further, HFD
resulted in significant (P < 0.001) increase in MDA, GSHPx, GSH,
and GSSG levels compared to NFD. In addition, compared to a
HFD control, five days of GO and DADS treatment reduces elevated
levels of MDA, GSHPx, and GSH in serum. Furthermore, both GO,
Table 1
Lipid parameters.

Groups TG TC

NC 68.28 ± 1.22 81.19 ± 1.21
NGOL 61.22 ± 2.22* 69.22 ± 1.22**

NGOH 49.28 ± 1.33** 59.24 ± 1.23**

NDADSL 62.11 ± 1.45* 70.54 ± 1.32**

NDADSH 54.32 ± 1.11** 63.28 ± 1.11**

HFDC 108.22 ± 1.28aaa 132.35 ± 1.32aaa

HFGOL 89.11 ± 1.11** 98.24 ± 1.80**

HFGOH 74.32 ± 1.99*** 88.23 ± 1.65***

HFDADSL 91.26 ± 1.56** 112.40 ± 1.16**

HFDADSH 79.22 ± 1.26*** 94.28 ± 1.098**

Lipid parameters measured in mg/kg; Values are given as mean ± SEM of eight rats; dial
kg); NGOH: normal Garlic oil high dose (100 mg/kg); NDADSL: normal DADS low dose
control; HFGOL: high fat Garlic oil low dose (50 mg/kg); HFGOH: high fat Garlic oil high
fat DADS high dose (8.94 mg/kg); *P < 0.05; **P < 0.01 and ***P < 0.001 normal diet fed treat
respectively. aaaP < 0.001 NFD control Vs HFD control.
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and a high dose of DADS significantly (P < 0.001) reduced serum
GSSG levels in comparison to HFD control.
3.4. Impact on antioxidant profile

As evident from Table 4, high doses of GO and DADS increased
SOD and CAT activities in LTH in comparison to NFD control. Addi-
tionally, FRAP and total SH values were significantly (P < 0.001)
elevated in LTH of rats exposed to GO (both doses) and a high dose
of DADS. In comparison to a normal control, both GO, and DADS
(high dose) reduced TBARS levels in LTH. When rats were given
GO and DADS for five days in a row, the levels of antioxidants in
LTH increased from deficient to normal. Furthermore, when ani-
mals were given GO and DADS, their TBARS levels returned to
normal.
4. Discussion

This study was done to evaluate the beneficial role of GO and its
active constituent, DADS, in obviating dyslipidemia using experi-
mental animals. The findings suggest that both GO, and DADS have
the capacity to reduce hyperlipidemia-induced oxidative stress,
with GO having a slight advantage. These findings suggest that
additional GO elements may be contributing therapeutic value to
the DADS found in GO, and that DADS alone is not attributable
for GO’s pharmacological effect in preventing dyslipidemia.

There was an increase in TG, LDL, and TC levels in high fat diet
animals. The serum TG levels were reduced after treatment with
GO and DADS. This trend could be attributable to increased release
of endothelium-bound lipoprotein lipase, that causes hydrolysis of
TG into fatty acids, mediated by GO and DADS (Devi and Sharma,
2004). A high amount of TC, specifically LDL cholesterol, is trigger-
ing factor for coronary artery disease. LDL is responsible for choles-
terol buildup in the arteries and aorta, which leads to coronary
heart disease (De Graat et al., 2002). Both high and low doses of
GO, as well as a high dose of DADS, significantly reduce TC and
LDL, implying that GO and DADS have cardioprotective properties.
The increased level of cardioprotective lipoprotein HDL in the HFD
group after giving high doses of GO and DADS could be responsible
for an increase in the activity of the LCAT, which helps regulate
blood lipids. Several studies have linked an increase in HDL to a
decreased risk of coronary artery disease (Wilson, 1990), and most
medications that reduces TC also lower HDL. In the current study,
however, both GO, and DADS reduced TC and LDL while signifi-
cantly increasing HDL, demonstrating their superiority to alterna-
tive hypolipidemic.
HDL LDH AI

34.89 ± 1.22 68.87 ± 1.66 1.97 ± 0.09
39.98 ± 1.18* 57.54 ± 1.77* 1.43 ± 0.04***

44.55 ± 1.66*** 49.88 ± 1.55*** 1.11 ± 0.03***

38.99 ± 1.44* 59.99 ± 1.43* 1.53 ± 0.09***

41.87 ± 1.47*** 51.11 ± 1.32** 1.22 ± 0.31***

29.55 ± 1.88aa 122.23 ± 1.82aaa 4.13 ± 0.31aaa

36.32 ± 1.58*** 86.16 ± 1.47*** 2.37 ± 0.20***

48.98 ± 1.65*** 63.20 ± 1.45*** 1.29 ± 0.12***

37.65 ± 1.53** 91.99 ± 1.44*** 2.44 ± 0.26***

45.76 ± 1.46*** 74.25 ± 1.32*** 1.62 ± 0.22***

lyl disulfide (DADS); NC: normal control; NGOL: normal Garlic oil low dose (50 mg/
(4.47 mg/kg); NDADSH: normal DADS high dose (8.94 mg/kg); HFDC: high fat diet
dose (100 mg/kg); HFDADSL: high fat DADS low dose (4.47 mg/kg); HFDADSH: high
ed groups Vs normal fat diet control and high fat diet treated Vs high fat diet control



Table 2
Liver parameters.

Groups ALP AST ALT Percentage change in body weight Diet intake (g/day)

NC 188.1 ± 9.8 25.1 ± 1.6 18.1 ± 1.3 10.6 ± 1.4 14.2 ± 1.2
NGOL 169.2 ± 6.5** 21.3 ± 1.8* 15.8 ± 1.4** 10.2 ± 1.3 14.3 ± 1.3
NGOH 161.5 ± 8.8** 14.5 ± 1.9** 13.4 ± 1.2** 11.4 ± 1.2 14.2 ± 1.1
NDADSL 176.7 ± 8.1* 22.1 ± 1.2* 15.6 ± 1.4** 10.9 ± 1.5 15.1 ± 1.4
NDADSH 165.1 ± 7.4** 17.2 ± 1.7** 13.8 ± 0.9** 11.6 ± 1.6 15.1 ± 1.3
HFDC 287.2 ± 10.3aaa 43.4 ± 2.2aaa 36.4 ± 1.6aaa 24.4 ± 1.8aaa 12.8 ± 1.6aa

HFGOL 251.1 ± 5.6* 36.5 ± 2.2** 31. ± 1.7* 19.2 ± 1.1* 11.5 ± 1.4
HFGOH 208.2 ± 11.2*** 28.6 ± 2.3** 24.3 ± 1.0** 16.8 ± 1.6** 13.3 ± 1.3
HFDADSL 261.4 ± 9.5* 39.5 ± 1.8 32.3 ± 1.2* 21.3 ± 1.3* 12.4 ± 1.3
HFDADSH 217.7 ± 9.4** 30.2 ± 1.6* 26.5 ± 1.1* 15.5 ± 1.6** 13.3 ± 1.4

Values are given as mean ± SEM of eight rats; diallyl disulfide (DADS); NC: normal control; NGOL: normal Garlic oil low dose (50 mg/kg); NGOH: normal Garlic oil high dose
(100 mg/kg); NDADSL: normal DADS low dose (4.47 mg/kg); NDADSH: normal DADS high dose (8.94 mg/kg); HFDC: high fat diet control; HFGOL: high fat Garlic oil low dose
(50 mg/kg); HFGOH: high fat Garlic oil high dose (100 mg/kg); HFDADSL: high fat DADS low dose (4.47 mg/kg); HFDADSH: high fat DADS high dose (8.94 mg/kg); Aspartate
aminotransferase: AST (IU/L); Alanine Aminotransferase: ALT (IU/L); Alkaline phosphatase: ALP (IU/L); *P < 0.05; **P < 0.01 and ***P < 0.001 normal diet fed treated groups Vs
normal fat diet control and high fat diet treated Vs high fat diet control respectively. aaaP < 0.001 NFD control Vs HFD control.

Table 3
Oxidative parameters.

Groups MDA GSHPx GSH GSSG

NC 0.47 ± 0.01 0.52 ± 0.01 5.89 ± 0.23 4.61 � 10-2 ± 0.1 � 10-2

NGOL 0.39 ± 0.02* 0.45 ± 0.03* 5.23 ± 0.38* 4.03 � 10-2 ± 0.2 � 10-2*

NGOH 0.31 ± 0.03** 0.32 ± 0.03** 3.99 ± 0.32*** 3.21 � 10-2 ± 0.2 � 10-2**

NDADSL 0.43 ± 0.03 0.47 ± 0.04* 4.98 ± 0.248** 4.11 � 10-2 ± 0.3 � 10-2**

NDADSH 0.35 ± 0.02* 0.35 ± 0.06** 4.76 ± 0.31** 3.38 � 10-2 ± 0.4 � 10-2***

HFDC 0.86 ± 0.06aaa 0.78 ± 0.02aaa 7.81 ± 0.36aaa 7.92 � 10-2 ± 0.1 � 10-2aaa

HFGOL 0.72 ± 0.07* 0.68 ± 0.07* 6.59 ± 0.39* 6.11 � 10-2 ± 0.1 � 10-2*

HFGOH 0.51 ± 0.08** 0.41 ± 0.05*** 5.60 ± 0.44** 4.86 � 10-2 ± 0.2 � 10-2**

HFDADSL 0.68 ± 0.10* 0.69 ± 0.03* 5.84 ± 0.34** 6.29 � 10-2 ± 0.1 � 10-2*

HFDADSH 0.56 ± 0.09** 0.43 ± 0.02** 4.78 ± 0.26*** 4.91 � 10-2 ± 0.5 � 10-2***

Values are given as mean ± SEM of eight rats; diallyl disulfide (DADS); NC: normal control; NGOL: normal Garlic oil low dose (50 mg/kg); NGOH: normal Garlic oil high dose
(100 mg/kg); NDADSL: normal DADS low dose (4.47 mg/kg); NDADSH: normal DADS high dose (8.94 mg/kg); HFDC: high fat diet control; HFGOL: high fat Garlic oil low dose
(50 mg/kg); HFGOH: high fat Garlic oil high dose (100 mg/kg); HFDADSL: high fat DADS low dose (4.47 mg/kg); HFDADSH: high fat DADS high dose (8.94 mg/kg);
Melondialdehyde: MDA (nmol/ml); glutathione peroxidase: GSHPx (U/mg protein); reduced glutathione: GSH (nmol/ml); oxidized glutathione: GSSG (nmol/ml); *P < 0.05;
**P < 0.01 and ***P < 0.001 normal diet fed treated groups Vs normal fat diet control and high fat diet treated Vs high fat diet control respectively. aaaP < 0.001 NFD control Vs
HFD control.

Table 4
Antioxidant parameters.

Groups SOD CAT TBARS FRAP SH group

NC 82.4 ± 1.5 68.3 ± 1.7 34.89 ± 1.2 4.38 ± 0.4 0.58 ± 0.02
NGOL 87.7 ± 1.3 78.6 ± 1.4* 27.10 ± 1.3* 4.99 ± 0.2* 0.77 ± 0.06*
NGOH 96.6 ± 1.5* 99.2 ± 1.5** 21.21 ± 2.2*** 6.29 ± 0.3*** 0.83 ± 0.01**

NDADSL 86.5 ± 1.7 83.7 ± 1.4* 30.33 ± 2.1 5.05 ± 0.2** 0.74 ± 0.02*
NDADSH 93.4 ± 1.5* 95.2 ± 1.4** 24.27 ± 1.8** 5.98 ± 0.4*** 0.79 ± 0.01**

HFDC 38.1 ± 1.4aaa 38.3 ± 1.5aaa 51.22 ± 1.7aaa 3.23 ± 0.9aa 0.34 ± 0.04aaa

HFGOL 71.3 ± 1.5*** 59.5 ± 1.6** 41.29 ± 1.8* 3.66 ± 0.5 0.54 ± 0.03*
HFGOH 82.9 ± 1.4*** 78.3 ± 1.8*** 28.19 ± 1.2** 5.03 ± 0.2** 0.66 ± 0.03***

HFDADSL 68.3 ± 1.8** 65.2 ± 2.1** 43.76 ± 1.1* 4.23 ± 0.4* 0.59 ± 0.02*
HFDADSH 78.4 ± 1.2*** 75.1 ± 2.2*** 31.54 ± 1.8** 4.85 ± 0.1** 0.69 ± 0.02***

Values are given as mean ± SEM of eight rats; diallyl disulfide (DADS); NC: normal control; NGOL: normal Garlic oil low dose (50 mg/kg); NGOH: normal Garlic oil high dose
(100 mg/kg); NDADSL: normal DADS low dose (4.47 mg/kg); NDADSH: normal DADS high dose (8.94 mg/kg); HFDC: high fat diet control; HFGOL: high fat Garlic oil low dose
(50 mg/kg); HFGOH: high fat Garlic oil high dose (100 mg/kg); HFDADSL: high fat DADS low dose (4.47 mg/kg); HFDADSH: high fat DADS high dose (8.94 mg/kg); Superoxide
dismutase: SOD (unit/g tissue); Catalase: CAT ((unit/g tissue); thiobarbituric acid reactive species: TBARS (nmol/g tissue); ferric reducing/antioxidant power: FRAP (mmol/g
tissue); Total sulfhydryl: SH group (mmol/g tissue); *P < 0.05; **P < 0.01 and ***P < 0.001 normal diet fed treated groups Vs normal fat diet control and high fat diet treated Vs
high fat diet control respectively. aaaP < 0.001 NFD control Vs HFD control.
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Hyperlipidemia causes hepatocyte membrane damage, allowing
endogenous enzymes to enter the bloodstream (Kew, 2000;
Bolkent et al., 2004). As a result, liver enzymes leaked into the
serum, however, GO and DADS decreases the level of this enzymes
in the blood indicating their protective effect. Both GO and DADS
significantly restored normal enzyme levels in the serum, implying
that hepatocytes are protected by efficiently decreasing lipid
levels.
2523
The production of reactive free radicals is well known because
of hyperlipidemia-induced stress. Despite normal mRNA expres-
sion, a minor increase in hydrogen peroxide causes inactivation
of CAT and GSH (Aronoff, 1965; Beazley et al., 1999). Hydrogen
peroxide breakdown is catalyzed by catalase and glutathione per-
oxidase enzymes. We know that H2O2 concentrations are more at
the site the damage, and that H2O2 penetration into plasma is less.
The neutralization of hydrogen peroxide in blood is simplified by
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GSHPx activities. The breakdown of erythrocytes is one source of
plasma antioxidant enzymes. Elevated GSHPx activity could be a
result of erythrocyte lysis caused by reduced GSHPx activity and
high reactive oxygen species levels in the RBC. Oxidative stress is
caused by an increase in free radicals due to H2O2 production
and an imbalance in the oxidant/antioxidant balance, which causes
oxidative damage and an elevation in MDA levels (Cohen and
Hochstein, 1964). In the current investigation, we discovered that
GO and DADS both depleted the rise of MDA, GSHPx, GSH, and
GSSG in serum, exhibiting significant free radical scavenging effect.

In pathological situations including hyperlipidemia, there is
imbalance between oxidant and antioxidant systems (Parihar and
Hemnani, 2003; Abdollahi et al., 2004). As a result, we used the
FRAP assay, that revealed a remarkably diminished free radical
scavenging property of GO and DADS, in hyperlipidemic rats. SH
groups are involved in a variety of biochemical and metabolic pro-
cesses in the body, in addition to activation of antioxidant enzymes
(Jansen, 1959). Also, it is established that t is vulnerable to free rad-
ical damage and gets lowered at the time of stress such as dyslipi-
demia. In liver tissues, GO and DADS had higher SH levels than the
HFD control, indicating that they aid in recovering the pool of SH
group.

As previously stated, GO and DADS are both excellent antioxi-
dants and anti-hyperlipidemic agents. However, the protective
action of GO (high dose) was more than DADS (high dose). DADS
has therapeutic benefits as a principal/major constituent of GO;
however, the outcome of this study demonstrate that the DADS
is not the only element of GO for all its biological benefits. This is
supported by the fact that a high dose of GO has a greater thera-
peutic benefit than a high dose of DADS.

5. Conclusion

Garlic and its main active constituent, diallyl disulphide were
efficient in preventing dyslipidemia and neutralizing reactive
free radicals caused by a high fat diet in hyperlipidemic rats.
The fact that GO has a greater therapeutic impact than its active
ingredient, DADS, is an interesting finding. These observations
show that, in addition to GO’s DADS, other elements are respon-
sible for the compound’s synergistic antihyperlipidemic and
antioxidant properties.
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