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We have analysed the COVID-19 epidemic data of more than 174 countries
(excluding China) in the period between 22 January and 28 March 2020. We
found that some countries (such as the USA, the UK and Canada) follow
an exponential epidemic growth, while others (like Italy and several other
European countries) show a power law like growth. Regardless of the best fit-
ting law, many countries can be shown to follow a common trajectory that is
similar to Italy (the epicentre at the time of analysis), but with varying degrees
of delay. We found that countries with ‘younger’ epidemics, i.e. countries
where the epidemic started more recently, tend to exhibit more exponential
like behaviour, while countries that were closer behind Italy tend to follow
a power law growth. We hypothesize that there is a universal growth pattern
of this infection that starts off as exponential and subsequently becomes more
power law like. Although it cannot be excluded that this growth pattern is a
consequence of social distancing measures, an alternative explanation is that it
is an intrinsic epidemic growth law, dictated by a spatially distributed
community structure, where the growth in individual highly mixed commu-
nities is exponential but the longer term, local geographical spread (in the
absence of global mixing) results in a power law. This is supported by com-
puter simulations of a metapopulation model that gives rise to predictions
about the growth dynamics that are consistent with correlations found in
the epidemiological data. Therefore, seeing a deviation from straight exponen-
tial growth may be a natural progression of the epidemic in each country. On
the practical side, this indicates that (i) even in the absence of strict social dis-
tancing interventions, exponential growth is not an accurate predictor of
longer term infection spread, and (ii) a deviation from exponential spread
and a reduction of estimated doubling times do not necessarily indicate suc-
cessful interventions, which are instead indicated by a transition to a reduced
power or by a deviation from power law behaviour.
1. Introduction
An outbreak of a novel coronavirus, named COVID-19, was reported in Decem-
ber 2019 in Wuhan, China, and has been the source of significant morbidity and
mortality due to progressive pneumonia [1,2]. It has since spread around the
world and become a pandemic, with large infection burdens reported in
Europe, the USA and in other parts of the world. Disease severity and mortality
seem age dependent, with a higher chance of respiratory complications and death
among older people [3], and are further influenced by the availability of health-
care resources [4]. Non-pharmaceutical interventions, such as social distancing,
have been an important tool to slow down the spread of COVD-19 [5].
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date date
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Germany (purple)
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Figure 1. Example of the data. The number of confirmed cases is plotted as a function of time for six countries and Orange County: (a) the raw counts, (b) cases per
million. The numbers of confirmed COVID-19 cases in Orange County, the home of the authors, have been obtained from the daily updates provided by the website
of the Orange County Health Care Agency (OCHCA).
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As the non-pharmaceutical interventions are being relaxed
in a range of countries, and renewed virus spread is expected
to occur, a better understanding of the basic growth dynamics
of COVID-19 is useful for the interpretation of the emerging epi-
demiological data. Data from the beginning of the pandemic
suggested COVID-19 to spread exponentially [6,7], which is
consistent with other epidemics and epidemiological theory
[8]. Longer-term data, however, suggest that COVID-19
spread in China is sub-exponential [9], and it was argued that
this is driven by the implementation of strong non-pharma-
ceutical interventions. A more comprehensive analysis of the
growth dynamics of this infection before strict lockdown
measures were put in place, however, remains to be carried
out. In this study,we compare the per capitavirus spread kinetics
observed for many countries around the globe during the time
frame before strict interventions were put in place, in order to
obtain a better understanding of similarities and differences.
While some countries can be better described by exponential
growth, many other countries are more accurately described
bya power law. Interestingly, we find that the growth dynamics
become more power law like if the epidemic is more
advanced. This indicates that the long-term dynamics of
COVID-19 spread might be intrinsically governed by a power
law, even in the absence of strict non-pharmaceutical interven-
tions. We interpret these findings with computer simulations
of a metapopulation model, which can account for an initial
exponential spread phase, followed by a longer-term power
law behaviour. We relate model predictions to epidemiological
correlations found in the data. Because power law growth
results in a slow down of the infection growth rate over time
even in the absence of strict interventions, these insights are
important for the assessment of the developing pandemic and
of the effectiveness of non-pharmaceutical interventions.

2. Data sources
The data of confirmed COVID-19 cases over time have
been obtained from the data repository maintained by Johns
Hopkins University Center for Systems Science and Engineer-
ing (CSSE) [10]. As of 28 March, 174 countries were
represented in the database, as well as the cases on ‘Diamond
Princess’ (which were not used in the analysis). We only
included the total counts for each country, even though infor-
mation on the different provinces was available for several
countries. The number of confirmed cases has been recorded
since 22 January 2020, and has been updated daily.
We also used ‘Our World in Data’ [11] to collect infor-
mation on the daily number of tests, the number of positive
tests, and the number of deaths in different countries.

To compare the time course of COVID-19 cases across
different locations, the per capita incidence was calculated,
normalizing the numbers by the total population size of the
country. The information on the population size and the
area of different countries was taken from Wolfram Mathe-
matica’s database, ‘CountryData’. Challenges arising as a
result of differences in testing policies in different countries
and in the same country over time are discussed below.

The COVID-19 data analysed here span the period until
28 March 2020. Soon after that date, many countries experi-
enced a significant slowing down and ‘saturation’ in the
infection spread, which indicates the influence of factors
that go beyond the scope of the present paper, where we
seek to understand the basic laws of initial infection spread.

It is important to note that while the Johns Hopkins dataset
is comprehensive and is based on many data sources, includ-
ing government data, it is possible that they contain
inaccuracies, e.g. data might not be backfilled if they have an
earlier onset date. The supplement compares the Johns Hop-
kins data to those presented by the Italian health ministry,
and we find good agreement. The exact methodology used
by the Johns Hopkins data source is provided in [12], which
makes clear the advantages and disadvantages of this dataset.
3. Results
3.1. Per capita case numbers and time lags
Here, we present the comparison of the kinetics according to
which cumulative COVID-19 cases grow over time in different
countries around the world. Figure 1a presents the raw data
showing total case counts for a select number of countries.
Figure 1b shows the corresponding per million case counts.

A complication for comparing the growth dynamics is that
the timing of the onset of community spread varies across
locations. The growth curve of confirmed cases was therefore
shifted in time to make them comparable, according to the
following procedure. The cumulative confirmed COVID-19
case counts in Italy were chosen to be the example against
which the growth curves in all other countries were compared,
due to Italy being an epicentre of the outbreak at the time of
this analysis. The (normalized, cases per million) infection
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Figure 2. The same data as in figure 1(bottom), presented by shifting individual lines to match the Italy curve. The table shows the lag, that is, by how many days
each country is behind Italy.
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growth curves of the other locations were shifted in time
such that the difference between all data points of the country
under consideration and Italy was minimized. The shift that
minimized this Euclidean distance between the curves was
assumed to indicate the number of days that the country
lags behind Italy. Some examples of such results are presented
in figure 2.We note that this assumes that all the countries
test for COVID-19 at comparable levels, which is an over-
simplification. If a country tests less than Italy, it will lag
behind Italy to a lesser extent. Conversely, if a country tests
more than Italy, it is predicted to be further behind Italy.
A more in depth description of the role of testing is given in
the §4 section.

In thisway,we obtained a time course of confirmedCOVID-
19 cases that are temporally synchronized with Italy, which
allows for a more straightforward comparison of the kinetics.
An interesting observation in figure 2 is that over time, the
different countries converge to a similar, sub-exponential
growth pattern. While the onset of a certain degree of social
distancing could account for sub-exponential growth [9], the
observed similarity in the growth patterns across the different
countries might argue against this explanation. We, therefore,
hypothesize that the sub-exponential growth patterns are an
intrinsic characteristic of COVID-19 spread. We explore this
hypothesis in detail in the following sections.
3.2. Growth laws of the epidemic in different countries
The above analysis indicated that COVID-19 spread in a
number of countries is sub-exponential. Previous work [13]
has suggested that a power law might be a good description
of the cumulative COVID-19 cases over time in China during
the earlier stages of the pandemic. Therefore, we hypoth-
esized that for a subset of the countries, a power law is an
appropriate description. To test this hypothesis, we fit both
exponential and power law curves to the data for each
country and determined the goodness of fit.

Data fitting was performed as follows. Only the data
points were considered where the number of COVID-19
cases had risen above a threshold, which we set at 1 case per
million people (see electronic supplementary material for vari-
ations of this threshold). We fit both a power function and an
exponential function to the data to determine which model fits
the data better. For the power law function, a complication
arose because fitting requires knowledge of the ‘zero’ point,
that is, the moment of time when the growth (according to
the power law) began. The fits to the data change if the time
scale is changed. Hence, we started by assuming the first
data point to be the day when the infection frequency first
exceeded 1 case per million, and fitted the power law, a1xb1 ,
for some constants a1 and b1. Then we shifted the time series
incrementally by 1 day, and for each shift the power law was
fitted. For each fitting frame, a different value of the power
law exponent, b1, was obtained. Subsequently, we fit an expo-
nential function to the same data (a2eb2x). The estimated
exponent does not depend on the time shift, so fitting the
exponential function was straightforward and yielded a
unique value b2 for all the fitting frames. For both the exponen-
tial and the power law fits, we determined the sum squared
error between observed and expected, and compared them.
We also used the Aikaike information criterion to distinguish
between exponential and power law fits and found results to
remain robust (see electronic supplementary material, S1).

Figure 3 shows the fitting errors calculated for 75 countries;
we included a country if the number of cases reached 20 per
million, and excluded China and South Korea, since their epi-
demics clearly deviate from an exponential or a power law.
Since in smaller countries (such as for example Luxembourg)
the laws may be harder to determine and the data are subject
to a higher degree of noise, for classification purposes, we
restricted the pool of countries to those with over a million
inhabitants. The yellow horizontal lines in figure 3 represent
the exponential fitting and the blue lines the power law fitting,
as a function of the frame shift. We observe that there are sev-
eral different configurations that are repeatedly encountered.

— For some countries (like the USA, see also figure 4a), the
power fitting error is always above the exponential fitting
error. Such countries are clearly showing an exponential
epidemic growth.



Figure 3. Seventy-five countries’ fitting results are presented as errors (blue for power law fits and yellow for exponential fits) as functions of the frame shift. Three
distinct configurations can be observed: blue below yellow (a clear power law case), blue above yellow (a clear exponential case) and blue intersecting yellow. For
such intermediate cases, we classified the growth as power-like if the power corresponding to the point of intersection corresponded to the power b1 < 5. Otherwise
it was classified as exponent-like.
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— There is another group of countries (such as Italy, see also
figure 4b), where the power law fitting error is always
below the exponential error; here we clearly have a power
law growth.

— There are some other countries that we can classify as
power law-like and exponential-like. Suppose a power
law error curve crosses the exponential error line (see
Greece, figure 4c), at a given frame shift. In this case,
we will classify the growth as power law like if the
value of the exponent b1 that corresponds to this frame
shift satisfies b1 < 5. Otherwise, we will classify the
growth law as exponential-like.

For the examples mentioned here, figure 4 shows the best
fits obtained by this method. For figure 4b,c, it is clear that the
power law provides more satisfactory fits. More details are
provided in the electronic supplementary material.

A classification of all the countries into those that follow
power law (or power law-like) dynamics and those that
follow exponential (or exponential-like) growth is given in
table 1. About 70% of the countries included in this analysis
were classified as displaying power law (or power law-like)
dynamics, indicating that this is a wide-spread phenomenon
around the world. Geographical distribution of the countries
with different growth laws is shown in figure 5.

We note that growth laws could potentially be impacted
by changes in the level of testing over time in a given country.
We, therefore, have analysed the dynamics of testing (elec-
tronic supplementary material, S3) and saw that the
number of tests has typically increased in most countries.



Table 1. Classification of countries according to the epidemic growth law.

law no. list of countries

exponential 9 Australia, Canada, Croatia, Israel, New Zealand, North Macedonia,

Oman, United Arab Emirates, USA

exponential-like 9 Austria, Dominican Republic, Ecuador, Ireland, Lithuania, Malaysia,

Portugal, South Africa, UK

power law 20 Albania, Armenia, Belgium, Cyprus, Denmark, Georgia, Iran, Italy,

Jordan, Mauritius, Moldova, Netherlands, Norway, Qatar, Slovakia,

Slovenia, Sweden, Turkey, Uruguay

power law-like 23 Bahrain, Bosnia and Herzegovina, Bulgaria, Chile, Costa Rica,

Czech Republic, Estonia, Finland, France, Germany, Greece, Hungary,

Kuwait, Latvia, Lebanon, Panama, Poland, Romania, Saudi Arabia,

Serbia, Singapore, Spain, Switzerland, Trinidad and Tobago

(a)

(b)

power law epidemics

exponential epidemics

Figure 5. Geographical distributions of different epidemic growth laws. (a) Power law epidemics and (b) exponential epidemics.
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This means that the infection growth curves for those
countries are accelerated compared to the ‘true’ epidemic
growth curves. Thus, if a country is classified as a ‘power
law’ or ‘power law-like’ by our analysis, it is unlikely that cor-
rection for an increase in testing would move it to an
‘exponential’ or ‘exponential-like’ category. On the contrary,
it is possible that some of the epidemic curves that were
classified as exponential are in fact slower growing. This
makes our list of ‘power law’ and ‘power law-like’ countries
a conservative list, which may potentially be larger due to
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effects of increasing testing. Furthermore, we have performed
an analysis of death data (electronic supplementary material,
S4). For countries on the list that provided death data during
the time-frame of the analysis, we found that a large majority
have a power law like death curve, and this majority is larger
among the countries in table 1 that we classified as ‘power
law (like)’ compared to ‘exponential (like)’, which also
corroborates our findings.
3.3. Growth laws in relation to the local stage of the
outbreak

We investigate how the growth law of COVID-19 spread cor-
relates with the stage of the outbreak in the different
countries (i.e. how ‘old’ the outbreak is). Figure 6a shows a
numerical probability distribution for the day when the infec-
tion in each country reached the level of 1 case per million. If
this mile stone is reached earlier in a given country, the spread
is more advanced. Blue represents the power law set and
yellow the exponential set (grey means an overlap of the
two colours). The average date of reaching 1 case per million
(counting from 22 January) is about 48 days for the power
law and 52 days for the exponential set (p = 0.035 by t-test).
This means that the countries with a power law spread were
at a slightly more advanced stage of the epidemic than the
exponentially developing countries. This points us towards a
hypothesis that perhaps it is typical to observe a transition
between an early, exponential stage of growth, and a later,
power-like stage of growth. In other words, different countries
are at different stages of epidemic development, but they all
roughly follow the same trajectory, where an initial exponen-
tial growth is gradually replaced by a more power like
behaviour. Figure 7 demonstrates further evidence in favour
of this theory. Figure 7a plots the number of countries classi-
fied by the number of days they are delayed with respect to
Italy. As explained in §3.1 (see also figure 2), we shifted the
growth trajectories of all countries until, for each country, the
best match with the Italian curve was obtained. As we can
see in figure 7a, there are only a few countries that are just
behind Italy, and as the number of lag days increases, the
number of countries grows. This corresponds to more and
more countries becoming affected as time goes by. Figure 7b
calculates, for each lag time, the percentage of countries that
were classified as following power law or exponential
dynamics. We can see that for the countries that are just a
few days behind Italy, 100% of them belong to the power
law group. As the lag time increases, indicating an earlier
stage of the epidemic, more and more countries exhibit
exponential growth (p < 10−4).
3.4. Growth laws in relation to size and density of
countries

Figure 6b shows the difference between countries with power
law and exponential growth in terms of their area. We find
that the exponentially growing infection class is associated
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with larger countries (mean area of about 1.7 × 106 km2) com-
pared to the power law class (mean area about 2.3 × 105 km2,
p = 0.018 by t-test). Similarly, exponential epidemic spread
tends to correlate with lower density countries (figure 6c). It
is possible that it takes longer for a larger country of lower
density to transition to a power law growth. Below, we pro-
vide a possible explanation of this correlation in the context
of metapopulation modelling.
3.5. A metapopulation model can reproduce key trends
in data

Our results can be interpreted in the context of a minimally
parameterized metapopulation model, see figure 8. Assume
that within a local deme (such as a local community),
people interact with each other, resulting in mass action
dynamics. For the infection to spread further, however,
people have to enter other demes, and seed the infection
there. We have performed computer simulations of such a
model to explore outcomes. The model is a two-dimensional
metapopulation consisting of N ×N patches. In each patch, i,
the infection dynamics are given by a set of ordinary differen-
tial equations (ODEs) that take into account the population of
susceptible (Si), infected (Ii), recovered (Ri) and dead (Di)
individuals

dSi
dt

¼ � bSiIi
Si þ Ii þ e

þ f
X

j[Bn
i

(Sj � Si), (3:1)
dIi
dt

¼ bSiIi
Si þ Ii þ e

� gIi þ f
X

j[Bn
i

(Ij � Ii), (3:2)
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dRi

dt
¼ g(1� a)Ii þ f

X

j[Bn
i

(Rj � Ri), (3:3)

and
dDi

dt
¼ gaIi: (3:4)

Here, infection is described by a frequency-dependent
infection term [14], characterized but the rate constant β
and a saturation constant ϵ. Infected individuals die with a
rate ga and recover with a rate g(1− a). The migration terms
include the outward migration to n neighbours and an
inward migration from all the n neighbouring demes that
belong to neighbourhood Bn

i of deme i. The migration rate
is denoted by f and we assume that each patch has eight
direct neighbours, i.e. n = 8. The boundary demes are charac-
terized by fewer inward/outward migrations (i.e. they have
smaller neighbourhood sets).

Using this model, we track the predicted dynamics for
I +R +D over time, which represents the cumulative infec-
tion case counts. In the first scenario, we start the
computer simulations with a small amount of infected indi-
viduals in a single patch, located in the centre of the grid.
All other patches contain only susceptible individuals. The
resulting dynamics are shown in figure 9. We observe an
initial exponential phase of infection spread, followed by
a transition to a power law spread. The spread is initially
exponential, because within a single patch (the first
patch), the dynamics are governed by well mixed popu-
lations. As the infection spreads to other patches by
migration, the overall infection spread starts to be governed
by spatial dynamics, which explains the transition to the
power law behaviour (see [15,16] for the mathematical treat-
ment of epidemic spread in 2D). The key is the difference
between the time scale of local spread and the time-scale
of global mixing.

Next, we assumed that instead of starting with infected
only being present in a single patch, a small amount of
infected individuals are initially present in more than one
patch around the same time. This could correspond to
larger countries, in which the infection is simultaneously
seeded in multiple areas (e.g. due to travel from other
places). Now, we observe overall growth dynamics that are
more exponential-like. The length of the predicted exponen-
tial phase becomes longer the more patches are initially
seeded. The reason is that with more initial seeding events,
the importance of spatial spread is de-emphasized.

In summary, the metapopulation model can predict an
array of growth patterns where an exponential phase of
varying length is followed by a transition to power law,
depending on the initial conditions of the simulation.
4. Discussion and conclusion
In this paper, we analysed data that document the cumulative
COVID-19 case counts over time in a large number of
countries around the world, and examined the laws accord-
ing to which the infection spreads. This suggests that
although the initial phase of the spread may be exponential,
the longer-term dynamics (extending to 28 March 2020) tend
to be governed by a power law. The analysis indicates that
the countries that displayed clear evidence for exponential
growth were in a relatively early phase of the epidemic,
and that countries that were further along in the epidemic
converged to a power law behaviour.

These observations were interpreted by computer simu-
lations of a metapopulation model that takes into account
both local spread and spread across geographical space.
This model predicts an initial exponential phase (due to
local transmission events driving the dynamics), followed
by a transition to a power law (once spatial dynamics signifi-
cantly drive spread). The duration of the exponential phase is
determined by the number of patches that are initially seeded
with the infection. If the infection originates in a single
location (patch), the exponential phase is likely not very pro-
nounced, and most of the growth curve is predicted to follow
a power law. If the infection is seeded simultaneously or
nearly simultaneously in multiple locations, the duration of
the exponential phase becomes longer. This might explain
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why countries with larger areas show more pronounced
exponential growth, as this makes multiple seeding events
due to travel more likely. Interestingly, it has been shown
that in China outside the Hubei province, COVID-19 cases
initially grew relatively fast, and this was shown to correlate
with human movement out of Wuhan into the affected areas
[17], indicating multiple seeding events. These model predic-
tions could also imply a more extensive exponential phase of
infection spread during second waves, after non-pharma-
ceutical interventions have been relaxed. The reason is that
once the infection has already propagated through the com-
munity before the interventions, it is already extensively
seeded across most areas, resulting in more pronounced
exponential growth and less pronounced growth that is
governed by spatial spread.

A better understanding of the laws according to which
COVID-19 spreads through populations is also of practical
importance. (i) Projections and forecasts made under the
assumption of exponential growth lead to significantly
faster virus spread compared to those assuming power-
law growth, as shown in electronic supplementary material,
S5. (ii) As COVD-19 outbreaks in a given region or country
unfold, an eventual deviation from exponential growth
and an estimated longer doubling time does not indicate
that the infection is being controlled, for example by
non-pharmaceutical interventions. Power law growth is
characterized by a naturally decreasing ‘doubling time’
(even in the absence of interventions), and the repeated esti-
mation of doubling times are not meaningful in this case. To
establish that interventions flatten the curve, it has to be
demonstrated that growth either transitions to a lower
power, or that it deviates entirely from a power law,
which has occurred in many countries after the time
period under consideration here. (iii) Similarly, the power
growth laws obtained in our analysis have implications for
the estimation of the effective reproduction number, e.g.
[18]. As the infection continues to spread according to
power laws, the effective reproduction number becomes
lower over time. Again, however, this is not necessarily
the result of interventions, but a natural consequence of
the power law. This is important to keep in mind when
estimating the reproductive potential of SARS-CoV-2.

Alternative explanations can be invoked to account for
sub-exponential growth patterns. Data indicate that in
China, the implementation of non-pharmaceutical interven-
tions can drive sub-exponential growth by depleting the
pool of susceptible individuals over time through social dis-
tancing [9], and this can lead to a temporary phase of
power law growth. An initial fast virus spread phase, fol-
lowed by a slow-down of spread, can also come about if
the initial phase of spread is driven mostly by immigration
of infected individuals from other geographical areas, while
subsequent community spread continues with a slower rate
[17]. While these mechanisms are certainly plausible, it
would be expected that growth patterns are different depend-
ing on the timing at which interventions are implemented,
the strength at which they are implemented, or depending
on the magnitude of infection seeding by immigration. Yet,
we observe remarkably consistent growth laws in a number
of different countries, in which policies in response to the out-
break varied, and in which the magnitude of initial seeding
events likely differed. This points towards the possibility
that the power law growth dynamics are an intrinsic feature
of COVID-19 spread through human populations, and that
they are not externally imposed.

As with any data and modelling studies, it is important to
note that results can depend on assumptions and method-
ologies. These are clearly defined here. One of the larger
challenges we faced in the data analysis is the lack of knowl-
edge at what time the infection was initiated in the individual
countries. This information is not available. The time frame in
turn influences the fit of the power law to the data, which we
have addressed with our time shifting methodology. If
further information becomes available about the time when
infections are estimated to have originated in the individual
countries, the methodology can be updated. Genetic studies
could provide valuable data in this respect.

Another limitation of the data interpretation is the degree
to which different countries test for SARS-CoV-2. If some
countries test less than others, they will appear to be at an
earlier stage of the outbreak than is true. This type of uncer-
tainty, however, does not change the central finding that the
long-term dynamics of COVID-19 cases in different countries
follow a power law, after an initial stage of exponential
growth. Another testing-related problem could be if the
number of tests in a given country changes over time. Typi-
cally, the level of testing has increased over time (electronic
supplementary material, S3), but we argue that it is unlikely
that an increasing number of tests over time would invalidate
our finding that instead of growing exponentially, the
number of cases grow according to a power law. Increased
testing over time would accelerate the growth rate and
could potentially make the growth curve look more exponen-
tial, meaning that the power laws we found are not likely to
be an artefact of varying testing levels. In fact, a fast growth in
the number of tests could shift some countries where the true
number of cases grew as a power law to an ‘exponential’ cat-
egory, because of the accelerating effect of the testing. We also
considered COVID-19-related deaths as a measure of disease
spread (electronic supplementary material, S4), and found
that our conclusions remained robust. Deaths are less likely
to depend on testing numbers, but are connected with their
own set of challenges. Different countries use different case
definitions, testing criteria often change even in a given
country as the local epidemic progresses, and different defi-
nitions of what constitutes a COVID-19 death are used in
different jurisdictions, and even at different stages of any
given outbreak. While each individual measure of COVID-
19 spread is connected to problems that make it difficult to
interpret the data, the consistent patterns that we found
across those different measures strengthen our conclusions.
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