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Efficacy of Smoothing Algorithms to Enhance
Detection of Visual Field Progression in
Glaucoma
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Purpose: To evaluate and compare the effectiveness of nearest neighbor (NN)- and variational autoencoder
(VAE)-smoothing algorithms to reduce variability and enhance the performance of glaucoma visual field (VF)
progression models.

Design: Longitudinal cohort study.
Subjects: 7150 eyes (4232 patients), with > 5 years of follow-up and > 6 visits.
Methods: Vsual field thresholds were smoothed with the NN and VAE algorithms. The mean total deviation

(mTD) and VF index rates, pointwise linear regression (PLR), permutation of PLR (PoPLR), and the glaucoma rate
index were applied to the unsmoothed and smoothed data.

Main Outcome Measures: The proportion of progressing eyes and the conversion to progression were
compared between the smoothed and unsmoothed data. A simulation series of noiseless VFs with various
patterns of glaucoma damage was used to evaluate the specificity of the smoothing models.

Results: The mean values of age and follow-up time were 62.8 (standard deviation: 12.6) years and 10.4
(standard deviation: 4.7) years, respectively. The proportion of progression was significantly higher for the NN and
VAE smoothed data compared with the unsmoothed data. VF progression occurred significantly earlier with both
smoothed data compared with unsmoothed data based on mTD rates, PLR, and POPLR methods. The ability to
detect the progressing eyes was similar for the unsmoothed and smoothed data in the simulation data.

Conclusions: Smoothing VF data with NN and VAE algorithms improves the signal-to-noise ratio for
detection of change, results in earlier detection of VF progression, and could help monitor glaucoma progression
more effectively in the clinical setting.

Financial Disclosure(s): Proprietary or commercial disclosure may be found in the Footnotes and Disclo-
sures at the end of this article. Ophthalmology Science 2024;4:100423 © 2023 by the American Academy of
Ophthalmology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).

Glaucoma is a progressive optic neuropathy and a leading
cause of blindness worldwide.! It is characterized by
progressive loss of retinal ganglion cells that causes visual
functional loss and deterioration of the quality of life of
glaucoma patients.”’ Visual field (VF) testing is the
standard modality for functional evaluation in glaucoma.
Evaluation of longitudinal VF change is a fundamental
approach for the detection of glaucoma progression; timely
detection of disease deterioration would help preserve the
functional abilities of glaucoma patients.” Evaluation of
rates of VF change is a practical method for detecting eyes
with rapid progression of glaucoma.” ' This important
subset of glaucoma patients requires more aggressive man-
agement to slow the disease’s course.

Several approaches have been used for identifying VF
progression in glaucoma. The most common approach is
clinical judgment. However, this approach is affected by
high interobserver variability and well-known impreci-
sion.'""'?  Several statistical approaches have been
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introduced for evaluating glaucoma progression. These
methods consist of mean deviation rates of change, visual
field index (VFI) rates of change, the Advanced Glaucoma
Intervention Study and Collaborative Initial Glaucoma
Treatment Study algorithms, pointwise linear regression
(PLR), pointwise  exponential regression (PER),
permutation of pointwise linear regression (PoPLR), and
glaucoma rate index (GRI)."”'® A study by Rabiolo et al
has reported that POPLR and GRI are the optimal methods
for early detection of glaucoma progression.

Visual field testing is affected by short-term and long-
term variability.'”” >’ There is strong evidence that the
VF variability increases dramatically at locations with
moderate loss of sensitivity.'” >* Visual field variability
could result in false overdetection or underdetection of true
glaucoma progression. Because only some of the factors
influencing VF variability are known and most are not
modifiable,”* *® designing methods that could address VF
variability, without affecting the true signal (i.e., increasing
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the signal-to-noise ratio), would enhance the detection of
true glaucoma progression.

Several approaches have been used to address VF vari-
ability. Morales et al carried out various smoothing algo-
rithms based on spatial clustering for reducing VF
variability.”” In that study, among the various smoothing
algorithms,” ” the nearest neighbor (NN) model per-
formed best for improving forecasting of future VFs with
regression models. In the NN model, the sensitivity at each
location was weighted based on the sensitivity of adjacent
locations and the distance between the adjacent locations.
Another possible approach for reducing the variability of the
VF test is to use deep learning (DL) models to project high-
dimensional VF into low-dimensional latent features, which
would be a summary of the original VF data.” > Subse-
quently, these low-dimensional latent space data can be
mapped back to the reconstructed VF data. This is the basis
of a DL generative model, known as a variational autoen-
coder (VAE).”° The VAE and generative adversarial
network are the 2 main generative DL models.”® ** Some
studies have evaluated the performance of VAE for reducing
the variability of longitudinal VF testing to improve the
detection of glaucoma progression based on VF rates of
change.” *' It has been reported that the latent space of the
VAE reveals novel physiologic patterns.***

The purpose of this study was to investigate the utility of
2 different smoothing approaches (NN and VAE) for
enhancing the detection of VF progression in a large data set
of glaucomatous eyes with long follow-up.

Methods

Study Participants

Seven thousand one hundred fifty eyes (4232 patients) from the
Glaucoma Division of Stein Eye Institute, University of California,
Los Angeles, were included in this retrospective longitudinal study.
University of California, Los Angeles’ Institutional Review Board
approved this study and the study adhered to the tenets of the
Declaration of Helsinki and the Health Insurance Portability and
Accountability Act policies. Eligible eyes were required to have >
6 VF examinations available and a minimum follow-up of 3 years.

VF. Standard automated perimetry was carried out with Hum-
phrey Field Analyzer II (Carl Zeiss Meditec). The reliability
criteria were a false positive rate < 15% and fixation loss and false
negative rates < 30%. The threshold sensitivities and total devia-
tion (TD) values of the 54 locations belonging to 24-2 VF and the
VFI were exported as XML files. The values for locations 26 and
35 were omitted since for most of the eyes, those locations
correspond to the blind spot. In this study, instead of evaluating the
exported mean deviation from the device, we used the visualFields
package from R programming to convert the threshold sensitivities
to TDs and, subsequently, averaged the TDs of the 52 locations
into a single value called mean total deviation (mTD).**

Study Design

Data smoothing approaches. NN smoothing approach. The NN
approach has been previously described by Morales et al.”’ The
threshold sensitivities at each VF location were reconstructed
based on its distance from adjacent neighboring locations and the
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threshold of the adjacent neighboring locations. The minimum
number of possible neighbors was 4, and the maximum number
of possible neighbors was 8. The following equation was used
for smoothing threshold sensitivities based on the distance and
sensitivities of neighboring locations:
1 1 Z(W X VFNeighhor)
VEpew = EX VE ey +§ l,,—
2 (w)
where distance (d) = 1 (for adjacent VF locations), weight (w) =
1/d%, n = number of neighboring VF locations, Vo .., = decibels
(dB) value of VF location being weighted, VF,,, is the output
smoothed dB value, VF,,, is the input raw dB value, and
VFneighbor = dB value of neighboring VF locations. The mTD and
VFI were estimated after smoothing the threshold sensitivities with
the visualFields R package, as explained above.**

VAE. We used a VAE to reconstruct all the VF test im-
ages.”® The model consisted of an encoder with 2 hidden layers, a
decoder with 2 hidden layers, and an 8-dimensional latent space
where the inputs were encoded as 8 probability distributions. The
hidden layers had 38 and 26 units, respectively. These layer sizes
were selected following the work of Asaoka et al.*’ The final
layer used a sigmoid activation function to generate a vector
with a range (0, 1) of the same length as the input. Figure 1
illustrates the structure of the VAE. The model was trained to
minimize the weighted sum of mean squared error as a
reconstruction loss and the Kullback—Leibler divergence be-
tween the encoded distributions and a Gaussian distribution as
regularization.”> We weighted the sum by multiplying the
reconstruction loss by a weight factor. We explored 3 weight
factors and selected the one with the best validation mean
squared  error. The  explored values comprise a
Kullback—Leibler divergence heavy sum, with reconstruction
weight 1, a balanced sum, with reconstruction weight equal to the
number of batches in the training set, and a reconstruction loss
heavy sum, with weight equal to 10 000 times the length of an
input vector divided by the batch size. The encoder input is
mininum to maximum scaled between 0 and 1, and the decoder
output is transformed back to the original scale. The model is
trained with a batch size of 32 for 500 epochs. Loss is optimized
with the Adam optimizer with a learning rate of 0.001.° We used
a data set of 173 101 VF visits from 66 123 eyes and an 80%/
10%/10% train/validation/test split. If an eye appeared multiple
times in our data set, its VFs were contained entirely within a
single data set split. For the further analysis of this study, we
selected 7150 eyes (minimum of 3 years of follow-up and 6
visit dates) from the training and validation data set of these VAE
data. The VAE is implemented in TensorFlow 2.6.0"" and Python
3.9.13.%% Scikit-learn 1.0.2* is used for generating the data split
and Scipy 1.8.0°° is used for calculating statistics. Code for
training and evaluating the VAE is publicly available on GitHub.

VF Progression Methods. Two global VF progression methods
(mTD and VFI rates) and 3 localized VF progression methods
(PLR, PoPLR, and GRI) were applied to the unsmoothed data, and
the NN smoothed and the VAE smoothed data. For each method,
we performed the analyses starting with 6 visits and repeated them
sequentially by adding 1 visit at a time until the last follow-up. The
criteria for the definition of glaucoma progression are explained
below for each approach; an eye was labeled as progressing if the
criteria were met at 2 consecutive points and at the last follow-up
visit (i.e., including the entire data set of an eye).

mTD and VFI Rates. Linear regression of mTD and VFI
measurements against time was performed. Progression was
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Figure 1. The structure of the variational autoencoder used in this study. The model consisted of an encoder with 2 hidden layers, a decoder with 2 hidden
layers, and an 8-dimensional latent space in which the inputs were encoded as 8 probability distributions. The autoencoder first uses 2 hidden layers (a,, left
hand side) to generate a lower dimensionality probabilistic representation of the input. This representation consists of a set of Gaussian distributions, each
with a particular mean ([) and standard deviation (G). To reconstruct the input, each distribution is sampled by adding a random value (¢) times the
standard deviation to the mean. Two hidden layers (a,, right hand side) then decode this sampled representation to reconstruct the input as accurately as

possible.

defined as mTD rates < —0.5 dB per year and VFI rates < —1%
per year along with a P value < 0 . 05."

PLR. The slope of the regression line of the threshold
sensitivity against time for each of the 52 VF locations, expressed
in decibels per year, was defined as the pointwise linear rate of
change. Progression was defined as presence of 3 pointwise series
having a significant regression slope (P < 0.01) and rates of change
of < —1 dB per year. Pointwise linear regression analysis regresses
sensitivity values of each location on its follow-up variable by
SLR. The progression of the VF is derived from the number of
significant decaying locations in the VF.

PoPLR. This method has been previously described by
O’Leary et al.'® The pointwise linear regression of TD values
against time was performed in each eye and the slope from each
location in the VF was combined to calculate S statistics (Sgps).
The P values for every location were also combined using the
following equation (Fisher method)™":

n
S= = In(pk
i=1
where k; is 1 if P; < 0.05 or else 0. The smallest P value is used
if none of the locations has P; < 0.05.

In the next step, the patient’s original VF sequence was then
randomly reordered up to 5000 times, and a global score, called S,
was obtained from each permutated series. Finally, S.,s was
compared with the distribution of Sp, and the statistical significance
was derived from the ranking of S,y within the S;, distribution. A P
value < 0.05 was labeled as progression.

GRI. This method was previously described by Caprioli
et al.® Glaucoma rate index analysis assigns a score ranging from
0 to 100 to each eye, which represents the rate of deterioration from

1.]8

very fast decay (100) to stable (GRI = 0); improving eyes
demonstrate a negative GRI. The pointwise rate of change (PRC)
is calculated after fitting a PER and removing outliers
(determined by a Cook distance > 1 and studentized residual >
3), adjusting for age and location. A decay PER model is
expressed as S = e(@?*FU) where b is the slope. An improved
PER model is expressed as So— S = e@*FU) where Sy is the
normal threshold value at a given age plus 2 SD and b is the
slope. The pointwise rate of change is calculated as the
proportion of change per year of the entire perimetric range
correcting for location and age. The GRI score is calculated by
summing the PRC of all detected progressive locations,
normalized from —100 to +100.

Simulation Setting. To determine whether the 2 smoothing
approaches would potentially address the noise without negatively
affecting the true signal, we designed several noise-free simulation
VF data demonstrating different patterns of focal glaucoma pro-
gression and diffuse progression patterns, including age effect and
cataract-induced sensitivity decrease. We performed the simulation
algorithm previously published by our team.'’

The R platform (R Foundation for Statistical Computing) was
used to design the algorithm based on the models described pre-
viously.””* The following steps were performed for this purpose:

1. The software defines the baseline threshold sensitivities,
follow-up length, pointwise rates of progression annually,
and the number of VF examinations. Tests are equally
spaced over the follow-up period, and the ratio between the
number of VFs and the length of the simulation was
considered for defining the frequency of visits.

2. Linear regression was applied for every test location. An
additional decay of 0.1 dB per year is added to simulate
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age-related decline, which was independent of the rate of
progression.”

3. The difference between the simulation data evaluated in
this study compared with the study by Rabiolo et al'” was
that only noise-free simulation data was considered for the
purpose of investigating the efficacy of the smoothing
approach not affecting the true signal.

The visualFields R package is able to generate the VFI, TD
values, and the TD probability map for simulated data.**

Twenty-five simulations with a total of 67 eyes were generated.
The simulation length was set at 9.5 years. Biannual testing fre-
quency for a total of 20 VFs was defined. The baseline age was set
at 60 years. Two VF examinations from actual glaucoma patients,
one with a focal inferior nasal defect and another with a superior
arcuate scotoma, were chosen as the 2 baselines. In the next step, 2
patterns of focal decay and diffuse decay were calculated as
follows:

1. Focal decay, in which 4 (small scotoma), 8 (medium sco-
toma), or 16 (large scotoma) locations significantly dete-
riorate. Small defects were a nasal scotoma and a
paracentral scotoma. Medium-sized defects consisted of a
nasal step and an arcuate scotoma extending to 5 degrees
from fixation. Large defects comprised of 2 broad inferior
and superior arcuate scotomas. Three different rates of
progression, —0.5, —1.0, and —2.0 dB per year, were
applied to deteriorating locations in addition to normal age-
related decay.

2. Diffuse decay was defined as every location undergoing the
same rate of progression.

Based on the baseline examinations, rates, and patterns of
progression, 24 scenarios were simulated: eyes with focal decay,
demonstrating deterioration of simulated scotomas, and eyes with
diffuse decay were considered as progressing; eyes with simulated
age-related and cataract-related decay were considered as
nonprogressing.

Study End Points and Statistical Analysis

The proportion of the eyes defined as progressing was calculated
for each VF progression method for the unsmoothed, NN-
smoothed, and VAE-smoothed data. The time-to-detect progres-
sion (TDP) for each VF progression method was defined as the first
follow-up time where the criteria of VF progression were met with
confirmation on a subsequent visit.

To better evaluate the time to VF progression, we performed
survival analyses. Analogous to an interval-censored survival
outcome, the conversion time for each progressive eye is deter-
mined by sequentially conducting the progression analysis with
data truncated at different visits, which imitates a clinical setting
where each metric is calculated at every visit. The minimum
number of visits is set at 6 to ensure the model’s reliability. Like
the previous approach, we carried out each method of progression
detection, starting from the 6th visit and subsequently adding 1
visit and repeating the analysis. Then, the conversion time was
determined by the first visit time when progression was estab-
lished. For example, for an eye with a total of 8 visits, 3 sets of
regression analyses will be fitted starting with the 6th through the
8th visit in the series. If the progression conclusion sequence is (0,
1, 1), with 1 indicating progression then the conversion of this eye
occurs at its 7th visit, and conversion time is the follow-up time
from the 1st visit to the 7th visit.

The mean conversion time of reconstructed data was reported in
all 5 methods for the unsmoothed, NN-smoothed and VAE-
smoothed data. A total of 3 pairwise P values were calculated for
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each VF progression method. To be conservative, we applied
Bonferroni adjustment, with P values < 0.05/3 = 0.0167 as sta-
tistically significant. Furthermore, the conversion time was
considered as a survival variable, to gain more power and prevent
potential information loss on testing directly on the mean. That is,
eyes that were nonprogressive were censored at their last visit.
Kaplan—Meier curves were plotted, and pairwise log-rank tests
were applied to assess the differences.

To ensure that smoothing approaches do not introduce an un-
toward influence on the true glaucoma signal, first, the NN and
VAE smoothing approaches were applied to the simulation data.
Then the 5 VF progression models were applied to the un-
smoothed, NN-smoothed, and VAE-smoothed simulation data. The
ground truth was the number of progressing eyes based on focal
decay and diffuse decay. The number of eyes defined as pro-
gressing based on each of the VF-progression models on the un-
smoothed, NN-smoothed, and VAE-smoothed data were compared
with the ground truth. For representing this analysis, we plotted a
Cleveland Dot Plot, which showed the agreement of the un-
smoothed, NN-smoothed, and VAE-smoothed data for identifying
progression based on each of the VF-progression methods.

Results

Seven thousand one hundred fifty eyes (from 4232 patients)
were included in this study. Four thousand one hundred
sixty-three examinations from 2201 eyes were excluded,
based on the VF exclusion criteria, and a total of 71 542 VF
examinations (from 7150 eyes) were included in the study.
The mean values of baseline age and follow-up time were
62.8 (standard deviation: 12.6) years and 10.4 (standard
deviation: 4.7) years. The mean values of baseline and final
logMAR visual acuity were 0.15 (standard deviation: 0.26)
and 0.16 (standard deviation: 0.28), respectively. The de-
mographic characteristics of the study eyes are presented in
Table 1.

The proportion of the eyes demonstrating VF progression
based on the 5 methods for the unsmoothed, NN-smoothed,

Table 1. Demographic Characteristics of the Study Eyes

N = 4232
(Eyes = 7155)
Age, mean (SD), yrs 62.8 (12.67)
Sex
Female 2262 (53%)
Male 1970 (47%)
Race
White 2506 (59%)
African American 317 (7%)
Asian 542 (13%)
Hispanic 3 (1%)
Others 824 (20%)
Visual field frequency, median (IQR) 9 (7—12)
Baseline visual field mean deviation, average (SD), dB  —3.94 (5.11)
Final visual field mean deviation, average (SD), dB —5.63 (6.32)
Follow-up time, mean (SD), yrs 10.4 (4.72)
Baseline visual acuity (SD), logMAR 0.15 (0.26)
Final visual acuity (SD), logMAR 0.16 (0.28)

dB = decibels; IQR = interquartile range; logMAR =
minimum angle of resolution; SD = standard deviation.

logarithm of the
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Table 2. The Proportion of Progressing Eyes for 5 Visual Field Progression Methods for the Unsmoothed, the NN Smoothed, and
Variational Autoencoder Smoothed Data

VF Progression Unsmoothed VAE NN Unsmoothed vs. Unsmoothed vs. NN vs.
Method Data Smoothed Smoothed NN Smoothed VAE Smoothed VAE
mTD rates 874 (12.2%) 974 (13.6%) 1010 (14.1%) < 0.001 < 0.001 0.048
VFI rates 1002 (14%) 962 (13.4%) 1002 (14.0%) NA 0.045 0.045
PLR 1029 (14.3%) 1152 (16.1%) 1137 (15.8%) < 0.001 < 0.001 0.463
GRI 1917 (26.7%) 2033 (28.4%) 2077 (29.0%) < 0.001 < 0.001 0.064
PoPLR 2977 (41.6%) 3310 (46.2) 3618 (50.5%) < 0.001 < 0.001 < 0.001

The database consisted of 7155 eyes of 4232 patients.
GRI = glaucoma rate index; mTD = mean of total deviation; NA = not available; NN = nearest neighbor; PLR = pointwise linear regression; PoPLR =

permutation of pointwise linear regression; VAE = variational autoencoder; VF = visual field; VFI = visual field index.

and VAE-smoothed data are given in Table 2. The
proportion of progressing eyes was significantly higher for
NN-smoothed and VAE-smoothed data than that of the
unsmoothed data for the mTD rates, PLR, GRI, and
PoPLR. The comparison of the proportion of progressing
eye between the 5 methods for VF progression for each
data set revealed that the proportion was highest in GRI,
followed by PoPLR, PLR, mTD rates, and then VFI rates.
The TDP was significantly earlier for the NN-smoothed
and VAE-smoothed data compared unsmoothed data for
PLR (7.3, 7.6, and 8.2 years, respectively; P value <
0.001) and PoPLR (6.8, 7.1 and 7.6 years, respectively; P
value < 0.001]). Table 3 shows the results of the TDP
analyses.

The results of the conversion survival analysis strongly
support the previous findings. This analysis demonstrated
that the NN smoothed and VAE smoothed data had lower
survival probabilities over time for most of the VF pro-
gression methods, which means the smoothing approaches
were able to provide earlier detection of glaucoma pro-
gression. A pairwise log-rank test with Bonferroni adjust-
ment was applied to the pairwise comparisons among the 3
data sets (Table 4). The VAE smoothed data outperforms
the unsmoothed data with mTD rates, PLR, and POPLR
progression methods. The NN-smoothed data outperforms
unsmoothed data within all VF progression methods,
except for that of VFI rates. For comparison between
VAE-smoothed and NN-smoothed data, the NN-smoothed
data demonstrated better performance than VAE-smoothed
data in mTD rates and POPLR analysis. Figure 2
represents the Kaplan—Meier curves of the survival anal-
ysis for each of the VF progression methods. For the mTD
rates, PLR, and PoPLR, both the NN-smoothed and VAE-
smoothed data had lower survival probabilities compared
with the unsmoothed data. For GRI, only NN-smoothed data
had a lower survival probability compared with the un-
smoothed data.

We also investigated whether the smoothing algorithms
preserved the true glaucoma signal. We found that for most
of the simulation data, the number of progressing eyes
from each of the 5 VF progression models was similar for
the unsmoothed, NN-smoothed, and VAE-smoothed
simulation data regarding the actual number of progressing

eyes in the noise-free simulation data (ground truth). For
the simulations with focal decay (rates = —0.5 dB per
year), in the VF progression methods, the VAE- and NN-
smoothed data demonstrated the number of progressing
eyes were closer to the ground truth compared with the
unsmoothed data.

Discussion

In this study, we evaluated the performance of NN- and
VAE-smoothing approaches for improving the detection of
VF progression in eyes with glaucoma. The proportion of
eyes defined as progressing according to mTD rates, VFI
rates, PLR, PoPLR, and GRI was calculated for the un-
smoothed, NN-smoothed and VAE-smoothed data and
compared between them. We also evaluated the TDP with
survival analysis. For mTD rates, PLR, PoPLR, and GRI,
the proportion of progressing eyes was higher for the
smoothed data compared with unsmoothed data. The TDP
occurred significantly earlier for the NN- and VAE-
smoothed data compared with unsmoothed data for the PLR
and PoPLR progression methods. Based on survival ana-
lyses, the NN-smoothed data detected VF progression
earlier compared with the unsmoothed data for all the VF-
progression methods, except VFI rates. The VAE-smoothed
data led to earlier detection of glaucoma progression
compared with unsmoothed data for the mTD rates, PLR,
and PoPLR methods. The results from the noise-free
simulation data showed that the smoothing approaches did
not introduce a negative effect on the VF true signal while
reducing variability. Therefore, this study provides evidence
that applying smoothing methods to VF data enhances
detection of glaucoma progression resulting in earlier
identification of change.

The VAE is a DL model that consists of an encoder
compressing the data into a latent space through sampling
and principal component analysis together with a unlque
decoder that is able to regenerate the data.”® Therefore, it is
able to provide more realistic data compared with models
only equipped with the compression process, such as
factor analysis and independent component analysis.””°
Another advantage of the VAE compared with other
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Table 3. The TDP for the 5 Visual Field Progression Methods Investigated in This Study and Comparison of TDP between Unsmoothed,
NN Smoothed, and VAE Smoothed Data

VF Progression Unsmoothed VAE Smoothed NN Smoothed

Method Data TTP Data TTP TTP
mTD rates 8.28 8.58 8.43
VFI rates 8.21 8.23 8.21
GRI 7.24 7.46 7.38
PLR 8.20 7.64 7.36
PoPLR 7.68 7.17 6.86

Unsmoothed vs.
VAE Smoothed P Value

NN Smoothed and
VAE Smoothed P Value

Unsmoothed vs.

NN Smoothed P Value

0.009 0.179 0.181
0.940 0.870 0.810
0.037 0.098 0.654
<0.001 < 0.001 0.276
< 0.001 < 0.001 0.103

GRI = glaucoma rate index; mTD = mean of total deviation; NN = nearest neighbor; PLR = pointwise linear regression; PoOPLR = permutation of
pointwise linear regression; TDP = time to detect progression; VAE = variational autoencoder; VF = visual field; VFI = visual field index. Boldface

indicates statistical significance.

methods is that, because VAE is a DL model, it can handle
nonlinear patterns in the data set.

One advantage of the VAE over other DL models for
investigating VF progression is that VAE considers the
original VF data as the ground truth for training, although
other DL models use other approaches as the ground truth,
such as clinical decision statistical methods based on the VF
data, which could introduce significant noise into the
training model because of a lack of a gold standard for
defining the classification.”” > In our study, after applying
the VAE on the original VF data, the ability to detect
glaucoma progression was enhanced by detecting higher
proportions of progressing eyes through the VF progression
methods and resulted in significantly earlier detection of
glaucoma progression with mTD rates, PLR, and PoPLR
progression methods. These findings, along with the phys-
iologic feasibility of the latent space of the VAE model,
suggest it is an interesting approach for improving the
clinical task of monitoring glaucoma progression.”**

The NN-smoothing algorithm also improved the ability
to detect glaucoma progression with various VF-progression
models. The proportion of the eyes demonstrating glaucoma
progression was higher compared with the original un-
smoothed data. Additionally, after performing NN smooth-
ing, glaucoma progression was detected significantly earlier
compared with when unsmoothed data were used for all the
VE-progression models except VFI rates. The NN-smooth-
ing algorithm was initially introduced by Morales et al.”’

The biggest advantage of this algorithm, compared with
the more complicated VAE model, is that simple
calculations are required. The NN- and VAE-smoothing
models demonstrated a similar performance for the
detection of glaucoma progression except that the analyses
using NN-smoothed data led to earlier detection of
glaucoma progression with the mTD rates and PoPLR.
The NN algorithm decreases the variability by averaging
the threshold sensitivities in a localized manner, resulting
in a less noisy VF data.”

Five trend-based analyses for defining glaucoma pro-
gression were evaluated in this study. Trend-based analysis
has several advantages over event-based analysis including
better predictability.”’ More specifically, pointwise trend-
based analyses have benefits over global values (mean de-
viation and VFI) trend-based analysis, such as the ability to
detect early localized glaucomatous defects and monitor the
pattern of the VF progression by preserving spatial infor-
mation.” There is no universally recognized best approach
for detecting glaucoma progression based on VF. Rabiolo
et al reported that GRI and PoPLR both identified a
higher proportion of progression and detected disease
deterioration earlier compared with event-based and other
trend-based methods tested.'” We also found that GRI and
PoPLR found a higher proportion of progressing eyes,
compared with other VF progression methods for both the
unsmoothed and smoothed data. It should be noted that
the methodology for performing the GRI already

Table 4. The Pairwise Log-Rank Test for Comparing the Time to Conversion to Glaucoma Progression Based on Survival Analysis for the
5 Methods Investigated in This Study

Pairwise Log-Rank Test P Values

VF progression method Unsmoothed vs. VAE Smoothed

mTD <0.001
VFI 0.331
GRI 0.045
PLR 0.0037
PoPLR < 0.001

Unsmoothed vs. NN Smoothed

VAE Smoothed vs. NN Smoothed

<0.001 <0.001
0.740 0.521
0.005 0.433
0.01 0.746
<0.001 < 0.001

GRI = glaucoma rate index; mTD = mean of total deviation; NN = nearest neighbor; PLR = pointwise linear regression; PoOPLR = permutation of
g g P g P
pointwise linear regression; VAE = variational autoencoder; VF = visual field; VFI = visual field index. Boldface indicates statistical significance.
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Figure 2. The Kaplan—Meier curves for time to detect progression with 3 of the explored approaches, the mean total deviation (mTD) rates, glaucoma rate

index (GRI), and permutation of pointwise linear regression (PoPLR).

incorporates some smoothing of the VF data.'®
Additionally, PLR and PoPLR used the NN- and VAE-
smoothed data compared with unsmoothed, whereas GRI
had this advantage only with the NN-smoothed data. We
included a larger number of eyes compared with the study
by Rabiolo et al and found a similar finding about GRI
and PoPLR, which supports the utility of these methods
for evaluating glaucoma progression.

When applying an algorithm to reduce variability, it is
important to have confirmation that the algorithm does not
have a negative effect on the true glaucoma “‘signal.” For
this purpose, we generated 24 noise-free VF progression
simulations, which included eyes with different patterns of
focal and global changes over time (ground truth). We
applied the 5 VF progression methods on these noise-free
simulations before and after applying the smoothing algo-
rithms (NN and VAE). For most of the simulations, the
number of the progressing eyes was similar for the un-
smoothed, the NN-smoothed and the VAE-smoothed data
with the ground truth. The number of progressing eyes
defined by PLR, PoPLR, and GRI was different from the
ground truth for the unsmoothed data, and the NN- and
VAE-smoothed data in the simulation VF series showing a
small focal defect; this could be explained by limitations of
the pointwise trend-based models for detecting small glau-
coma defects and not the effect of the smoothing algorithms
on the true glaucoma signal. In addition, for some of the
focal glaucoma progression simulations, the number of
deteriorating eyes defined by PLR, PoPLR, and GRI were
closer to the ground truth for the NN- and VAE-smoothed
data, compared with the unsmoothed data. These findings
confirm that applying smoothing algorithms -efficiently
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reduces variability while preserving the true glaucoma
signal; this could explain how applying these algorithms to
the original VF data resulted in the detection of glaucoma
progression earlier and more frequently.

There are some limitations to our study. For the simula-
tions, we did not introduce Gaussian distributions and vari-
ability as we have done in our previous work.'’ The
variability introduced by the Gaussian distribution and
standard deviation would have introduced distinct patterns
of variability that would not be efficiently learned by the
VAE model. Therefore, they could not be used for the
purpose of investigating the efficacy of VAE for preserving
the true glaucoma signal. Future implementations of VAE
model structures could solve this issue. The frequency of
VF testing was not similar across the eyes in the study,
which could have affected the TDP.® Another limitation of
our study is that there was a slight difference in visual
acuity between the baseline and final visits. This could be
explained by the fact that glaucoma mainly involves the
peripheral VF, and the central visual acuity is involved in
the final stages of the disease. However, the main outcome
of this study was to investigate various methods of
glaucoma progression based on VF.

In conclusion, reducing the variability and smoothing VF
data with NN and VAE models resulted in the detection of a
higher proportion of progressing eyes and earlier detection
of glaucoma progression with various VF progression
methods, while maintaining the specificity of the VF data.
Among the VF progression methods, the pointwise trend-
based methods, especially GRI and PoPLR, demonstrated
the highest performance in the detection of glaucoma pro-
gression with the smoothed VF data.
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