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Abstract: The voltammetric electrochemical sensing method combined with biosensors and multi-
sensor systems can quickly, accurately, and reliably analyze the concentration of the main analyte and
the overall characteristics of complex samples. Simultaneously, the high-dimensional voltammogram
contains the rich electrochemical features of the detected substances. Chemometric methods are
important tools for mining valuable information from voltammetric data. Chemometrics can aid
voltammetric biosensor calibration and multi-element detection in complex matrix conditions. This
review introduces the voltammetric analysis techniques commonly used in the research of voltammet-
ric biosensor and electronic tongues. Then, the research on optimizing voltammetric biosensor results
using classical chemometrics is summarized. At the same time, the incorporation of machine learning
and deep learning has brought new opportunities to further improve the detection performance of
biosensors in complex samples. Finally, smartphones connected with miniaturized voltammetric
biosensors and chemometric methods provide a high-quality portable analysis platform that shows
great potential in point-of-care testing.

Keywords: chemometrics; biosensing; voltammetric methods; smartphones; point-of-care testing

1. Introduction

The field of biosensing is in a phase of rapid development, and biosensing assisted
by chemometric methods has been gradually introduced to various areas of research. The
most common use of voltammetric biosensing is in the the detection of target analytes [1].
The International Union of Pure and Applied Chemistry (IUPAC) defines a biosensor as
“an autonomous analytical device capable to performing quantitative or semi-quantitative
analyzes using a recognition element (biological in case of biosensor) in direct contact
with a transduction element” [2]. Compared with traditional chemical sensors, biosensors
have higher selectivity and sensitivity due to the participation of biological elements (en-
zymes, antibodies, aptamers, molecularly imprinted polymers and DNA, etc.). It provides
high resolution and specific response to one or a class of target analytes under certain
conditions [3–8]. Inspired by the multi-dimensional recognition systems of organisms,
voltammetric sensors with low selectivity or specificity are widely used in the detection of
biomolecules [9–12]. They can characterize multicomponent liquid samples holistically by
their own cross-sensitivity or be integrated into a sensing system to form a voltammetric
detection system, enabling the detection of primary analytes in the presence of interfering
substances and the detection of multiple components [13,14].

Voltammetry, which has good sensitivity, detection speed, reliability and accuracy,
is one of the most widely used electrochemical techniques in biosensing [15–18]. It is not
only an effective way to investigate the reaction mechanism of a target analyte from an
electrochemical point of view, but also can quantify sample parameters using different
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voltammetric techniques (e.g., cyclic voltammetry, differential pulse voltammetry, square
wave pulse voltammetry and anodic dissolution square wave voltammetry). The response
current and excitation potential formed during the electroanalysis of a solution forms a
voltammogram with high-dimensional characteristics. The inherent richness of voltamme-
try to generate analytical signals, and the need for researchers to resolve valid information
from voltammograms, have promoted the use of chemometrics in voltammetric biosensing.
With the combination of chemometrics, biosensors can achieve lower detection limits and
better specificity for analytes [19,20]. Meanwhile, chemometric tools can help in mining
more meaningful results from the rich information collected by a bioelectronic tongue [21].
It is worth mentioning that machine learning methods and deep learning methods have
gradually become new driving forces that continue to promote the development of chemo-
metrics in biosensing [22]. In addition, advances in size reduction, cost lowering and
biosensor sensitivity has led to the development of promising applications in point-of-care
testing (POCT) [23]. The popularity of smartphones further provides a platform for the use
of electrochemical detection devices incorporating chemometric methods in POCT.

The purpose of this review is to show the potential of chemometric methods in biosens-
ing research using voltammetry sensors through an introduction of classical chemometric
methods as a tool to solve the limiting problems in biosensing analysis using voltammetry.
At the same time, this review stimulates researchers’ interest in using deep learning meth-
ods for voltammetric data analysis. Finally, it is envisioned that this review will encourage
researchers to combine the advantages of voltammetric analysis and chemometrics in the
field of biosensing to develop more smartphone-mediated electrochemical platforms with
on-site decision-making capabilities.

2. Voltammetric Analysis Techniques Commonly Used in Biosensing

Voltammetry is generally used in standard three-electrode system (working electrode,
counter electrode and reference electrode). It applies a certain form of potential to cause the
oxidation and reduction reaction of electroactive substances on a working electrode, then
samples the response current within the time range [24]. Cyclic voltammetry (CV) [25],
differential pulse voltammetry (DPV) [26] and square wave voltammetry (SWV) [27] are
common analytical techniques. The selection of a suitable voltammetric technique is
helpful for the study of biosensing mechanisms, improving the sensitivity and selectivity
of biosensors. A variety of voltammetric methods have been widely used in biosensing in
combination with highly sensitive, rapidly responsive electrochemical biosensors. Table 1
lists the biosensing applications using the three voltammetric methods mentioned above.

Table 1. Biosensing applications using CV, DPV and SWV electrochemical analysis techniques.

Analyte Electrode Method Analytical Parameters Ref.

LRP gene Three-dimensional nanoporous gold
electrode SWV, DPV

LOD: 6.0 × 10−14 M
Linear range: 2.0 × 10−13–7.5 × 10−9 M [28]

CYFRA-21-1 APTES/nYZR/ITO electrode DPV LOD: 7.2 pg/mL
Linear range: 0.01–50 ng/mL [29]

miRNA-21
Reduced graphene oxide/gold
composite-modified electrode DPV LOD: 1.0 pM

Linear range: 1 × 10−14–1 × 10−4 M [30]

Dopamine;
Serotonin;
Glucose

GOx-DHP/Gr-AV modified electrode CV, DPV,
SWV

LOD: 0.13 µM Linear range: 30–800 µM
LOD: 0.39 µM
Linear range: 6.0–100 µM
LOD: 0.21 µM
Linear range: 1.0–10 µM

[31]
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Table 1. Cont.

Analyte Electrode Method Analytical Parameters Ref.

Vitamin D2
BSA/Ab-Vd2/CD-CH/ITO

bioelectrode DPV LOD: 1.35 ng/mL
Linear range: 10–50 ng/mL [32]

Promazine Graphene modified carbon-paste
electrode SWV LOD: 8.0 nM

Linear range: 0.1–8 µM [33]

Theophylline CHL-GO/C electrode SWV
LOD: 4.45 × 10−9 M
Linear range:
3.0 × 10−8–5.0 × 10−4 M

[34]

Acetaminophen Diglycolic acid modified glassy
carbon electrode CV

LOD: 6.7 × 10−9 M
Linear range:
2.0 × 10−8–5.0 × 10−4 M

[35]

Osteopontin RNA aptamer-immobilized gold
electrode CV LOD: 3.7 nM

Linear range: 25–200 nM [36]

Cardiac troponin I Au SPE/Au nanodumbbells/Apt DPV LOD: 0.08 ng/mL
Linear range: 0.05–500 ng/mL [37]

Troponin I Au disc/Triangular icicle-like Au DPV LOD: 0.0009 ng/mL
Linear range: 0.01–5.0 ng/mL [38]

L-Try PT-ZnO/glassy carbon SWV
LOD: 8.5 nM
Linear range:
1.0 × 10−4–1.0 mM

[39]

Phenol Tyr-AuNPs/BDD SWV LOD: 0.07 µM
Linear range: 0.10–11.0 µM [40]

5-
enolpyruvylshikimate-
3-phosphate synthase

isolated

Dual-functionalized AuNP
nanoprobes DPV LOD: 0.05 ng/mL

Linear range: 0.1–10.0 ng/mL [41]

Methyl salicylate AOD-HRP/CNT glassy-carbon
electrode CV LOD: 0.98 µM

Linear range: 0–0.1 mM [42]

Abbreviations: LRP, lung resistance related protein; APTES, 3-aminopropyltriethyl silane; nYZR, synthesis of
yttria-doped zirconia-reduced graphene oxide; ITO, indium tin oxide; miRNA-21, microRNA-21; GOx, glucose
oxidase; DHP, dihexadecyl phosphate; Gr-AV, graphite powder-automotive varnish; BSA bovine serum albumin;
Ab-Vd2, antibody against the Vitamin D2; CD-CH, carbon dots-chitosan; CHL-GO, cholesterol and graphene
oxide; C, carbon; AOD-HRP, alcohol oxidase-horseradish peroxidase; CNT, carbon nanotube; L-Try, L-tryptophan;
PT, polythiophene; BDD, boron-doped diamond.

Cyclic voltammetry is the most widely used electrochemical technique, which applies
a scanning potential of a triangular waveform to a working electrode to detect a gener-
ated current (Figure 1A1). Potential cycling at the working electrode drives continuous
oxidation and reduction reactions of electroactive species in solution [43]. As the potential
applied on the working electrode approaches the equilibrium potential of the species in
solution, the response current gradually increases and the oxidized/reduced species on the
electrode surface gradually decreases. Until the charge transfer and diffusion motions reach
equilibrium, an oxidation/reduction peak appears (Figure 1A2). By analyzing the form of
peaks in the voltammogram, information concerning the reaction mechanism, such as the
reversibility of reaction, redox potential, reaction rate and concentration of the analyte, can
be obtained [44,45]. Pulse-based voltammetry shows an obvious advantage over CV for
trace detection. Differential pulse voltammetry superimposes a pulse of fixed amplitude on
a step potential. The current is sampled before the potential pulse is applied and again at the
end of the pulse (Figure 1B1). Then, the difference can be calculated to get a relatively pure
Faradaic current (Figure 1B2). The charging current is represented in the voltammogram as
a relatively constant baseline, so background can be better distinguished, enabling a lower
detection limit. The good sensitivity of DPV makes it the preferred electrochemical analysis
method for trace detection of inorganic and biologically important compounds [46–48].
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Square wave voltammetry combines the advantages of pulsed and cyclic voltammetry
and is considered a more powerful electrochemical technique [49]. Its typical potential
waveform is a staircase wave superimposed with a symmetrical square wave. Pulses with
equal and symmetrical potential heights are applied to each step plane, and the forward
and reverse pulses of each cycle drive the electrodes to undergo electrochemical reactions
in both anodic and cathodic directions (Figure 1C1). SWV is able to achieve high scan rates
at moderate increments. The strategy of SWV to distinguish the charging current and the
Faraday current is to sample the current at the end of each pulse. The two sampling points
obtain the forward and reverse currents, and the net current can be obtained by taking
the difference between the forward and reverse current (Figure 1C2). SWV and DVP have
similar sensitivities, but SWV can achieve a faster detection speed with a shorter potential
period. Meanwhile, SWV is suitable for analyzing reversible or quasi-reversible electrode
processes. These characteristics make SWV a widely used method in basic research and
analysis of biological compounds [50–52].

A voltammetric analysis reflects the chemical properties of analytes from different
perspectives using functions of potential, current and time. The voltammogram records the
current curves of the oxidation and reduction processes of the electroactive species in the
analyte and the working electrode at a specific potential. The response current characteris-
tics such as peak value, peak width and peak potential of the voltammetric curve present
the electrochemical properties of an analyte. In addition, the response curves also contain
redundant information about the solution matrix. The ability of chemometric methods to
handle multivariate data offers the possibility to parse more meaningful information from
voltammograms.
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Figure 1. The potential (A1) and typical response current (A2) of cyclic voltammetry; the potential
waveform (B1) and voltammogram (B2) of differential pulse voltammetry, in the potential waveform,
T is the waveform period, and S1 and S2 are the two current sampling points; the typical potential
waveform (C1) of square wave voltammetry, ∆E is the potential increment, T is the potential period.
The response current consists of forward (anodic current) and reverse (cathodic current) components
(dashed line in (C2)), and their difference results in a net current (solid line in (C2)).

3. Chemometric Tools in Biosensing

Chemometric tools can obtain reasonable analytical results from voltammetric data to
improve the performance of voltammetric sensors in biosensing [53,54]. On one hand, the
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calibration of voltammetric biosensors by simple linear regression presupposes that the
desired specificity is present or that the target solution to be detected has been adequately
treated. The inhibitory or synergistic effects of interfering substances on the primary analyte
must be considered when attempting to detect a single substance in samples with complex
matrices. Chemometrics offers a simpler and more flexible approach than spending a
lot of effort in improving biosensor selectivity from a sensor design perspective [55,56].
On the other hand, a bioelectronic tongue system consisting of several electrodes with
cross-sensitivity is not only capable of measuring a single substance, but can also exhibit a
stable differential response for a group of analytes [9,10,57]. In particular, a multi-sensor
system using voltammetry expresses rich information about an analytical solution. The
richness of this information comes not only from the sufficiently broad cross-sensitivity
properties of each sensor, but also from the voltammogram’s complete recording of the
electrochemical behavior of the analytes involved in the oxidation/reduction reaction.
Chemometric methods provide a critical driving force to process the complex information
acquired by multi-analyte sensing systems efficiently [58].

Chemometrics is defined as a chemical discipline that uses mathematics, statistics and
formal logic to provide a vast number of tools for the analysis of voltammetric data [9,57,59].
Although the analysis methods of voltammetric data emerge in an endless stream, they can
still be summarized according to the purpose of their analysis (Figure 2).

• Exploratory analysis of the data to obtain the relationship between the data.
• Qualitative analysis of target analytes to deal with the classification and discrimination

of samples.
• Quantitative prediction of analytes to achieve the determination of indicators of

interest for analytes.

Biosensors 2022, 12, x FOR PEER REVIEW 5 of 20 
 

3. Chemometric Tools in Biosensing 
Chemometric tools can obtain reasonable analytical results from voltammetric data 

to improve the performance of voltammetric sensors in biosensing [53,54]. On one hand, 
the calibration of voltammetric biosensors by simple linear regression presupposes that 
the desired specificity is present or that the target solution to be detected has been ade-
quately treated. The inhibitory or synergistic effects of interfering substances on the 
primary analyte must be considered when attempting to detect a single substance in 
samples with complex matrices. Chemometrics offers a simpler and more flexible ap-
proach than spending a lot of effort in improving biosensor selectivity from a sensor de-
sign perspective [55,56]. On the other hand, a bioelectronic tongue system consisting of 
several electrodes with cross-sensitivity is not only capable of measuring a single sub-
stance, but can also exhibit a stable differential response for a group of analytes [9,10,57]. 
In particular, a multi-sensor system using voltammetry expresses rich information about 
an analytical solution. The richness of this information comes not only from the suffi-
ciently broad cross-sensitivity properties of each sensor, but also from the voltammo-
gram’s complete recording of the electrochemical behavior of the analytes involved in the 
oxidation/reduction reaction. Chemometric methods provide a critical driving force to 
process the complex information acquired by multi-analyte sensing systems efficiently 
[58]. 

Chemometrics is defined as a chemical discipline that uses mathematics, statistics 
and formal logic to provide a vast number of tools for the analysis of voltammetric data 
[9,57,59]. Although the analysis methods of voltammetric data emerge in an endless 
stream, they can still be summarized according to the purpose of their analysis (Figure 
2). 
 Exploratory analysis of the data to obtain the relationship between the data. 
 Qualitative analysis of target analytes to deal with the classification and discrimina-

tion of samples. 
 Quantitative prediction of analytes to achieve the determination of indicators of in-

terest for analytes. 

 
Figure 2. Types of applications of chemometrics. Among them, PCA means Principal Component 
Analysis. 

Research papers published in the field of biosensing in recent years have shown a 
strong interest in deep learning models [60–64]. Compared with widely used classical 
chemometric methods, the deep learning model shows stronger data transformation 
ability and wider generality [65–68]. At the same time, with maturity of machine learning 

Figure 2. Types of applications of chemometrics. Among them, PCA means Principal Component
Analysis.

Research papers published in the field of biosensing in recent years have shown a
strong interest in deep learning models [60–64]. Compared with widely used classical
chemometric methods, the deep learning model shows stronger data transformation abil-
ity and wider generality [65–68]. At the same time, with maturity of machine learning
platforms, machine learning models including deep learning can be easily applied to
voltammetric data analysis in the field of biosensing.

Validation of method performance and evaluation of effects are also important parts
of data processing. Due to the strict requirements in the fields of sensing equipment,
experimental process and data measurement, a voltammetric sensing data set often has
a small amount of data and uneven samples. In the case of limited samples for analysis,
careful consideration should be given to the correctness of method application to establish
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meaningful correlations between voltammetric biosensor responses and analytical param-
eters. At the same time, appropriate and reasonable validation strategies were provided
for the data processing methods to evaluate the reliability of the models in practice and to
avoid inadvertent formation of biased results during data processing and model use.

3.1. Classical Qualitative Analysis Methods

Principal Component Analysis (PCA) is one of the most effective and popular ana-
lytical tools for data exploration. It reveals the underlying relationships and structure of
data in an unsupervised manner, in the absence of prior information about the data [69–71].
PCA projects high-dimensional data into a data subspace characterized by principal com-
ponents (PCs) by determining the maximum variance of the data. Each PC is a linear
combination of the original variables, the first PC is the transformation in the direction of
maximum variance, and the second PC achieves the second highest variance explanation
under the constraint of remaining orthogonal to the first PC. Subsequent PCs complete the
interpretation of the remaining information in this manner until a variance cutoff is reached.
Therefore, PCA has the ability to make a representation of complex information (score map)
in a two-dimensional plane or three-dimensional space, according to the characteristics
of the sample. At the same time, the contribution of the original variable to PC can be
obtained by the coefficient (loads) of the variable in the linear expression of PC. Therefore,
PCA can be used to evaluate the role of each sensor in the electrode array in describing the
data relationship. However, this is based on the premise that the information contained in
the maximum variance is relevant to the analyte to be analyzed.

The score plots and loading plots obtained by PCA are used to show the sample
distribution in relation to the study parameters and the contribution of different sensors
to the principal components. Coral Salvo-Comino et al. compared the performance of
silver nanowires and silver nanoparticles as platforms for immobilizing specific enzymes
by scoring and loading plots drawn by PCA (Figure 3) [72]. Different principal components
in PCA may contain relevant information about sample parameters; along the PC-3 axis
in Figure 3a,b, milk samples are distributed from positive to negative values according to
fat content. The loading plot of PCA describes the ability of the electrodes to discriminate
against the sample. The results in Figure 3c,d show that the individual values are uniformly
distributed in the annular region reflecting the complementary properties between the used
biosensors. The score plot and loading plot obtained by PCA can help in further evaluating
the performance of silver nanowires as immobilization scaffolds for enzymes in the milk
identification task.

PCA enables exploratory studies of sensor performance and analyte parameters.
Medina-Plaza et al. immobilized glucose oxidase or tyrosinase on electrodes of six different
materials and used PCA to evaluate the ability of an electrode array to identify five grape
juices [73]. Through the observation of the PCA score plot, there are clear distances between
the five grape juices, and there is a correlation between the distribution positions of the
clusters and the content of sugars and phenols in the grape juice. The load plot shows the
individual loads of the 12 sensors and provides complementary information. It also shows
the redundancy, collinearity and importance of variables in the response matrix. As a
complement, clustering in the principal component space was linked to changes in analytes
over time. Medina-Plaza et al. developed a nanostructure-based bioelectronic tongue and
cyclic voltammetry was used to detect glucose and phenolic content in grape. At the same
time, the application of PCA successfully identified the grape harvest year and various
stages of growth [74]. The results of PCA demonstrate the ability of the electronic tongue
to discriminate grape juice, and the position of the clusters in the score map correlates
with the chemical composition. At the same time, the various stages of the grape ripening
process are divided into weeks.

PCA can assign samples with similar characteristics to the same cluster according to
the inherent properties of the sample data, which exhibits the characteristics of clustering.
Strictly speaking, PCA is not a classification method, but it can assist in the judgment of the
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quality of sample data with class prior information. When there are meaningful clusters
in the score plot, it is a reasonable choice to use supervised pattern recognition methods.
Class-modeling techniques can supervise the establishment of classification rules to provide
qualitative answers to questions according to the needs of the target task. K-Nearby (K-NN),
Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA) and Partial
Least Squares Discriminant Analysis (PLS-DA) are all widely used classical classification
methods [59,75,76]. To a certain extent, these methods are simple and effective enough to
perform as well or even better than complex methods in certain applications of processing
biosensing data [77].
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Apetrei et al. used a screen-printed electrode array and cyclic voltammetry based on six
electroactive compounds and nanomaterials to monitor the water quality of the Danube for
pH, resistivity, turbidity, total dissolved solids, iron content and nitrate ions parameters [78].
An exploratory analysis of the voltammograms by PCA was performed to evaluate the
distinguishability of the seven water samples and the contribution of different sensors to the
differences in the water samples. At the same time, discriminant factor analysis (DFA) and
PLS-DA were used to distinguish the water samples. In addition, ML Rodríguez-Méndez
et al. developed two multi-sensing systems based on screen-printed electrodes modified
with carbon paste or phthalocyanine to monitor the spoilage of fish meat by analyzing
biogenic amines using SWV electrochemical analysis [79]. The score plot of PCA shows the
clusters of fish freshness over time, and further, the use of PLS-DA to classify the date of fish
degradation according to the sensor array response clearly identifies the various stages of
fish degradation. Similar to this work, I.M. Apetrei et al. described the cyclic voltammetry
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of voltammetric sensor arrays based on bisphthalocyanine- and polypyrrole-modified
screen-printed electrodes for amine compounds, including the electrochemical response of
ammonia and putrescine [80]. PCA was applied to observe the 4 clusters corresponding to
the distribution of days, and then PLS-DA was used to classify the analyzed samples over
ten days. The results, validated using the leave-one-out method, show that the sensor arrays
developed with these two electrodes for beef freshness monitoring are able to differentiate
samples based on their storage time.

It is worth noting that more learning methods for machine classification modeling,
such as decision tree (DT) and support vector machine (SVM), have been added to chemo-
metrics, which continue to promote the development of biosensing data analysis. It also
provides new strategies for solving quantitative descriptive problems [81–83]. Nian Liu
et al. have reported an analytical work on the cyclic voltammograms of tea obtained from
metal oxides (SnO2, ZnO, TiO2, Bi2O3) modified nickel foam electrodes [84]. The principal
components with 98% variance obtained by PCA were selected as the modeling data of
SVM, and a variety of black tea and green tea were qualitatively classified.

3.2. Classical Quantitative Analysis Methods

Quantitative predictions of analyte indicators can be obtained by processing data from
voltammetric sensor systems using multivariate calibration methods. Partial least squares
(PLS), a classic statistical regression model, provides an effective way for quantitative
prediction [85]. Unlike traditional regression models, PLS models are driven by a certain
number of latent variables (LVs). Similar to PC in PCA, PLS employs modeling of predictor
and response variables to find latent variables that can represent the correlation between
the two. However, in the selection of each group of latent variables, the maximization of
variance projected on the respective principal components and the maximization of the
correlation between the two should be considered at the same time. Starting with the first
latent variable, subsequent latent variables are all obtained in the same way from residuals
subtracting information from previous variables. Therefore, PLS projects the predictor and
response variables, and then completes the regression in this new dimensional space. It
is worth noting that the choice of the number of LVs is a more critical option that can be
optimized. In general, the number of LVs after crossing the optimal value is proportional
to the degree of overfitting of the model.

Cristina Garcia-Cabezon et al. used biosensor arrays and PLS to analyze phenolic
content in the residues (seeds and peels) of eight grape winemaking species [86]. Figure 4
shows the prediction of FC index (total phenolic content by using the Folin–Ciocalteu
method) and TPC index (total polyphenolic content by measuring absorbance at 280 nm)
by the PLS model. It can be seen that the PLS model gives good prediction results.

The PLS method has shown high efficiency for high-dimensional variable processing.
Clara Pérez-Ràfols et al. used a voltammetric tongue composed of four screen-printed
electrodes modified with different materials to detect Cd(II), Pb(II), Tl(I), In(III), Zn(II) and
Bi(III) for multivariate analysis of very complex mixtures of metal ions [87]. In order to
reduce the large amount of data brought by each sample, they constructed a hierarchical
PLS model. The data set was divided into 4 blocks corresponding to the sensor, and PLS
was performed separately for each block, and the obtained hidden variables were put
into the PLS operation again as new features. Simultaneous quantitative determination of
Cd(II), Pb(II), Tl(I) and Bi(III) was achieved in samples in the presence of Zn(II) and In(III)
interferences using the proposed hierarchical PLS model. The system provided results
comparable to ICP-MS at ppb levels.

PLS has good scalability for different task requirements. Dionisia Ortiz-Aguayo et al.
used a voltammetric sensor array composed of three different screen-printed electrodes
modified by graphite, cobalt(II) phthalocyanine and palladium. Characteristic voltam-
mograms for heroin, morphine, codeine, caffeine and paracetamol were extracted using
SWV [88]. Next, a quantitative model was established to quantify each analyte individually
by genetic algorithm and PLS. In order to objectively evaluate the predictive performance
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of the model in three drug mixtures and mixtures containing two cutting agents, training
and testing subset were scientifically established. A full factorial experimental design and
a center-complex face-centered experimental design were used to obtain training subsets
with good sample distribution, while additional samples in which concentrations were
randomly distributed in the experimental domain were prepared to form independent test
subsets. In addition, a supplementary test of the permutation test was performed on the
data set to prove that the model was not overfitting. An independent test set enables an
objective evaluation of the generalization ability of the model’s predictive performance.
Ultimately, the results of the model quantifying the mixture of heroin, morphine, codeine,
caffeine and paracetamol at the µM level are convincing.
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PLS is a very general method that can provide an efficient and stable solution to
complex forecasting problems. However, there are a large number of nonlinear factors
between predictors and response variables in practical biosensing applications, and classical
PLS is weak for modeling data with nonlinear information characteristics. In contrast,
artificial neural network (ANN) is a flexible nonlinear model [89]. ANNs are inspired
by early models of sensory processing in the brain. Its typical structure is a feedforward
network composed of multilayer perceptrons, including an input layer, several hidden
layers and a final output layer. The output of each layer of neurons in the network
multiplied by the weights of the connections is summed in the next neuron, and then
transformed linearly or non-linearly through an activation function. The type of activation
function determines whether the model can capture linear or non-linear relationships in
the data. In model training, gradient descent is often used to optimize parameters, and the
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goal of minimization is selected through the loss function, and finally the neural network
that can best solve the problem is obtained. It should be noted that, when there are too
many parameters for the ANN to learn, the probability of overfitting would become larger.
Although this is a common problem with most regression models, the structure of the
ANN makes it more prone to over-parameterization. Therefore, the evaluation of the
generalization ability of the model is more important.

Figure 5 demonstrates the ability of the ANN model to quantify the binary mixture of
4-ethylphenol (4-EP) and 4-ethylguaiacol (4-EG) [90]. During this work, discrete wavelet
transform is used to compress the original data. 144 neurons are composed of input layer, a
hidden layer containing 3 neurons is designed, and finally, the output layer is composed
of 2 neurons. In the comparison of using ANN and PLS model, it can be seen that ANN
shows relatively better performance. The combination of linear and nonlinear operations
enables ANN to describe data with nonlinear characteristics, which is the main reason why
the ANN model has better predictive ability.
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ANN provides help for the analysis of signal dissimilarity and improves the qualitative
resolution of complex signals. A more accurate type identification is achieved, and a rough
estimate of the concentration is proposed. Zhou et al. demonstrated the simultaneous
determination of catechol and quinone in municipal solid waste compost using a tyrosinase-
based biosensor array and differential pulse voltammetry [91]. The response currents of 22
potentials in the differential pulse voltammogram were chosen as the input vector, the back-
propagation algorithm was selected to optimize the ANN model and the feed-forward back-
propagation (BP-ANN) model was constructed. Multiple organic compounds in compost
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extracts bring diversity and non-linearity. Compared with simple linear regression, BP-
ANN provides good analytical capabilities for nonlinear feature relationships. Satisfactory
results were obtained in an independent test subset. In another work, M. Asadollahi-Baboli
et al. applied square wave voltammetry on screen-printed gold electrodes modified by the
formation of cysteine self-assembled monolayers on gold nanoparticles, combined with
PCA and Tetracycline and cefixime were determined by ANN in biological fluids [53].
PCA is used for dimensionality reduction of the calibration set, and the dimensionality-
reduced data is used as a three-layer ANN network with a sigmoid transfer function.
Final validation results in the test set demonstrated the model’s ability to simultaneously
determine tetracycline and cefixime concentrations. It also exhibits good performance in an
environment with substrates.

3.3. Deep Learning Methods

Currently, deep learning shows great potential in many fields. Deep learning models
can effectively deal with the complex and high-dimensional data obtained from voltam-
metric biosensors. They use a multi-layered structure to sequentially extract multi-level
features of the source data that reflect the patterns contained in the data. Using these pat-
terns, deep learning models can be well applied to prediction tasks. In the face of different
data forms and domain requirements, they have evolved various typical architectures. Con-
volutional Neural Network (CNN) is one of the most popular deep learning models [92,93].
Similar to the stacked structure of ANN, CNN consists of multiple convolutional layers and
ends with a fully connected layer. The input data is convolved with multiple filters in the
convolutional layer to obtain feature maps. Filters are learned during training to acquire
features about the outcome of the task. At the same time, the operation of convolution
brings the advantages of sparse connection and weight sharing. A nonlinear activation
function can be used after the convolutional layer to achieve nonlinear mapping. Therefore,
the convolutional neural network has the ability to extract features hierarchically and fit
the data efficiently. Another classic type of deep network is the Recurrent Neural Network
(RNN). The hidden layer of RNN can be regarded as a memory unit, and its output is not
only affected by the current input, but also by the historical input, so as to continuously
update the internal state. Therefore, RNN is often used to process sequences of arbitrary
length, which can represent the influence of historical variables in the sequence on the
current input data [94].

Due to its strong data description ability and relatively strong adaptability to new
problems, deep learning models gradually enter the field of data processing for voltam-
metric tongues as a chemometric tool with excellent performance. Figure 6 shows the
performance of deep learning models in classification applications [95]. Zheng et al. devel-
oped a one-dimensional convolutional neural network to automatically perform feature
extraction and classification. At the same time, transfer learning (TL) is also introduced
to train the model to enhance the generalization ability of CNN. The research compares
the classification performance of the deep learning method used with traditional machine
learning methods (back-propagation neural network, support vector machine and extreme
learning machine), and the former shows better classification results.

Yuan et al. proposed an automatic feature extraction strategy based on a convolutional
neural network in an electronic tongue system for tea classification [96]. Since each sensor
provides a large number of current responses for the analyte, it is challenging to extract
effective features from the large number of responses that affect the accuracy of pattern
recognition. This study built a convolutional neural network (CNN) to learn features
automatically. The features in the sensor responses transformed into time-frequency maps
by short-time Fourier transform extracted in a supervised training process, which was
finally implemented for the classification of five kinds of tea. The research points out that,
compared with common classifiers such as SVM, ANN and random forest (RF), the deep
model structure that integrates automatic feature extraction and classification into one is
more excellent in classification effect.
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There are potential pitfalls regarding the use of deep learning models, especially in
voltammetric datasets, which often have a small amount of data formed from limited
samples. It is necessary to establish effective model verification for deep learning models. A
common verification method is to divide the data set into training subsets and verification
subsets. The training subset is used in the training process of the model, and the validation
subset is used to evaluate the predictive ability of the model. At the same time, the data for
the validation subset should remain independent. In small data sets, cross-validation is
often used to evaluate model performance. Although this validation method is widely used,
it is easy to make mistakes in adjusting the model on the results of the validation set, making
researchers overly optimistic about the predictive ability of the model [97]. A suggested
validation strategy is to use three subsets of samples: a training subset, a validation subset
and a test subset. The optimization of the model based on its performance on the validation
subset to find the optimal parameters is especially important for deep learning models.
The actual reliability of the final model is estimated by making predictions on the test
subset [98]. Since the test subset never participates in the process of model tuning, the
evaluation of the generalization ability of the model obtained by this form of evaluation
requires affirmation. When the amount of data can only support the division of two data
subsets, and the hyperparameters of the model are adjusted during the evaluation process
of the validation set, a rational judgment should be maintained on the re-generalization
ability of the model.

4. Applications of Voltammetric Biosensing in POCT

The combination of chemometric methods and voltammetric biosensors is widely
used in food analysis, environmental monitoring, medical and health diagnosis. The small
size of the voltammetric biosensor, the simplicity of the voltammetric analysis method
and the flexibility of the chemometric method are ideal to obtain the target result from the
information obtained by the voltammetric biosensor, for the simple operation and quick
analysis of the results in various fields. POCT provides the premise [99]. In particular,
devices with excellent computing power and network connectivity, represented by smart-
phones, provide a good combination for the application of voltammetric sensor systems
assisted by chemometric technology for on-site detection and analysis.
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Health-related biomolecular assays can provide reference for disease prevention
and diagnosis, and POCT devices play an important role. Daizong Ji et al. designed
a smartphone-based voltammetry system for trace detection of ascorbic acid, dopamine,
and uric acid using nanomaterial-modified electrodes and differential pulse voltamme-
try [100]. A smartphone-based integrated voltammetry system includes a sensor, coin-sized
detector and smartphone. The detector is used to receive instructions from the mobile
phone to realize two electrochemical analysis techniques, cyclic voltammetry and differen-
tial pulse voltammetry. The user can control the detection device using the smartphone
app, and the voltammogram will be plotted after the detection. Filters for noise processing
of current data and acquisition of peaks are also included in the phone (Figure 7). Therefore,
the smartphone assumes the functions of controlling the system, processing the data and
displaying the data at the same time. The modified electrodes combined with the system in
the study can detect not only biomolecular compounds in standard solutions, but also in
artificial urine. The results demonstrate that the smartphone-based system can perform
simultaneous biomolecular detection, with the potential for instant detection.
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Smartphones are becoming a versatile platform for developing environmental monitor-
ing POCT systems. Jafar Massah et al. designed a smart portable biosensing system based
on enzymes and cyclic voltammetry for the determination of nitrate in liquids [101]. The
nitrate concentration was modeled using SVM, taking into account the decrease in enzyme
activity over time. The model requires two sets of input features, one is the electrochemical
data of the sample and the other is the duration between electrode preparation (enzyme
immobilization) and the analysis of nitrate in the sample. Ultimately, the model showed
good predictive power (MSE = 0.0018 and R2 = 0.92). Meanwhile, the study demonstrates a
monitoring system consisting of a portable electrochemical detection device and a decision-
making unit based on an iOS platform application and an IoT-based cloud server that
shares the results via the Internet (Figure 8). The combination of electrochemical detection
equipment and a smartphone with model computing capabilities provides the possibility
of instant detection. This work presents a way to deploy trainable machine learning models
in smartphones. The community improves the performance of machine learning methods
on smartphone applications by sharing databases online. Operators can download the
database in any monitoring environment with a network connection, train the machine
learning method, and then apply the combination of biosensors, detection device and
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smartphones equipped with machine learning algorithms for actual monitoring. Benefited
by machine learning methods for predicting the nitrate concentrations in samples, this is
an instant detection scenario that allows easy access to results without the involvement of a
professional chemical analyst.
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5. Conclusions

Biosensing research has been growing exponentially with the aid of chemometrics.
Chemometric tools have shown impressive results both in helping biosensors perform
high-resolution detection of multicomponent solutions with matrix effects and in parsing
effective information from high-dimensional data generated by bioelectronic tongues.
At the same time, the advantages of chemometrics combined with voltammetric-based
biosensing have led to the development of point-of-care detection systems that are more
accurate, easier to use, and capable of decision making. The current practice of chemometric
methods in voltammetric biosensing research provides confidence for more explorations in
the future. Here, the status quo is summarized and future directions are as follows:

• Chemometrics is increasingly becoming the dominant driving force of voltammetric-
based biosensing research. Chemometrics and machine learning help to better observe
and understand the experimental phenomena that result from the interaction of
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variables under study. It also provides diverse solutions to problems in biosensing
while delivering reliable and valuable results.

• Prior research applied deep learning methods to process the responses of voltammet-
ric biosensors or bioelectronic tongues, in stark contrast to the popularity of deep
learning in other fields of chemistry. Although the current deep learning models
face the problems of small data size and lack of interpretability in the processing of
voltammetric data, chemical analysts are still encouraged to learn the core ideas of
deep learning. This is not only because the powerful data transformation capabilities
of deep learning methods can retrieve meaningful results from complex voltammetric
signals, but also because chemical analysts can provide chemical knowledge support
for deep learning methods in data analysis of voltammetric biosensing. The contri-
bution of deep learning to other fields of chemistry shows its enormous potential for
voltammetric biosensing applications.

• Smartphone-based electrochemical analysis is gradually becoming a reliable solution
for POCT in many fields. An easy-to-implement voltammetric method has helped
remove the limitations of traditional laboratory assays. Although the implementation
of the voltammetric method needs to rely on additional detection equipment, its
circuit design and driving method are relatively clear. A large number of portable
voltammetric analyzers have been developed. At the same time, the good sensitivity
and fast detection speed of voltammetric technology and the great progress made in
miniaturization, modularization and cost reduction of biosensing elements (electrodes,
detection devices) provide the premise for POCT. Chemometric methods perform a
decision-making analysis of the acquired voltammetric data, providing meaningful
results for the detection of target analytes. There are reasons to believe that functional
devices with mobile computing and multiple connectivity methods represented by
smartphones can become the key to the combination of portable electrochemical analy-
sis platforms and chemometric methods. It is expected that an intelligent platform for
on-site detection and analysis using voltammetric biosensing systems can be applied
in the fields of food industry, environmental monitoring and medical health.
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