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categorized as high-grade gliomas [3]. Among gliomas, 
glioblastoma has the worst prognosis for patients with 
a median survival less than two years [4]. Current treat-
ment options for glioblastoma include maximal surgical 
resection, radiotherapy, and chemotherapy [5]. Despite 
advances in therapeutic strategies, such as CAR T-cell 
therapy and immune checkpoint inhibitors, no major 
breakthroughs have yet been achieved [6, 7]. The onset of 
glioblastomas are often associated with risk factors, such 
as ionizing radiation, genetic mutations, chemical toxins, 
and pathogen infections including viral agents [2]. Yet, 
the contribution of pathogen infection to glioblastoma 
etiology remains unclear, particularly regarding whether 
such infections initiate or promote cellular mutations 
and/or contribute to tumorigenesis.

The role of pathogens in tumorigenesis, especially 
viruses, is well established [8, 9]. Common oncogenic 
viruses in humans include Epstein-Barr virus, hepatitis 
B virus (HBV), human papillomavirus (HPV), human 
T-cell lymphotropic virus, hepatitis C virus (HCV), 

Introduction
Gliomas are the most common primary malignant 
tumors of the nervous system [1], with an annual inci-
dence ranging from 4 to 11 per 100,000 individuals in 
developed countries [2]. The World Health Organization 
classifies gliomas into grades 1 to 4, with grades 3 and 4 
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Abstract
Glioblastoma is the most common primary malignant tumor of the central nervous system, with a median survival 
of less than two years. While the etiology of glioblastoma is unclear, viral infection has emerged as a potential 
contributing factor. Cytomegalovirus (CMV) was first reported to be associated with glioblastoma in 2002. Since 
then, many studies have detected CMV in glioblastoma tissues suggesting it may plays a role in the glioblastoma 
progression. While there is no direct evidence confirmings CMV as an oncogenic virus, studies have demonstrated 
that CMV promotes glioblastoma development in cell and animal models, with several CMV-related genes 
implicated in tumorigenesis. Importantly, adjuvant CMV antiviral therapy has been proven to improve glioblastoma 
patient survival. This review focuses on clinical studies regarding the relationship between CMV and glioblastoma, 
the mechanism of CMV in tumorigenesis, advances in animal models of CMV-induced glioblastoma, and key 
directions for future investigations.
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Kaposi’s sarcoma herpesvirus, and Merkel cell polyoma-
virus [10]. Hepatitis B virus and HCV are linked to liver 
cancer [11, 12]. Human papillomavirus can cause cervi-
cal, anal, penile, and oropharyngeal cancers [13]. Epstein-
Barr virus has been associated with Burkitt’s lymphoma, 
B-lymphoproliferative disorder, Hodgkin’s lymphoma, 
and nasopharyngeal carcinoma [14, 15]. Human T-cell 
lymphotropic virus is implicated in adult T-cell leukemia/
lymphoma [16]. Merkel cell polyomavirus infection can 
result in Merkel cell carcinoma [17]. Kaposi’s sarcoma 
herpesvirus infection can lead to Kaposi’s sarcoma [18]. 
Over the past two decades, antigens and nucleic acids 
of several viruses have been detected in glioblastoma 
tissues, suggesting that viruses may be involved in glio-
blastoma development [19]. These viruses mainly include 
herpes virus, polyomavirus and human papillovirus [19]. 
Whether these viruses play a causative role in glioblas-
toma remains unclear. Of particular interest is human 
cytomegalovirus (CMV), a type 5 herpesvirus, which has 
garnered attention since its presence in glioblastoma tis-
sues was reported in 2002 [20]. Since then, clinical sam-
ples and cell and animal models have been investigated to 
elucidate the role of CMV in glioblastoma development.

Human CMV infection is typically asymptomatic 
affecting up to 40–95% of the global population [10]. 
Numerous clinical studies have detected CMV nucleic 
acids or proteins in glioblastoma samples, suggesting 
that CMV may be involved in the initiation and/or pro-
gression of glioblastoma [1, 20]. Some studies have also 
reported that co-treatment with antiviral drugs such as 
valganciclovir showed improvement of overall patient 
survival [21–27]. While human CMV has been shown to 
promote tumor cell development and metastasis [28], the 
exact mechanism of CMV in glioblastoma remains to be 
elucidated. This review summarizes findings from epide-
miological studies based on clinical samples, the role of 
CMV-targeted adjuvant therapy in glioblastoma in the 
past two decades, the tumor-promoting effect of CMV 
demonstrated in cell models and underlying progress in 
animal models of CMV-induced glioblastoma, and key 
areas for future research.

Clinical studies on the relationship between CMV 
and glioblastoma
Since the detection of CMV in glioblastoma tissues in 
2002, the relationship between CMV and glioblastoma 
has garnered significant attention from clinicians and 
researchers [20]. Numerous investigations have been 
conducted to explore this association; however, the find-
ings have been inconsistent [29]. While many studies 
have reported the presence of CMV proteins and nucleic 
acids in glioblastoma tissues [30–32], others have failed 
to detect any [33–35]. Several factors may be attribut-
ing to the inconsistency including CMV may not be 

present in all glioblastoma cases, the CMV genome may 
degrade over time in paraffin-embedded specimens, and 
the limitations of CMV detection techniques, which may 
necessitate the selection of suitable antibodies or opti-
mization of detection methods [20, 36]. Some compre-
hensive reviews and meta-analyses have reported that 
CMV nucleic acids and proteins are detectable in over 
63% of patients with cancer [1]. Although glioblastoma 
and CMV are closely related, most current studies have 
focused on detecting viral proteins or nucleic acids. How-
ever, viral proteins and nucleic acids can only suggest 
the presence of infection but cannot prove viral replica-
tion and activity. Measuring viral load in clinical samples 
and detecting CMV in serum samples may further clar-
ify the role of CMV activity in glioblastoma [37]. Some 
studies have reported high viral loads of CMV in clini-
cal samples and performed viral isolation, confirming the 
presence of live viruses in glioblastoma tissues [38, 39]. 
These isolated viruses were used to construct models that 
provided preliminary evidence of a relationship between 
CMV and glioblastoma [40]. Future clinical research 
should incorporate large-scale detection of viral proteins, 
nucleic acids, and viral load, followed by viral isolation 
and model validation to determine whether CMV plays a 
causative role in glioblastoma.

Findings from CMV-targeted adjuvant therapies also 
support a potential association between CMV and glio-
blastoma. For example, patients with low-grade CMV 
infection have longer overall survival than those with 
high-grade infection [41], suggesting that control CMV 
infection could be a novel therapeutic target for patients 
with glioblastoma. In 2013, Cecilia Söderberg-Nauclér et 
al. published a retrospective study involving 50 patients 
with glioblastoma who received valganciclovir as an adju-
vant to standard therapy. The patients demonstrated sig-
nificantly higher survival rates than the matched controls 
with similar disease stages, surgical resection grade, and 
baseline treatment. Patients who received valganciclovir 
treatment beyond six months achieved a two-year sur-
vival rate of 90% and a median overall survival of 56.4 
months [23]. Giuseppe Stragliotto, et al. reported that 
valganciclovir treatment, when added to standard ther-
apy, improves the outcomes of newly diagnosed glioblas-
toma patients [25, 42]. They further demonstrated the 
positive effect of valganciclovir in secondary glioblas-
toma. Eight patients treated with valganciclovir showed 
a significant increased median overall survival after pro-
gression to secondary glioblastoma compared with con-
trols (19.1 versus 12.7 months) [26]. In another study, 
the addition of valganciclovir to bevacizumab slightly 
improved median overall survival in patients with recur-
rent glioblastoma compared with those receiving bevaci-
zumab alone [24]. Patients who received valganciclovir 
as an add-on to their second- or third-line therapy after 
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recurrence also exhibited significantly improved survival 
rates than the controls [27]. A recent meta-analysis of 
five randomized controlled trials with over 600 patients 
demonstrated that ganciclovir significantly improved 
glioblastoma 2-year and 4-year survival rate by 20% [43]. 
This warrant further case studies or large-scale clinical 
trials to clarify the relationship between CMV and glio-
blastoma, as well as the underlying mechanisms.

While antiviral therapies provide evidence for CMV’s 
involvement in glioblastoma and improved patient prog-
nosis [44], it remains unclear whether CMV promotes 
glioblastoma development or acts as a causative agent. In 
patients with glioblastoma, radiotherapy and chemother-
apy may reactivate latent CMV infection [45, 46]. Valgan-
ciclovir therapy may be effective in treating encephalitis 
symptoms and modifying the clinical course of the dis-
ease, thereby potentially influencing prognosis. Once 
reactivated, CMV may affect tumor aggressiveness and 
promote recurrence by influencing multiple cancer hall-
marks. Isolating and characterizing CMV strains from 
patients will be critical to determining the direct role of 
CMV strains in brain cancer.

Mechanism of CMV in tumor development
Currently, most evidence indicates that CMV promotes 
tumor development; however, it has not been conclu-
sively proven to be an oncogenic virus [47]. Cytomegalo-
virus can promote tumor development through multiple 
mechanisms (Fig. 1), including inhibiting tumor suppres-
sor genes expression, promoting angiogenesis, enhancing 
tumor stem cell stemness, modifying the tumor microen-
vironment, promoting epithelial-mesenchymal transition 
(EMT), and inhibiting apoptosis (Table  1). Cytomega-
lovirus-infected glioma cancer stem cells can produce 
CMV interleukin-10 (IL-10), which can induce mono-
cytes expressing immune suppressor B7H1 and secreting 
vascular endothelial growth factor, transforming growth 
factor-beta (TGF-β), and CMV immediate-early protein 
(IE), thereby facilitating glioblastoma invasion [48]. Cyto-
megalovirus infection rapidly activates receptor tyrosine 
kinase and AKT signaling pathways, promoting glio-
blastoma multiforme (GBM) cell invasiveness via focal 
adhesion kinase (FAK) activation [49]. CMV can also 
upregulate stemness regulators such as SOX2, phosphor-
ylated-STAT3 (p-STAT3), and BMX in glioma stem-like 
cells (GSC), thereby promoting their survival, stemness, 

Fig. 1 Schematic diagram of the mechanisms by which cytomegalovirus promotes glioblastoma growth. CMV: Cytomegalovirus, MHC: Major histocom-
patibility complex. Created in BioRender. Wu, X. (2025)  h t t p  s : /  / B i o  R e  n d e  r . c  o m / t  8 s  q 5 x n
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and proliferation [50]. Cytomegalovirus infected GBM 
tumor cells leads to NF-κB activation and the subse-
quent upregulation of the proto-oncogene c-MET, which 
promotes GBM growth [51]. Other studies indicate that 
CMV contributes to glioma progression by upregulating 
endocan, IL-6, and arginase-2 [52, 53]. Cytomegalovirus 
infection also increases ATF5 expression and the Bcl-2/
BAX ratio, blocking apoptosis in glioblastoma cells [54, 
55]. Cytomegalovirus infection also induces EMT and 
enhances cell migration and invasion in glioma cells by 

activating the RIP2/NF-κB signaling pathway, down-
regulating the expression of the epithelial cell marker 
(E-cadherin), and upregulating the expression of mesen-
chymal cell markers (N-cadherin and vimentin) [56, 57]. 
Cytomegalovirus-encoded miRNAs has also shown to 
promote glioma. For example, miR-UL112-3p regulates 
GBM pathophysiological processes by suppressing tumor 
suppressor candidate 3 expression [58], while miRNA 
CMV70-3P increases GBM cancer stem cell stemness by 
upregulating cellular SOX2 [59]. In a mouse model, CMV 

Table 1 Mechanisms by which cytomegalovirus and its products contribute to glioblastoma development
Virus or viral products Target gene or signaling pathway Effect on host Refer-

ence
CMV IL-10 Upregulation of VEGF and TGF-β Enhances migration of

gCSCs
[48]

CMV Activation of PI3K/AKT, PLCγ, and FAK pathways Increases migration of glioma cell [49]
CMV Upregulation of SOX2, p-STAT3. and BMX Promotes

survival, stemness, and proliferation of GSC
[50]

CMV Activation of NF-κB signaling and c-MET Promotes growth of GBM cells in vitro and in vivo [51]
CMV Upregulation of Endocan, IL-6, and arginase-2 Contributes to glioma progression [52, 53]
CMV Upregulation of ATF5 and Bcl-2 Inhibits apoptosis in [54, 55]

GBM cell
CMV Activation of RIP2/ NF-κB, N-cadherin, and vimentin

Downregulation of E-cadherin
Induces EMT and enhances cell migration and invasion 
in glioma cells

[56, 57]

CMV-miR-UL112-3p Inhibits tumor suppressor candidate 3 gene expression Promotes cell proliferation, clone formation, migration, 
and invasion

[58]

miRNA CMV70-3P Increases
expression of cellular SOX2

Increases GBM CSC stemness [59]

CMV Induces the PDGFD expression Promotes murine GBM growth and angiogenesis [60]
IE-72 Increases hTERT promoter activity Cellular immortalization and transformation [64]
IE1 Increases Sox2 and Nestin Promotes stemness properties in GBM in vitro and in 

vivo
[65]

IE1 Reduction
of Rb and p53 family proteins and induction of PI3K/AKT

Induces
cellular proliferation

[66]

IE1 Downregulation of GFAP, TSP-1, and p53 Promotes the development of glioma [67]
IE2 Suppresses GFAP Increases glioma cell malignancy [68]
IE72 and IE86 Degradation of connexin 43 and disrupt gap junction 

communication
Promotes the invasiveness of glioma cell [69]

IE86 Upregulating heterogeneous nuclear ribonucleoprotein 
A2B1

Promotes migration of GBM cells and inhibits the 
apoptosis of GBM cells

[70, 71]

pp71 Activation of NF-κB signaling and upregulation of SCF Contributes to the aggressive phenotype of glioma [72, 73]
pp71 Downregulation of MHC class I proteins Promotes immune suppression [74]
gB Binds to PDGFRA and activation of PI3-K/AKT Promotes glioma cell invasion [75, 76]
U28 Activation of NF-κB and IL-6-JAK1-STAT3 Promotes GBM cell proliferation [77]
U28 Upregulation VEGF, p-STAT3, and e-NOS Accelerates GBM cell growth and invasion [78]–[81]
U28 Activation of S1P signaling and STAT3, AKT, and cMYC Stimulates proliferation and survival of GBM cell [82]
U28 Activation of HIF-1α and pyruvate kinase M2 Increased cell proliferation and metabolic 

reprogramming
[83]

US33 Activation of STAT3 and cAMP-responsive element Aggravates GBM tumor growth [84, 85]
CMV Increases phosphorylated STAT3 Promotes glioma progression in a mut3 mouse model [86]
CMV: Cytomegalovirus, VEGF: Vascular endothelial growth factor, TGF-β: Transforming growth factor-β, gCSCs: Glioma cancer stem cells, PI3K/AKT: 
Phosphatidylinositol-3 kinase/Protein Kinase B, PLCγ: Phospholipase Cγ, FAK: Focal adhesion kinase, SOX2: Sex determining region Y-box 2, p-STAT3: Phosphorylated 
signal transduction and activators of transcription-3, BMX: Bone marrow X-linked kinase, GSC: Glioma stem-like cells, NF-κB: Nuclear factor kappa-B, GBM: 
glioblastoma, c-MET: Cellular-mesenchymal epithelial transition factor, ATF5:Activating transcription factor 5, Bcl-2: B-cell lymphoma-2, RIP2: Receptor-interacting 
protein 2, EMT: Epithelial–mesenchymal transition, PDGFD: Platelet Derived Growth Factor D, hTERT: human telomerase reverse transcriptase, Rb: retinoblastoma, 
GFAP: glial fibrillary acidic protein, TSP-1: thrombospondin-1, SCF: stem cell factor, MHC: Major histocompatibility complex, gB: glycoprotein B, PDGFRA: platelet 
derived growth factor receptor alpha, e-NOS: endothelial nitric oxide synthase, S1P: sphingosine-1-phosphate, cMYC: Cellular myelocytomatosis oncogene 
homolog, cAMP: cyclic adenosine monophosphate, mut3 mouse model: GFAP-cre; Nf1loxP/+; Trp53−/+ genetic mouse model
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induced PDGFD expression, thereby increasing pericyte 
recruitment and angiogenesis [60].

Cytomegalovirus gene products have been implicated 
in cell cycle dysregulation, apoptosis inhibition, enhanced 
cell migration and invasion, and angiogenesis [61, 62]. 
Specific viral gene products may influence key oncogenic 
signaling pathways involved in glioma progression [63]. 
Direct CMV infection increases glioblastoma cell migra-
tion and hTERT levels. Cytomegalovirus IE-72 may drive 
mitogenesis and cellular immortalization via hTERT 
upregulation [64]. Cytomegalovirus IE1 promotes GBM 
stemness, cell cycle progression, and survival by increas-
ing SOX2 and Nestin levels [65]. Upon PI3-K/AKT path-
way activation, the CMV IE1 gene product can activate 
Rb and p53 tumor-suppressor proteins in some GBM 
cells [66]. CMV IE1 gene product can also downregulate 
glial fibrillary acidic protein and thrombospondin-1 [67]. 
Cytomegalovirus IE2 has also been found to suppress 
glial fibrillary acidic protein expression, which declines 
with increasing glioma malignancy [68]. Moreover, CMV 
IE72 and IE86 can cause Cx43 degradation, resulting in 
the disruption of gap junctional intercellular communi-
cation (GJIC) in glioblastomas. GJIC degradation, which 
occurs at an earlier stage of tumor development, con-
tributes to gliomagenesis [69]. Furthermore, CMV IE86 
promotes GBM cell migration and inhibits apoptosis by 
upregulating heterogeneous nuclear ribonucleoprotein 
A2B1 [70, 71].

Cytomegalovirus pp71, encoded by the UL82 gene, 
can activate the NF-κB signaling pathway and an impor-
tant angiogenic pathway. In adult neural progenitor cells 
and glioma cells, pp71 expression induces stem cell fac-
tor (SCF) expression in an NF-κB-dependent manner. 
In vivo, pp71 expression in human GBM cells may con-
tribute to endothelial cell migration and angiogenesis, 
features typically associated with an aggressive tumor 
phenotype [72, 73]. Additionally, pp71 expression in 
GBM cells promotes immune suppression by reduc-
ing cell-surface expression of MHC class I proteins [74]. 
Cytomegalovirus glycoprotein B (gB) directly binds to 
PDGFRA and induces downstream activation of the 
oncogenic PI3-K/AKT pathway, thereby promoting gli-
oma cell invasion [75, 76].

US28 is a constitutively active G-protein-coupled 
receptor that upregulates multiple oncogenic signaling 
pathways, including the JAK/STAT3 pathway. A study 
demonstrated that US28 activates the IL-6-JAK1-STAT3 
signaling axis via NF-κB activation, which leads to IL-6 
production [77]. US28 expression induces COX-2 expres-
sion through NF-κB activation, thereby driving the 
production of VEGF [78]. In GBM cells, human CMV 
infection or US28 overexpression is sufficient to promote 
the secretion of biologically active VEGF and activate 
multiple cellular kinases that facilitate glioma growth and 

invasion, such as p-STAT3 and endothelial nitric oxide 
synthase [79–81]. Another study demonstrated that US28 
stimulates glioblastoma cell proliferation and survival by 
initiating S1P signaling, resulting in the concurrent acti-
vation of STAT3, AKT, and c-MYC [82]. Moreover, US28 
can mediate HIF-1α and pyruvate kinase M2 expres-
sion, which drives cell proliferation, angiogenesis, and 
metabolic reprogramming [83]. US33, which is a viral G 
protein-coupled receptor, contributes to CMV-mediated 
STAT3 activation and can aggravate glioblastoma tumor 
growth in orthotopic glioblastoma xenograft models [84, 
85].

Cytomegalovirus has shown to facilitate glioblastoma 
progression in a genetically engineered mouse model 
[86] (Fig. 2). Perinatal infection of these mut3 mice with 
mouse CMV led to a significant reduction in survival 
rates due to accelerated tumorigenesis. Mouse CMV 
infection increased p-STAT3 levels in neural stem cells 
prior to glioma onset [86]. However, current studies are 
limited to tumor cells and animal models and thus only 
demonstrate that CMV infection promotes tumor devel-
opment [87].

Animal model for CMV-induced glioblastoma
To demonstrate the role of CMV in glioblastoma, the 
virus should first be isolated. Even within the same CMV 
species, different strains exhibit different characteristics 
[38]. Ideally, CMV should be isolated directly from glio-
blastoma cells, as this will be required for subsequent 
experiments. However, only one research team has suc-
ceeded in its isolation [38]. To validate the oncogenic 
potential of CMV, the virus should exhibit transform-
ing potential in human cells in vitro and induce tumors 
in animal models, and this tumorigenesis should be 
preventable by viral neutralization. Georges Herbein et 
al. have made significant contributions promoting this 
research. They have isolated three CMV clinical strains 
from glioblastoma tissues. The strains can transform 
primary human astrocytes into CMV-elicited glioblas-
toma cells (CEGBCs). When xenografted into mice, the 
CEGBCs formed glioblastoma-like tumors [40]. Cyto-
megalovirus nucleic acids and proteins were detected 
in CMV-derived xenografts for up to two months post-
engraftment, further indicating a potential link between 
CMV persistence and tumor progression. Future studies 
should characterize the differences between CEGBCs, 
primary glioblastoma cell lines, and glioblastoma tissues 
at the gene level and evaluate whether complete transfor-
mation from human astrocytes to glioma cells is possible.

To date, no CMV oncogene has been definitively linked 
to glioblastoma, highlighting the need for further inves-
tigations. For example, HBV-transgenic mice expressing 
HBV pre-S, S, and X proteins spontaneously developed 
liver cancer during their lifespan [88]. Similarly, HPV E6 
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and E7 oncogenes are critical to tumorigenesis and have 
been validated in murine models [89]. To establish CMV 
as a causal agent in glioblastoma, it is essential to iden-
tify the key genes and develop murine tumor models that 
recapitulate their oncogenic activities (Fig. 3).

Key directions for future investigations
Based on current clinical studies and in vitro and ani-
mal studies, CMV demonstrates a robust association 
with glioblastoma development. While CMV has been 
demonstrated to promote glioblastoma progression, 
definitive evidence linking CMV to glioblastoma etiology 
remains lacking, necessitating future investigations [90–
92]. Establishing causality requires transitioning from 
correlative evidence to mechanistic validation, including 
the development of stable animal models and the identifi-
cation of viral oncogenes [93]. Primarily, clinical research 
should include detailed patient data and pay more atten-
tion to tumor characteristics (primary versus recurrent), 
treatment history (chemotherapy and/or radiotherapy), 

and signs of infection or encephalitis. Such informa-
tion is crucial for evaluating the role of CMV in tumor 
initiation and/or progression. Neuro-oncologists should 
continue investigate the clinical relationship between 
CMV and glioblastoma and the prognostic significance 
of antiviral therapy. Importantly, virologists and neuro-
oncologists need to collaborate more to form research 
consortia to facilitate the collection of fresh or frozen 
glioblastoma and blood samples to ensure the preserva-
tion of viral nucleic acids and viral activity. Virus isola-
tion should be prioritized for samples with high viral 
titers. After isolation, virus identification and research 
should be conducted to clarify the characteristics of the 
virus and study the effects of the virus on cell prolifera-
tion and tumorigenicity. The isolated virus should also 
be used for in vivo models. Comparative analysis with 
patients’ tumor cell lines and tissues should be performed 
at the transcriptomic level to assess whether tumorigen-
esis has occurred. Furthermore, CMV vaccines should be 

Fig. 2 Several lines of evidence support the role of cytomegalovirus in promoting glioblastoma development. A: Cytomegalovirus is detected in the 
tumors of patients with glioblastoma. B: CMV promotes glioblastoma progression in cell culture models. C: CMV promotes glioblastoma progression in 
a genetically engineered mouse model. Mut3 mouse: GFAP-cre; Nf1loxP/+; Trp53−/+ genetic mouse. CMV: Cytomegalovirus, GBM: Glioblastoma multiforme. 
Created in BioRender. Wu, X. (2025)  h t t p  s : /  / B i o  R e  n d e  r . c  o m / q  q z  u b 3 7
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developed and tested for their preventive effects against 
glioblastoma.

Conclusion
Glioblastoma remains a critical oncological challenge 
affecting human health. Despite advances in treatment 
modalities, median survival for glioblastoma remains 
under two years. There are two primary research direc-
tions: continued development of treatment strategies 
and investigation into the cause of glioblastoma. Over 
the past two decades, increasing evidence has implicated 
viral involvement, particularly CMV, as a potential driver 
of glioblastoma development. However, existing data pri-
marily demonstrates that CMV promotes glioblastoma 
progression. Antiviral therapy as an adjunct therapy for 
glioblastoma may extend survival and improve quality of 
life. Additionally, CMV-targeted immunotherapies, such 
as vaccines, have great prospects for future research.

To date, no direct evidence confirms that CMV can 
induce glioblastoma. However, CMV has been isolated 
from glioblastoma tissues, and preliminary in vivo mod-
els have been established. Future efforts should prioritize 

viral isolation and characterization from clinical samples, 
followed by mechanistic validation using cellular and ani-
mal models. With continued efforts, the role of CMV in 
glioblastoma development may be elucidated.
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