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Abstract: Li3FeN2 material was synthesized by the two-step solid-state method from Li3N (adiabatic
camera) and FeN2 (tube furnace) powders. Phase investigation of Li3N, FeN2, and Li3FeN2 was
carried out. The discharge capacity of Li3FeN2 is 343 mAh g−1, which is about 44.7% of the theoretic
capacity. The ternary nitride Li3FeN2 molar heat capacity is calculated using the formula Cp,m = 77.831
+ 0.130 × T − 6289 × T−2, (T is absolute temperature, temperature range is 298–900 K, pressure
is constant). The thermodynamic characteristics of Li3FeN2 have the following values: entropy
S0

298 = 116.2 J mol−1 K−1, molar enthalpy of dissolution ∆dHLFN = −206.537 ± 2.8 kJ mol−1, the
standard enthalpy of formation ∆fH0 = −291.331 ± 5.7 kJ mol−1, entropy S0

298 = 113.2 J mol−1 K−1

(Neumann–Kopp rule) and 116.2 J mol−1 K−1 (W. Herz rule), the standard Gibbs free energy of
formation ∆fG0

298 = −276.7 kJ mol−1.

Keywords: lithium-ion battery; anode battery; lithium-ion thermodynamics; solid-state synthesis

1. Introduction

In the world of technological development, energy sources are being severely depleted.
In this regard, the issues related to creating new energy sources, in particular renewable
energy sources, are being considered.

Secondary batteries, such as lithium-ion, lithium sulfur, and hydrogen batteries, are
attracting increased attention for their development and production. Probably, one of
the prospective renewable sources of energy is the lithium-ion battery (LIB) as an energy
source for many applications, such as electric cars and buses, laptops, mobile phones, etc.
LIBs solve the problems of high energy requirements (energy and power density, cycle life),
environmental efforts, and relatively low cost.

A lot of efforts were directed to the development of more advanced batteries. For
example, different approaches for LIB’s development were used, such as nanostructured
materials [1–13], the growth of the capacity and voltage of cathode materials [14–30],
hollow and porous and structures [13,31–44], safety issues, including separator and liquid
electrolyte studies [45–56], etc. As a prospective current source for electric vehicles (EV),
LIBs have proven their market position. To receive high-performance lithium-ion batteries,
it is required to improve the specific capacity of active (electrode) materials.

Thus, a lot of efforts were focused on the fabrication of anode materials with high
theoretical specific capacity. For example, silicon has attracted the attention of the LIBs
industry as an anode material with ultrahigh specific capacity (4212 mAhg−1), although
the large volume expansion of silicon during the charge/discharge process (300%) leads to
a capacity decrease and reduced cycle life [57].

Materials 2021, 14, 7562. https://doi.org/10.3390/ma14247562 https://www.mdpi.com/journal/materials

https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0003-3314-1689
https://doi.org/10.3390/ma14247562
https://doi.org/10.3390/ma14247562
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ma14247562
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma14247562?type=check_update&version=2


Materials 2021, 14, 7562 2 of 13

Another popular anode material with high performance is Li4Ti5O12. This anode
material attracted attention due to its low manufacturing cost, high safety, and envi-
ronmental friendliness [58,59]. However, Li4Ti5O12 has poor electrical conductivity of
10−8–10−13 S cm−1, a low lithium diffusion coefficient (10−9–10−16 cm−2 s−1), and a low
theoretical capacity of 175 mAh g−1 [60–63].

Previous works shows good electrochemical properties of Li3N-type anodes, e.g.,
Li2Na4N2 and Li4Na2N2 phases [64], LiBeN [65], Li3N-Mg3N2 [66], Li2n-1MN [67], and
Li3FeN2 [68,69]. Thus, as Li3FeN2 materials have transition metal, it could not be used as
solid electrolyte because transition metals might produce conduction electrons, which is
unacceptable for a solid electrolyte of lithium battery. However, this quality is advanta-
geous for using this material as an electrode. Li3-xFeN2 (0 < x < 1) has a high capacity of
260 mAh g−1 [67]. In addition, the charge–discharge potentials between 0 and 2 V (vs. Li)
were very flat for x = 0.1–0.7.

Li3FeN2 was first synthesized by Frankenburger et al. by the reaction of lithium nitride
(Li3N) with elemental Fe in N2 atmosphere [70]. After decades, Fromont investigated the
reaction of Li3N with iron using thermogravimetry [71]. These studies show that Li3FeN2
was indexed by an orthorhombic cell with lattice parameters a = 9.65 Å, b = 8.66 Å, and
c = 8.38 Å. Emery et al. [70] show the solid-state synthesis of Li3N with Fe powder in
atmosphere, which shows a cationic mixing in Li3FeN2 compound.

Li3FeN2 is a prospective material for hydrogen storage because of its hydrogen uptake
capacity of 2.7 wt %, of which about 1.5 wt % was reversible [69,72,73].

In this article, the two-step synthesis and properties of promising anode material
Li3FeN2 are shown. Firstly, Li3N synthesis was obtained in an adiabatic chamber. Then,
mixed with iron nanopowder, Li3FeN2 was obtained at a tube furnace. Two-step synthesis
was chosen for the synthesis of high-purity complex nitride Li3FeN2.

2. Materials and Methods

A 16 mm diameter and 0.6 mm lithium plate sliced and polished in an argon glovebox,
iron nanopowder, nitrogen, and ammonia (NH3) were used as starting components for
Li3N, Fe2N, and Li3FeN2 synthesis (Table 1). The purity of materials shown in Table 1
is according to suppliers’ data. Lithium sliced plates were put into a titanic autoclave
nitrogen-filled bomb of Netzsch APTAC 264 (Selb, Germany), as shown in Figure 1. The
Li3N synthesis parameters are next: the temperature is 170 ◦C, heat rate is 2 ◦C/min,
synthesis time is 6 h, and nitrogen pressure is ≈709.3 kPa (7 atm).

Table 1. Summary of chemicals descriptions.

Name Formula Source Purity, %

Iron nanopowder Fe Changsha Easchem Co., Ltd.
(Changsha, China) 99.9

Lithium Li Xiamen Tmax Battery Equipments
Ltd. (Xiamen, China) 99.9

Nitrogen N2
Qingdao Guida Special Gas Co.,

Ltd. (Qingdao, China) 99.9–99.999

Ammonia NH3
Wuhan Newradar Trade Company

Ltd. (Wuhan, China) 99.9

Lithium nitride Li3N Prepared here 98.9 1

Iron nitride Fe2N Prepared here 98.4 1

Lithium iron nitride Li3FeN2 Prepared here 99.1 1

1 Purity according to XRD analysis.
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bomb; 3—safety thermocouple; 4—bottom thermocouple; 5—magnetic stirring; 6—containment 

vessel; 7—machined insulation; 8—side bottom heater; 9—side thermocouple; 10—control thermo-

couple; 11—top heater; 12—tube heater. 

Iron nanopowder and nitrogen were used as a source for Fe2N. Ceramic crucible with 

initial powder was put into the tube furnace (BTF−1700C, (Hefei, China). The tube has 

been purged by ammonia (NH3) for 30 min before synthesis. Synthesis was carried out in 

NH3 atmosphere at 530 °C for 6 h with a heat rate of 8 °C/min. Mechanically mixed and 

powder was hot pressed for 2 h at 1100 °C. The received hot-pressed sample was heated 

in N2 atmosphere for 10 h at 700 °C (heat rate was 5 °C/min). After heat treatment, the 

sample was mechanically ground into ivory-colored powder. 

XRD analysis was held with a Bruker D8 Advance (Karlsruhe, Germany) with a step 
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Figure 1. Scheme (a) and photo (b) of Netzsch APTAC chamber. 1—machined insulation; 2—sample
bomb; 3—safety thermocouple; 4—bottom thermocouple; 5—magnetic stirring; 6—containment ves-
sel; 7—machined insulation; 8—side bottom heater; 9—side thermocouple; 10—control thermocouple;
11—top heater; 12—tube heater.

Iron nanopowder and nitrogen were used as a source for Fe2N. Ceramic crucible with
initial powder was put into the tube furnace (BTF−1700C, (Hefei, China). The tube has
been purged by ammonia (NH3) for 30 min before synthesis. Synthesis was carried out in
NH3 atmosphere at 530 ◦C for 6 h with a heat rate of 8 ◦C/min. Mechanically mixed and
powder was hot pressed for 2 h at 1100 ◦C. The received hot-pressed sample was heated
in N2 atmosphere for 10 h at 700 ◦C (heat rate was 5 ◦C/min). After heat treatment, the
sample was mechanically ground into ivory-colored powder.

XRD analysis was held with a Bruker D8 Advance (Karlsruhe, Germany) with a step of
0.02◦. Structural parameters were refined by the Rietveld method using TOPAS5 software.

X-ray diffraction analysis (XRD) was used as the structure analysis method for the
synthesized nitrides powders investigated. XRD analysis was performed with a Bruker D8
ADVANCE diffractometer with a vertical goniometer and Cu Kα-radiation. The diffraction
angles (2θ) are 5–100◦, 10–80◦, and 5–120◦ for Li3N, Fe2N, and Li3FeN2, respectively.

Calorimetric measurements were performed using a TAM IV Microcalorimeter (Shang-
hai, China) at 298 K with the cell volume of 20 mL. Aqueous solution of 1 mol dm−3 HCl
was used for the calorimetric cell ampoule. The ampoule was broken when thermal equilib-
rium was established, and nitride powder began to dissolve in HCl solution. Thermo-EMF
vs. time was registered during the dissolution process providing the heat dissolution curve.
Integration of this curve gave the value of dissolution enthalpy.

3. Results

Figure 2 shows the XRD pattern of synthesized Li3N (a) and Fe2N (b) powders. All
peaks are in good correlation with database one. Li3N has a P6/mmm space group with
lattice parameters a = 3.6711 Å, b = 3.6711 Å, and c = 3.8770 Å, which are in good correlation
with [74] and PDF #30-0759. Fe2N reflection peaks also are in good correlation with [75]
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and PDF #50-0978. The space group of Fe2N is P312 with lattice parameters a = 4.7912 Å,
b = 4.7912 Å, and c = 4.416 Å.
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Figure 2. XRD pattern of synthesized (a) Li3N at 170 ◦C for 5 h at N2 atmosphere (709 kPa) and (b) Fe2N at 530 ◦C for 5 h at
NH3 atmosphere.

Figure 3 shows the XRD pattern of Li3N, Fe2N, and Li3FeN2 after heat treatment in an
Netzsch APTAK chamber, tube furnace with ammonia atmosphere, and tube furnace with
nitrogen atmosphere, respectively. Lattice parameters, a and c, calculated by the Rietveld
method for Li3FeN2 are a = 4.872 Å, b = 9.677 Å, and c = 4.792 Å, respectively, in the Ibam
space group. XRD patterns of Li3FeN2 synthesized at different temperatures are shown
in Figure 3. The sample synthesized at 850 ◦C shows a high purity of 97.2% with Li2O
impurity. Other samples include such impurities as Li2O (PDF #01-076-9237), Li5FeO4 (PDF
#01-075-1253), and LiFeO2 (PDF #74-2284). Samples synthesized at 850 ◦C have only Li2O
impurity; thus, further investigation of the compounds were conducted with materials
synthesized at 850 ◦C.
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The structure refinement defined that Li+ is in 4b and 8g, Fe+3 is in 4a, and N−3 is in 8j
sites. All calculations were carried out with using TOPAS 4 software by Bruker. The final
structure parameters (including site occupancy) are listed in Table 2.

Table 2. Structure characteristics of Li3FeN2.

Atom/Void Site g x y z

Li1 8g 0.91 0.0 0.25745 0.25
Li2 4b 1 0.0 0.5 0.25
Fe 4a 1 0.0 0.0 0.25
N 8j 0.98 0.219979 0.113757 0.5

4. Discussion
4.1. The Standard Enthalpy of Formation

The formation enthalpy of Li3FeN2 (LFN) compound from single nitrides Li3N and
Fe2N is calculated using the following equation (∆oxHLFN):

Li3N + 0.5Fe2N + 0.25N2 → Li3FeN2, (1)

and single nitrides were synthesized by reactions, as described in the Experimental section:

6Li + N2 → 2Li3N, (2)

2Fe + 2NH3 → 2Fe2N + 3H2. (3)

For enthalpy calculation, we used thermodynamic cycle with the following reactions,
as shown in Figure 4:

Li3FeN2 + 6HCl(aq) → 3LiCl(aq) + FeCl3(aq) + N2↑+ 3H2, (4)

Li3N + 4HCl(aq) → 3LiCl + NH4Cl, (5)

2Fe2N + 8HCl(aq) → 4FeCl2 + 2NH3 + H2, (6)

N2 + 8HCl(aq) → 2NH4Cl + 3Cl2, (7)

where (aq) means “aqueous”. The standard enthalpy (∆dHLFN) has been determined in the
calorimeter. The received value was equal to −1972.96 ± 25 J g−1, as shown in Table 3.
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Table 3. Values of specific and molar enthalpies of dissolution (298 K, p = 101 kPa, 1 mol dm−3 HCl).

Compound Specific Enthalpy,
J g−1

Molar Mass,
g mol−1

Molar Enthalpy of
Dissolution, kJ

mol−1
Ref.

Li3N −3163.853 ± 30 34.83 −110.197 ± 1.7 this work

Fe2N −13.79 ± 1.5 125.701 −1.734 ± 0.04 this work

N2 −71.716 ± 10 28.014 −2.56 ± 0.12 this work

Li3FeN2 −1972.96 ± 25 104.684 −206.537 ± 2.8 this work

Li3Na3N2 −2285.96 ± 13.4 117.807 −269.3018 [66]

The resulting value of ∆oxHLFN is obtained by the next equation:

∆oxHLFN = ∆dHLi3N + 0.5∆dHFe2N + 0.25∆dHN2 − ∆dHLFN. (8)

The values of ∆dHLi3N, ∆dHFe2N, and ∆dHN2 were also measured by the calorimetry
method. Measurement results are shown in Table 3. The value of ∆oxHLFN by Equation (8)
is equal to −94.833 kJ mol−1. The negative value of ∆oxHLFN defines Li3FeN2 as a stable
phase. In addition, it is it is energetically favorable to synthesize LFN from single nitrides.

At last, the enthalpy of formation of Li3FeN2 from elements can now be calculated
using the following equation:

∆fHLFN = ∆fHLi3N + 0.5∆fHFe2N + 0.25∆fHN2 + ∆oxHLFN. (9)

Standard enthalpies for the calculation were taken from the handbooks [76,77], as
shown in Table 4.

Table 4. Standard enthalpies of formation from elements (∆fH0).

Compound ∆fH0
298.15, kJ mol−1 Reference

Li3N(cryst) −196.78 ± 0.3 [76]
Fe2N(cryst) −3.77 ± 0.1 [76]

N2(gas) 8.67 ± 0.1 [77]
Li3FeN2(cryst) −291.331 ± 5.7 this work
LiCaN(cryst) −216.8 ± 10.8 [78]
Li3BN2(cryst) −534.5 ± 16.7 [79]
Li3AlN2(cryst) −567.8 ± 12.4 [79]
LiMoN2(cryst) −386.0 ± 6.4 [80]

Li7MnN4 −661 [81]
The subscripts (cryst) and (gas) mean “crystalline” and “gaseous”, correspondingly.

The calculated value of the enthalpy of Li3FeN2 formation by Equation (9) is −291.331
± 5.7 kJ mol−1, Table 4. The enthalpy of formation ∆fH0 for Li3FeN2 has the same order
as for similar compounds, namely lithium metal nitrides (Table 4). That fact indirectly
confirms the correctness of measurements. The value of formation enthalpy, calculated
by Equation (9), can be used in thermodynamic estimation and the modeling of Li3FeN2
reactivity.

4.2. The Isobaric Heat Capacity

The temperature dependence of the isobaric heat capacity of the Li3FeN2 is shown in
Figure 5. According to XRD data (Figure 3), the obtained powder material contains a certain
amount of lithium oxide Li2O. This impurity quantity must be taken in consideration for
valuation of the heat capacity of the Li3FeN2. This impurity could appear during the
synthesis process or contact with oxygen in air atmosphere. XRD quantitative methods
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have limitations, but the heat capacity of a two-phase system must be recalculated by
additive consideration:

mCp = m(LFN)Cp(LFN) + m(Li2O)Cp(Li2O), (10)

where Cp—a specific heat capacity (pressure is constant), and m—a mass. The sample
weight consists of synthesized compound (Li3FeN2) and impurity (Li2O). So, the heat
capacity of Li3FeN2) is expressed from Equation (10) as:

Cp(LFN) =
mCp −m(Li2O)Cp(Li2O)

m(LFN)
. (11)
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The weight of the included compounds can be found from the total mass of the sample,
which are calculated through the weight fraction of lithium oxide,ω(Li2O):

m(Li2O) = mω(Li2O) (12)

and
m(LFN) = m[1 − ω(Li2O)]. (13)

According to Equations (12) and (13), Equation (11) can be written as follows:

Cp(LFN) =
Cp −Cp(Li2O)ω(Li2O)

1−ω(Li2O)
. (14)

Thereby, the heat capacity of LFN can be calculated from the experimental data and
heat capacity of lithium oxide impurity. For Equation (14), it is required to know the
dependence of the specific heat capacity of the lithium oxide from temperature. For this,
tabulated data for the lithium oxide heat capacity [77] were used. For the temperature
range of 300–900 K, the commonly used polynomial formula for the heat capacity is as
follows:

Cp = a + bT − cT−2 (15)

where a, b, and c are empirical coefficients; T is the absolute temperature. The received
coefficients for lithium oxide are a = 76.666 J mol−1 K−1, b = –13.63·10−3 J mol−1 K−2, and
c = –18.624·105 J mol−1 K. The heat capacity of Li3FeN2 for the 300–900 K temperature
range was recalculated using Equations (15) and (16) considering Li2O’s impurity presence.
According to XRD data (Figure 3), Li3FeN2 contains about 2.8 ± 0.04 wt % Li2O. The exper-
imental and recalculated LFN heat capacity is shown in Figure 5 and Table 5. Empirical
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values for heat capacity were calculated by the Neumann–Kopp rule. This rule prescribes
calculating the molar heat capacity of a complex compound from the heat capacities of
constituent elements by adding them in with the corresponding compound stoichiometry.
However, this calculation method gives good results for room temperatures and rough
results for high temperatures. For more accurate results, binary compounds were used
instead of single elements:

Cp(CN) = ∑ n(BN)Cp(BN) (16)

where Cp—molar heat capacity, n—a stoichiometric coefficient, and CN and BN are com-
plex and binary nitrides, correspondingly. For LFN, Equation (16) can be written as
(according to Equation (1)):

Cp(LFN) = Cp (Li3N) + 0.5Cp (Fe2N) + 0.25Cp (N2). (17)

Table 5. The temperature dependence of the experimental (exp.), recalculated by Equation (14) (rec.),
and calculated by the Neumann–Kopp (N-K) rule (Equation (17)) heat capacities (Cp) of Li3FeN2(s).

T, K Cp(exp.), J K−1 mol−1 Cp(rec.), J K−1 mol−1 Cp(N-K), J K−1 mol−1

300 126.9 124.1 117.8

400 134.1 132.6 130.7

500 146.3 144.3 141.9

600 160.5 158.3 152.8

700 173.8 171.9 163.4

800 183.3 180.7 173.6

900 186.1 178.8 183.5

The dependence of the heat capacity by temperature calculated from Equation (17)
using tabular data [77] is shown in Figure 5 and Table 5.

The temperature dependence of the heat capacity calculated by the Neumann–Kopp
rule is in good correlation with the recalculated heat capacity (considering Li2O impurity
amount). However, XRD quantitative analysis gives rough results for the small presence of
compounds in the material. For other quantitative methods, the amount of impurities can
be measured more accurately: for example, thermogravimetry or volumetric methods.

4.3. Entropy

Entropy is another thermodynamic function that should be calculated. The Third Law
of thermodynamics states, “The entropy of a perfect crystal is zero when the temperature
of the crystal is equal to absolute zero (0 K).”. Thus, the entropy absolute value can be
valued by the equation:

S(T) =
T1∫
0

Cp(T)
T

dT +
∆H1

T1
+

T2∫
T1

Cp(T)
T

dT +
∆H2

T2
+ · · ·+

T∫
Tk

Cp(T)
T

dT (18)

where S is entropy, ∆Hk is enthalpy of the k-th phase transition, and Tk is temperature of
the k-th phase transition (0 < Tk < T). Since the entropy can be calculated by the Neumann–
Kopp rule, if there is no phase transition until the calculation temperature, entropy can be
also calculated by the Neumann–Kopp rule:

S(T) =
T∫

0

∑ Cp(T, BN)

T
dT = ∑

T∫
0

Cp(T, BN)

T
dT = ∑ S(T, BN), (19)
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where BN is the binary nitride compound (see Equation (16)). According to Equations (16)
and (17), Equation (19) can be written in the following way:

S (LFN) = S(Li3N) + 0.5S(Fe2N). (20)

The entropy of Li3FeN2 at room temperature is 113.2 J mol−1 K−1 according to
Equation (20) and tabular data [82]. The additive rule for entropy calculation is suit-
able if the sum of the molar volumes of binary compounds differs a bit from the molar
volume of the complex compound [83]. Thus, the molar volume for Li3N is 27.2 cm3 mol−1

(ρ = 1.28 g cm−3 [83]), for Fe2N is 19.8 cm3 mol−1 (ρ = 6.35 g cm−3 [83]), and for Li3FeN2 is
33.9 cm3 mol−1 (ρ = 3.09 g cm−3 [84]). The sum of the molar volumes of binary nitrides
with their corresponding coefficients is 37.1 cm3 mol−1 and differs about 9% from the LFN
molar volume, which allows usage of an additive scheme.

In addition, the LFN entropy can be calculated by the W. Herz rule [85]:

S0
298 = KH

(
M/Cp,298

)1/3m, (21)

where KH is Herz constant (KH = 20.5), M is molar mass, Cp,298 is isobaric heat capacity, and
m is atoms per formula. According to Equation (21) and considering Cp,298 from Table 5,
the LFN entropy is 116.2 J mol−1 K−1. Thus, the LFN entropy calculated by the Herz rule
is in good correlation with the Neumann–Kopp rule result.

4.4. The Standard Gibbs Free Energy

The enthalpy of formation and entropy calculated above allows evaluating the stan-
dard Gibbs free energy of Li3FeN2 formation (at T = 298 K):

∆fG
0
298 = ∆fH

0
298 − 298∆fS

0
298. (22)

The resulting value of the Gibbs free energy for Li3FeN2 at room temperature is
−276.7 kJ mol−1.

The next reaction is suggested for the determination of stability against metallic
lithium with subsequent calculation of the Gibbs free energy at room temperature:

3Li + Li3FeN2 = 2Li3N + Fe. (23)

To determine the Gibbs free energy of the reaction, it is required to subtract from
∆fG0

298 values of the Gibbs energy for initial reagents of the reaction. The ∆fG0
298 for single

elements is equal to zero, and for Li3N, it is −128.6 kJ mol−1 [82]. The Li3FeN2 Gibbs
free energy has been calculated above. Thus, the Gibbs free energy for reaction (23) is
19.5 kJ mol−1, and this reaction is thermodynamically impossible. Finally, Li3FeN2 is stable
against metallic lithium at room temperature.

5. Conclusions

The thermodynamic characteristics were determined for Li3FeN2 anode material
for a lithium-ion battery. The two-step synthesis method allowed producing a highly
pure compound with less than 3 wt % of Li2O impurity according to XRD data. The
enthalpy of Li3FeN2 formation from binary nitrides was determined according to the
measured enthalpy of dissolution of reagents and product of Li3FeN2 formation reaction.
The obtained value is equal to −206.5 ± 2.8 kJ mol−1. The Li3FeN2 standard enthalpy of
formation from single elements is equal to −291.3 ± 5.7 kJ mol−1. This value can be used
in further thermodynamic modeling and determinations.

The heat capacity value was recalculated considering the presence of Li2O impurity.
The temperature dependence of the heat capacity is in good correlation with calculation
by the Neumann–Kopp rule. Finally, the heat capacity can be described by formula Cp(T)
= 78.997 + 0.132 × T + 4.654·105 × T−2, where T is absolute temperature. The LFN
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entropy is equal to 113.2 J mol−1 K−1, and the Gibbs free energy of Li3FeN2 formation
is −276.7 kJ mol−1. The calculations confirm that the Li3FeN2 material is stable against
metallic lithium. All thermodynamic values and functions can be used for modeling and
further calculations.
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