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Abstract

Background and objective: Previous germline studies on renal cell carcinoma (RCC)
have usually pooled clear and non–clear cell RCCs and have not adequately
accounted for population stratification, which might have led to an inaccurate esti-
mation of genetic risk. Here, we aim to analyze the major germline drivers of RCC
risk and clinically relevant but underexplored germline variant types.
Methods: We first characterized germline pathogenic variants (PVs), cryptic splice
variants, and copy number variants (CNVs) in 1436 unselected RCC patients. To
evaluate the enrichment of PVs in RCC, we conducted a case-control study of
1356 RCC patients ancestry matched with 16 512 cancer-free controls using
approaches accounting for population stratification and histological subtypes, fol-
lowed by characterization of secondary somatic events.
Key findings and limitations: Clear cell RCC patients (n = 976) exhibited a significant
burden of PVs in VHL compared with controls (odds ratio [OR]: 39.1, p = 4.95e-05).
Non–clear cell RCC patients (n = 380) carried enrichment of PVs in FH (OR: 77.9,
p = 1.55e-08) and MET (OR: 1.98e11, p = 2.07e-05). In a CHEK2-focused analysis
with European participants, clear cell RCC (n = 906) harbored nominal enrichment
of low-penetrance CHEK2 variants—p.Ile157Thr (OR: 1.84, p = 0.049) and p.
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Ser428Phe (OR: 5.20, p = 0.045), while non–clear cell RCC (n = 295) exhibited nom-
inal enrichment of CHEK2 loss of function PVs (OR: 3.51, p = 0.033). Patients with
germline PVs in FH, MET, and VHL exhibited significantly earlier age of cancer onset
than patients without germline PVs (mean: 46.0 vs 60.2 yr, p < 0.0001), and more
than half had secondary somatic events affecting the same gene (n = 10/15, 66.7%).
Conversely, CHEK2 PV carriers exhibited a similar age of onset to patients without
germline PVs (mean: 60.1 vs 60.2 yr, p = 0.99), and only 30.4% carried somatic
events in CHEK2 (n = 7/23). Finally, pathogenic germline cryptic splice variants
were identified in SDHA and TSC1, and pathogenic germline CNVs were found in
18 patients, including CNVs in FH, SDHA, and VHL.
Conclusions and clinical implications: This analysis supports the existing link between
several RCC risk genes and RCC risk manifesting in earlier age of onset. It calls for
caution when assessing the role of CHEK2 due to the burden of founder variants
with varying population frequency. It also broadens the definition of the RCC germ-
line landscape of pathogenicity to incorporate previously understudied types of
germline variants.
Patient summary: In this study, we carefully compared the frequency of rare inher-
ited mutations with a focus on patients’ genetic ancestry. We discovered that sub-
tle variations in genetic background may confound a case-control analysis,
especially in evaluating the cancer risk associated with specific genes, such as
CHEK2. We also identified previously less explored forms of rare inherited muta-
tions, which could potentially increase the risk of kidney cancer.
� 2024 The Author(s). Published by Elsevier B.V. on behalf of European Association of
Urology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Renal cell carcinoma (RCC) is the ninth most common neo-
plasm in the USA, accounting for 2% of all cancers world-
wide [1]. The Nordic Twin study has placed the genetic
heritability of RCC as high as 38% [2]; however, only a frac-
tion of the heritability is explained by the currently identi-
fied rare and common RCC risk loci. Moving beyond known
RCC risk genes (Supplementary Table 1) [3,4], several pan-
RCC studies have reported rare germline pathogenic vari-
ants (PVs) in DNA damage repair (DDR) genes such as
CHEK2, ATM, or BRCA1/2 [5–10], suggesting that inherited
defects in DDR may contribute to RCC risk. However, most
studies lacked ancestry-matched cancer-free controls to
formally test these hypotheses.

Two recent studies performed case-control gene-level
burden analyses, in RCC alone [11] and across cancer types,
finding a higher burden of germline PVs in CHEK2 in RCC
patients than in matched controls [12]. However, these
studies pooled all RCC subtypes together as one phenotype
for association testing, although clear cell RCC (ccRCC) and
non–clear cell RCC (nccRCC; eg, papillary and chromo-
phobe) have distinct molecular and clinical features
[13,14]. Furthermore, additional analyses are necessary to
account for fine-level population stratification within Eur-
ope to mitigate spurious association [15], especially when
evaluating genes such as CHEK2, which is known to harbor
many putative PVs that are founder variants from bottle-
necked populations (eg, Ashkenazi Jewish [ASJ]) with highly
variable allele frequencies between different European
subpopulations.

Here, we first performed a germline variant discovery
analysis of 1436 unselected RCC patients to characterize
several types of genomic variation. Next, we performed a
case-control association study of ccRCC and nccRCC in a
subset (n = 1356) that was ancestry matched successfully
with 16 512 cancer-free controls, and we utilized an
ancestry-informed generalized linear model (GLM) to eval-
uate the major germline drivers of RCC risk. Furthermore,
we performed a sub-European ancestry-focused meta-
analysis of CHEK2 to address finer-level population stratifi-
cation within European populations, and we evaluated
associated tumor genomic data for concomitant somatic
assessments of candidate PVs. Finally, we evaluated poten-
tial clinically relevant but underexplored germline variant
types (cryptic splice and copy number variants [CNVs]) by
using integrative genomic and transcriptomic analyses, all
toward expanding and refining the landscape of germline
pathogenic variation in RCC.
2. Patients and methods

2.1. RCC patient and cancer-free control cohorts

Whole-exome sequencing (WES) binary alignment maps
(BAMs) aligned to Genome Research Consortium human
build 37 (GRCh37) from 1436 RCC patients were collected
from eight different RCC studies (Fig. 1, Table 1, Supplemen-
tary Table 2, and Supplementary material). WES BAMs from
a total of 24 128 adult unrelated individuals without known
cancer diagnosis were collected from five different studies
available on the Database of Genotypes and Phenotypes
(dbGAP; Supplementary material). All case and control sam-
ples underwent identical quality control procedures and
were processed using the same analytical methods. This
study was approved by the participating institutions where
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Fig. 1 – Overviewof the study. Rare germline PVs, cryptic splice variants, and copynumber variantswere characterized in 1436 RCC patients. The gene-level burden
analysis was restricted to 1356 RCC patients ancestry matched with 16 512 cancer-free controls after genetic ancestry inference and case-control pair matching
(Supplementarymaterial). The CHEK2 focused analysis was restricted to 1201 European RCC patients and 20 264 European cancer-free controls. ccRCC = clear cell
RCC; CPG = cancer predisposition gene; nccRCC = non–clear cell RCC; PV = pathogenic variant; RCC = renal cell carcinoma; SNV = single nucleotide variant.

Table 1 – Patient characteristics of all 1436 renal cell carcinoma
patients

Renal cell carcinoma case cohort (N = 1436)

n %

Age at diagnosis 10–19 1 0.1
20–29 10 0.7
30–39 46 3.2
40–49 191 13.3
50–59 397 27.6
60–69 469 32.7
70–79 249 17.3
80< 55 3.8
Age unknown 18 1.3

Self-identified gender Male 980 68.2
Female 456 31.8

Histology Clear cell RCC 1031 71.8
Papillary RCC 302 21.0
Chromophobe RCC 103 7.2

Original study CHECKMATE 025 446 31.1
TCGA KIRC 372 25.9
TCGA KIRP 285 19.8
ICGC RECA EU 95 6.6
TCGA KICH 76 5.3
CHECKMATE 010 61 4.2
CHECKMATE 009 57 4.0
GENETECH Non ccRCC 44 3.1

Inferred ancestry European 1201 83.6
African 131 9.1
Admixed American 79 5.5
East Asian 19 1.3
South Asian 6 0.4

ccRCC = clear cell RCC; ICGC = International Cancer Genome Consortium;
RCC = renal cell carcinoma; TCGA = The Cancer Genome Atlas.
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written consent from participants was collected. This study
conforms to the Declaration of Helsinki.
2.2. Evaluation of exome sequencing coverage

The average sample-level sequencing coverage was calcu-
lated using the genome analysis toolkit (GATK [16]; version
3.7) tool ‘‘DepthofCoverage’’ to ensure that all BAMs of cases
and controls had sufficient read counts to confidently call
germline variants. The exome-wide mean coverage of 10�
was considered theminimum acceptable coverage to ensure
confident germline variant detection. WES samples of 1436
RCC patients had a mean sample coverage of 116.82 (me-
dian = 114.96), and those of 16 512 ancestry-matched con-
trols used for a burden analysis had a mean sample
coverage of 96.69 (median = 90.48; Supplementary Fig. 1).
2.3. Germline variant detection from WES data

Germline variants were called from the BAM files using a
deep learning–based variant discovery method, DeepVari-
ant (version 0.8.0, docker: gcr.io/deepvariant-docker/deep
variant:0.8.0) [17], which had demonstrated superior sensi-
tivity and specificity to GATK-based joint genotyping
[18,19]. Final sets of high-quality variants were merged into
cohort-level VCF files using the GATK (version 3.7) tool
‘‘CombineVariants.’’ Subsequently, the ‘‘vt’’ tool (version
3.13) was used on the cohort VCF files to normalize and
decompose multiallelic variants.
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2.4. Genetic relatedness analysis

We performed a genetic relatedness analysis on the cohort
VCF files in two steps. In the first step, we implemented
the GENESIS (version 2.12.0) tool PC-AiR [20] to perform a
principal component analysis (PCA) on the detected germ-
line variants for the detection of population structure in
the case and control cohorts, respectively. We then used
the GENESIS tool ‘‘PC-Relate’’ [21] implemented in ‘‘Hail’’
(version 0.2.11; https://github.com/hail-is/hail) [22] to esti-
mate kinship coefficients between every possible pair
within a cohort. We removed one sample out of each pair
that had a kinship coefficient above 0.125, which indicates
genetic relatedness within second-degree relatives.

2.5. Genetic ancestry inference

First, cohort VCF files for cases and controls were combined
with a cohort VCF file of 1000 Genomes Project [23] samples
(n = 2504) with known continental ancestries. Next, the com-
bined VCF file was loaded into a matrix table using Hail (ver-
sion 0.2.11; https://github.com/hail-is/hail), and rare
germline variants with a cohort allele frequency below 1%
and deviating from Hardy-Weinberg equilibrium (chi-
square p < 1 � 10–6) were excluded. We next performed link-
age disequilibrium pruning using the Hail ‘‘ld_prune’’
method, and the resulting filtered germline variants were
used for PCA using the Hail ‘‘hwe_normalized_pca’’ method.
Finally, Sklearn (version 0.20.0) ‘‘RandomForestClassifier’’
function was applied to the top ten global principal compo-
nents (PCs) of reference samples from the 1000 Genomes Pro-
ject to train random forest classifiers for the five continental
ancestries, which were used to uniformly assign continental
ancestry to the cases and controls (Supplementary Fig. 2A).

2.6. Ancestry pair matching of cases and controls

Once continental ancestry was assigned, cases and controls
were divided into each continental ancestry group, and the
second round of PCA was performed to identify continental
ancestry-specific PCs. We then used the ‘‘pairmatch’’ func-
tion of the R optmatch (version 0.9-14) package to identify
control samples that were closest to each case based on the
top ten PCs. To ensure an equivalent representation of each
ancestry group, we applied a fixed 1:12 ratio between the
number of cases and controls across all continental ancestry
groups, and AMR (Admixed American) cases and controls
were excluded in the gene-level burden analysis due to
the limited number of AMR control samples failing to meet
the case-control ratio (Supplementary Fig. 2B and 2C).

2.7. Sub-European ancestry inference and ASJ inference

For sub-European ancestry inference, the same inference
approach was repeated, but only using samples identified
as Europeans. The top ten PCs and sub-European ancestry
labels from the 1000 Genomes European samples were used
to train a random forest classifier. Since ASJ individuals
were unable to be identified using the above approach, we
used SNPweights [24] software with precalculated
SNPweights from ASJ reference samples to identify ASJ indi-
viduals (Supplementary Fig. 3). Samples with ASJ propor-
tion >0.5 were defined as ASJ. In the end, European cases
and controls were divided into Northwestern Europeans
(including Utah residents with Northern and Western Euro-
peans [CEU] and British [GBR]), Southern Europeans (Ibe-
rian [IBS] and Toscani [TSI] excluding ASJ), Finnish, and ASJ.
2.8. Functional and clinical annotation and prioritization of
germline variants

Germline variants in the cohort VCF files were annotated
using Variant Effect Predictor (version 104.3) [25]. A curated
list of 143 cancer predisposition genes (CPGs; Supplemen-
tary Table 3) was used to identify candidate rare (minor
allele frequency [MAF] <1%) germline PVs. All identified
variants were then classified using the American College
of Medical Genetics classification [26] provided by VarSome
[27] website (accessed between September and November
2022). Variants classified as likely pathogenic or pathogenic
are collectively referred to as PVs.
2.9. Gene-level burden analysis with a GLM

To perform a gene-level burden analysis, a null model based
on a GLM, as implemented in the Python ‘‘statsmodel’’
library (version 0.13.2) [28], was first constructed using
the top ten global PCs from ancestry inference as covariates
and RCC case status as the dependent variable. For each
gene with at least one PV in RCC cases or controls, a corre-
sponding extended model incorporating a burden indicator
variable representing the presence of a PV in the gene for
every sample was constructed. A likelihood ratio test was
then performed between the null model and each extended
model, and the resulting test statistics were adjusted for the
false discovery rate (FDR) using the Benjamini-Hochberg
procedure with FDR = 0.05. The burden of three low-
penetrance CHEK2 variants defined by a recent study
[12]—CHEK2 c.470T>C (p.Ile157Thr), c. 1283C>T (p.
Ser428Phe), and c.1427C>T (p.Thr476Met)—were evaluated
separately from the pathogenic loss of function (LOF) vari-
ants identified in CHEK2.
2.10. Statistical analysis and data visualization

Odds ratios (ORs), 95% confidence intervals (CIs), and p val-
ues for two-sided Fisher’s exact test were computed as
implemented in the exact2x2 R package. Adjusted p values
(q values) were computed based on the Benjamini-
Hochberg procedure with FDR = 0.05. A one-way analysis
of variance test was run using the ‘‘f_oneway’’ function from
Python ‘‘scipy’’ library (version 1.5.2) [29], and post hoc
pairwise comparisons were performed where applicable
using the ‘‘pairwise_tukeyhsd’’ function from Python
‘‘statsmodels’’ library. Sample proportion CIs were calcu-
lated using the R ‘‘prop.test’’ function. For the meta-
analysis, association statistics from sub-European groups
were combined using a fixed-effect meta-analysis imple-
mented using the ‘‘metafor‘‘ R package [30]. All figures were
generated using Python ‘‘Seaborn’’ (version 0.11.0) [31] and
‘‘Matplotlib’’ (version 3.3.2) packages, and were further
refined using Adobe Photoshop 2021. The commutation plot
summarizing the germline and somatic variants in RCC
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cases was generated using Python ‘‘CoMut’’ package (ver-
sion 0.0.3; https://github.com/vanallenlab/comut) [32].

2.11. Identification of somatic variants and copy number
events

For carriers of germline PVs in VHL, MET, FH, and CHEK2,
somatic variant data provided from The Cancer Genome
Atlas (TCGA) and International Cancer Genome Consortium
(ICGC) were downloaded from the Genomic Data Commons
(GDC) data portal (https://portal.gdc.cancer.gov/) and ICGC
data portal (https://dcc.icgc.org/), respectively (accessed:
October 2022). For somatic variants, LOF truncating variants
as well as missense variants with oncogenic annotation
from OncoKB were included. For samples from CheckMate
studies, somatic variants and copy number alterations were
identified with the CGA WES characterization pipeline
(https://github.com/broadinstitute/CGA_Production_Analy-
sisPipleline; Supplementary material).

2.12. Identification and validation of cryptic splice variants

SpliceAI (version 1.3.1; https://github.com/Illumina/Spli-
ceAI) [33] was used to identify cryptic splice variants among
the called germline variants detected by DeepVariant, and
rare germline variants with SpliceAI score over 0.5 were
defined as putative cryptic splice variants. For samples car-
rying a cryptic splice variant identified from SpliceAI, avail-
able tumor or germline mRNA BAM files were manually
reviewed using Integrative Genomics Viewer (version
2.11.1) to visualize and evaluate their splicing patterns.

2.13. CNV detection from WES data

We applied GATK-gCNV to detect rare germline CNVs from
exome sequencing data [34]. To minimize the discrepancy
among the different exome sequencing baits used for different
sources, the GATK (version 4.1.9.0) tool ‘‘CollectReadCounts’’
was used to gather read counts on the 8441 sequencing bait
regions unique to seven major capture kits, and PCA was run
tomakebatchesofsamples sequencedusingthesamesequenc-
ing bait (Supplementary Fig. 6A). From each identified batch,
germline CNVswere detectedusingGATK-gCNV [34] following
the best practices on the Terra platform (https://app.terra.bio/
#workspaces/help-gatk/Germline-CNVs-GATK4). Thedetected
CNVs were harmonized and filtered using the gCNV filtering R
scripts downloaded from the gCNV repository (https://github.
com/theisaacwong/talkowski/tree/master/gCNV; Supplemen-
tary material)

3. Results

3.1. Patient characteristics of RCC discovery case cohort

We collected WES data from 1436 RCC patients unselected
for earlier age of disease onset or positive family history
from eight independent RCC studies (Fig. 1 and Table 1).
Of the patients, 71.8% had ccRCC (n = 1031), while the rest
had nccRCC, including papillary (n = 302, 21.0%) and chro-
mophobe (n = 103, 7.2%) RCC. Broad continental-level
genetic ancestry inference (Supplementary Fig. 2) identified
most of the cohort as being of predominantly European
ancestry (83.6%, n = 1200), followed by African (9.1%,
n = 131), Admixed American (5.6%, n = 80), East Asian
(1.3%, n = 19), and South Asian (0.4%, n = 6) ancestry.

3.2. Prevalence of rare germline PVs in ccRCC and nccRCC

We first evaluated rare (MAF <1%) germline variants that
met the existing clinical interpretation guidelines [26] as
pathogenic or likely pathogenic in 1031 ccRCC patients
(Fig. 2). In known RCC risk genes, we identified rare germ-
line PVs in VHL (n = 4, 0.38%, 95% CI: 0.12–1.1%), BAP1 and
MITF (n = 3 each, 0.29%, 95% CI: 0.075–0.92%), and FLCN,
FH, and SDHD (n = 1 each, 0.097%, 95% CI: 0.0051–0.63%).
When evaluating DDR genes (Supplementary Table 4), we
identified 52 ccRCC patients who harbored rare germline
PVs in homologous recombination or Fanconi Anemia genes
such as CHEK2, RECQL4, FANCA, or BRCA1/2 (5.04%, 95% CI:
3.82–6.60%); 26 in base excision repair genes MUTYH and
NTHL1 (2.52%, 95% CI: 1.69–3.73%); eight in nucleotide exci-
sion repair genes ERCC1, ERCC2, ERCC3, XPA, and XPC (0.77%,
95% CI: 0.36–1.59%); and two in mismatch repair genes
MLH1 and PMS2 (0.19%, 95% CI: 0.033–0.79%). Overall, 131
ccRCC patients carried one or more heterozygous rare germ-
line PVs (12.71%, 95% CI: 10.77–14.93%; Supplementary
Table 5)—13 in previously established RCC risk genes
(1.26%, 95% CI: 0.71–2.21%), 86 in DDR genes (8.34%, 95%
CI:6.76-10.24%), and 37 in rest of the germline CPGs
(3.59%, 95% CI: 2.57–4.96%). Among these, nine ccRCC
patients carried rare germline PVs in two different CPGs
(0.87%, 95% CI: 0.43–1.71%; Supplementary Table 7).

In parallel, we also characterized rare germline PVs in
405 nccRCC patients (Fig. 2). Rare germline PVs were found
in the following known kidney cancer risk genes: seven in
FH (1.72%, 95% CI: 0.76–3.69%), six in MITF (1.48%, 95% CI:
0.60–3.36%), three in MET (0.74%, 95% CI: 0.19–2.33%), and
one in TSC2 (0.25%, 0.013–1.59%). Regarding DDR genes,
24 germline PVs were detected in homologous recombina-
tion or Fanconi Anemia genes (5.93%, 95% CI: 3.91–8.81%),
eight in base excision repair genes with PVs in ccRCC—
MUTYH and NTHL1 (1.98%, 95% CI: 0.92–4.01%), and four
each in mismatch repair and nucleotide excision repair
genes (0.99%, 95% CI: 0.32–2.69% each). Altogether, one or
more rare pathogenic germline PVs were detected in 68
nccRCC patients (16.79%, 95% CI: 13.35–20.87%; Supple-
mentary Table 6)—17 in known RCC risk genes (4.20%, 95%
CI: 2.54–6.77%), 39 in DDR genes (9.63%, 95% CI: 7.02–
13.03%), and 13 in other CPGs (3.21%, 95% CI: 1.79–5.57%).
Four patients were identified with rare germline PVs in
two different CPGs (0.99%, 95% CI: 0.32–2.69%; Supplemen-
tary Table 7). Thus, the relatively higher proportion of
patients with identified germline PVs in DDR genes, which
was mainly driven by rare germline PVs in CHEK2 and
MUTYH (3.90%, n = 56/1436 across RCC subtypes, 95% CI:
2.98–5.07%), was consistent with the observations in the
pan-RCC patients from previous RCC studies [6,8–10].

3.3. Gene-level enrichment of rare germline PVs in ccRCC
and nccRCC patients

To investigate whether the identified PVs predispose indi-
viduals to an increased risk of RCC, we performed genetic
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Fig. 2 – Rare germline pathogenic variants identified in the 1436 RCC patients. The proportion of ccRCC or nccRCC patients carrying rare (MAF <1%) germline
pathogenic variants in one of the 143 germline cancer predisposition genes was tested. Three known CHEK2 low-penetrance variants were treated separately
from the rest of the PVs in CHEK2. Numbers next to the bars indicate the counts of RCC patients carrying PVs in each gene. ccRCC = clear cell RCC; MAF = minor
allele frequency; nccRCC = non–clear cell RCC; PV = pathogenic variant; RCC = renal cell carcinoma.

E U R O P E A N U R O L O G Y O P E N S C I E N C E 6 2 ( 2 0 2 4 ) 1 0 7 – 1 2 2112
ancestry inference and case-control pair matching to link
1356 RCC patients (of the original 1436; 94.4% of the RCC
cohort) with 16 512 cancer-free controls (Supplementary
material and Supplementary Fig. 2), and compared the
gene-level burden of rare germline PVs in ccRCC (n = 976)
and nccRCC (n = 380) separately against the cancer-free
controls. To further account for residual population stratifi-
cation not captured in our ancestry matching procedure, we
conducted a gene-level burden analysis for each gene using
a GLM that accounts for continental ancestry (Supplemen-
tary material). As expected, ccRCC patients exhibited signif-
icantly higher enrichment of germline PVs in VHL than the
ancestry-matched controls (OR: 39.1, 95% CI: 7.01–218.07,
p = 4.95e-05, q value: 0.00584), and in the low-penetrance
CHEK2 p.Ser428Phe variant (OR: 31.96, 95% CI: 6.23–
163.89, p = 0.000385, q value: 0.0227) after multiple-
hypothesis correction (Table 2). Patients with ccRCC also
carried a nominally higher frequency of PVs in the two
other known kidney cancer risk genes, BAP1 and SDHD, as
well as in the common low-penetrance CHEK2 p.Ile157Thr
variant (p < 0.05, q values >0.05; Supplementary Table 8).

For nccRCC, patients had a significantly higher preva-
lence of germline PVs than the controls in FH (OR: 77.9,
95% CI: 18.68–324.97, p = 1.55e-08, q value: 1.83e-06)
and MET (OR: 1.98e11, 95% CI: 0–inf, p = 2.07e-05, q value:
3.50e-07). LZTR1, PMS2, MITF, EXT2, and CHEK2 p.Ser428Phe
also exhibited nominal enrichment of germline PVs but did
not pass multiple hypothesis correction (p < 0.05, q values



Table 2 – Gene-level burden analysis of clear cell and non–clear cell RCC

Gene/variant FDR adjusted p
value

p value Odds
ratio

OR 95% CI
low

OR 95% CI
high

Case PV
carrier

Control PV
carrier

Clear cell RCC VHL 0.00584 4.95E-05 39.1 7.01 218.07 4 2
CHEK2_S428F 0.0227 0.000385 31.96 6.23 163.89 3 3
SDHD 0.506 0.0141 1.73E + 10 0 Inf 1 0
BAP1 0.526 0.0314 5.57 1.44 21.52 3 9
CHEK2_I157T 0.526 0.0356 2.04 1.11 3.73 12 122

Non–clear cell
RCC

FH 1.83E-06 1.55E-08 77.9 18.68 324.97 6 3

MET 2.07E-05 3.50E-07 1.98E + 11 0 Inf 3 0
LZTR1 0.244 0.00619 4.96 1.92 12.85 5 42
PMS2 0.653 0.0241 5.58 1.65 18.84 3 25
MITF 0.653 0.0277 3.38 1.34 8.53 5 62
CHEK2_S428F 0.707 0.036 27.73 2.78 276.8 1 3
EXT2 0.79 0.0483 22.36 2 250.27 1 2

CI = confidence interval; FDR = false discovery rate; Inf = infinity; OR = odds ratio; PV = pathogenic variant; RCC = Renal cell carcinoma.
Test statistics from the generalized linear model for genes with nominal enrichment. Genes with adjusted p < 0.05 were considered significant and highlighted.
A table of results for all genes tested can be found in Supplementary Tables 8 and 9.
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>0.05; Table 2). In contrast to prior studies [9,11,12], LOF
variants in CHEK2 were not significantly enriched in ccRCC
after excluding low-penetrance variants (OR: 1.01, CI:
0.41–2.52; p = 0.980, q value: 0.997) or nccRCC (OR: 2.82,
CI: 1.13–7.05; p = 0.0536, q value: 0.79). No other DDR
genes were enriched with PVs in ccRCC or nccRCC patients
compared with the cancer-free controls (Supplementary
Tables 8 and 9).
3.4. Evaluation of CHEK2 in RCC risk via accounting for fine-
scale genetic differences in European subpopulations

The three main germline PVs identified in CHEK2 in our
study—c.1100del (p.Thr367Metfs), Ser428Phe, and
Ile157Thr—are all founder variants from different European
subpopulations, with substantial variation in population
MAFs across different European populations (Supplemen-
tary Table 10) [35]. These variants were also identified at dif-
ferent frequencies in our cases and controls of different sub-
European ancestries (Supplementary Fig. 4). Therefore, to
explore whether subtle ancestry differences in European
populations may have confounded CHEK2 rare variant anal-
yses, we performed three additional CHEK2 burden analyses
restricted to European samples to evaluate the impact of
addressing fine-level population stratification on the role
of CHEK2 as an RCC risk gene: (1) a Fisher’s exact-based asso-
ciation study on all Europeans pooled together, (2) a GLM-
based burden analysis using the top ten genetic PCs from a
European-only PCA, and (3) a meta-analysis combining test
statistics from different sub-European populations (Fig. 3
and Supplementary material). CHEK2 germline LOF PVs did
not demonstrate enrichment in ccRCC cases in all three tests,
although they exhibited a nominal enrichment in nccRCC
only in the meta-analysis (OR: 3.51, 95% CI: 1.10–11.10,
combined p = 0.0330; Fig. 3A). In contrast, only ccRCC
patients exhibited a nominally higher burden of the CHEK2
p.Ile157Thr variant in the meta-analysis (OR: 1.84, 95% CI:
1.00–3.36, combined p = 0.0486; Fig. 3B). Finally, this
expanded statistical framework demonstrated that the
CHEK2 p.Ser428Phe variant that was significantly enriched
in the abovemultiancestry GLM-based burden analysis were
only modestly enriched in these ccRCC patients (OR: 5.20,
95% CI: 1.00–26.40, combined p = 0.0449), reflecting the
localized burden of the variant in the inferred ASJ RCC indi-
viduals in cases and cancer-free controls (Fig. 3C). Taken
together, the results demonstrate that the risk assessment
of CHEK2 germline variants requires careful consideration
of population stratification due to the varying frequencies
of founder variants in this gene.

3.5. Prevalence of somatic second-hit variants in carriers of
germline PVs

To further clarify the potential roles of the rare germline PVs
identified in these analyses, we next investigated the avail-
able tumor samples from the RCC patients in our study to
identify somatic events (truncating somatic variants or copy
number alterations; Supplementary material) accompany-
ing the germline PVs identified in our analyses (Fig. 4A and
Supplementary Table 11). Tumors from ccRCC patients car-
rying germline PVs in tumor suppressor VHL had a somatic
copy number deletion in chromosome 3 spanning VHL
(n = 3/4, 75.0%, 95% CI: 21.94–98.68%) [36]. Regarding
nccRCC, all three carriers of germline PVs in oncogene MET
were patients with type 1 papillary RCC whose tumors had
somatic copy number gains at chromosome 7 (spanning
the MET locus), while 87.5% (n = 7/8, 95% CI: 46.68–
99.34%) of patients with germline PVs in tumor suppressor
FH were from type 2 papillary RCC whose tumors often
had somatic variants or copy number deletions in FH
(n = 4/7, 57.1%, 95% CI: 20.24–88.19%). Overall, ten patients
(66.7%, 95% CI: 38.69–87.01%) carrying germline PVs in FH,
MET, or VHL harbored identifiable secondary somatic events
in the same genes, further indicating the importance of these
genes in the RCC oncogenesis. In contrast, patients carrying
germline variants in tumor suppressor CHEK2 were not lim-
ited to a specific RCC subtype, and only seven of 23 (30.4%,
95% CI: 14.06–53.01%) RCC patients with germline variants
in CHEK2 had secondary somatic variants in CHEK2 (one
patient with both somatic variant and copy number deletion
in CHEK2; six patients with CHEK2 copy number deletions).

3.6. Age of RCC presentation for carriers of germline PVs in
RCC risk genes

Rare germline PVs in genes known to cause hereditary can-
cer syndromes have been associated with an earlier onset of



Fig. 3 – Meta-analysis of CHEK2 risk in ccRCC and nccRCC in European samples. Tables and forest plots summarize the model estimate summary statistics from
the sub-European meta-analysis for CHEK2 germline variants. The area of squares is proportional to the –log10 of the p values, and the horizontal bars
indicate 95% confidence intervals for the estimated odds ratio. Test statistics from Fisher’s exact and GLM tests were plotted for comparison. (A) Summary
tables for CHEK2 LOF excluding the low-penetrance variants. (B) Summary tables for the CHEK2 founder variant p.Ile157Thr. (C) Summary tables for the
CHEK2 founder variant p.Ser428Phe. ccRCC = clear cell RCC; CI = confidence interval; EUR = European; GLM = generalized linear model; LOF = loss of function;
Mut = mutations; nccRCC = non–clear cell RCC; OR = odds ratio; pLOF = putative loss of function; RCC = renal cell carcinoma; WT = wild type.
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disease in different cancers including RCC [37–41], and
detection of these variants with genetic testing can guide
clinical management in at an elevated genetic risk for can-
cer [42]. To further characterize the clinical impact of the
rare germline PVs identified in the genes with a significantly
higher burden of PVs in RCC patients, we compared the age
of disease onset between the groups defined by genetic sta-
tus: (1) patients carrying germline PVs in the known RCC
risk genes; FH, MET, and VHL; (2) patients carrying germline
PVs in CHEK2; (3) patients carrying germline PVs in other
CPGs without enrichment; and (4) patients carrying no
germline PVs (Fig. 4B and Supplementary Table 12). The



Fig. 4 – Somatic events in the carriers of pathogenic variants in genes with enrichment. Somatic alterations were characterized for the carriers of germline
PVs in CHEK2, MET, FH, and VHL, and age of disease onsets were compared between groups of patients with different germline variant status. (A) Comutation
plot summarizing germline and somatic variants in RCC patients with germline pathogenic variants in the three significantly enriched genes as well as CHEK2.
For the somatic events, only variants in relevant genes are featured. The dotted horizontal line on the bar plot indicates the age of onset at 45 yr. (B) Density
plot (left) and box plot (right) for the distribution of age of disease onset for the different pathogenic variant carrier groups. Adjusted p value was calculated
after a one-way ANOVA with post hoc Tukey’s HDS test. ANOVA = analysis of variance; CNA = copy number alterations; HDS = honestly significant difference;
NS = not significant; PV = pathogenic variant; RCC = renal cell carcinoma.
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carriers of rare germline PVs in FH, MET, and VHL presented
with disease at a significantly earlier age than the other
three groups (mean: 46.0, median: 49.0 yr old, Tukey post
hoc adjusted p < 0.01 for all three pairwise comparisons),
and patients with germline and somatic biallelic events pre-
sented with disease at an earlier age (n = 10/15, mean: 44.6,
median: 44.5 yr old; Fig. 4A). However, the age of disease
onset for the patients carrying germline CHEK2 PVs showed
no evidence of age difference from that of patients carrying
no germline PVs (mean: 60.1, median: 61 yr old vs mean:
60.2, median: 61 yr old, Tukey post hoc adjusted p = 1.0)
or patients carrying PVs in the rest of CPGs that did not
exhibit enrichment in RCC (mean: 60.1, median: 61 yr old
vs mean: 61.3, median: 61 yr old, Tukey post hoc adjusted
p = 0.949). Similarly, RCC patients carrying both germline
and somatic variants in CHEK2 did not present at an earlier
age of onset compared with patients without any germline
PVs (n = 7/23, mean: 62.1, median: 61.0 yr old). These
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results, taken together with the only modest enrichment of
germline PVs in CHEK2, suggest caution for considering
CHEK2 as a RCC predisposition gene.

3.7. Identifying additional forms of inherited genomic
alterations in RCC risk genes

While 13.9% (n = 199/1436, 95% CI: 12.13–15.78%) of total
RCC (ccRCC and nccRCC) patients carried rare germline
PVs in CPGs, only 15 RCC patients (1.04%, 95% CI: 0.61–
1.76%) harbored germline PVs in known RCC risk genes
(FH, MET, and VHL), but the rest of the CPGs did not exhibit
an increased burden of PVs in RCC patients in our analyses
and thus are of uncertain biological significance in RCC
pathogenesis. Thus, we hypothesized that RCC risk genes
may also be disrupted through mechanisms that can escape
the detection of conventional germline variant detection
methods commonly used in clinical and research contexts,
such as cryptic splice variants outside of the canonical
splice sites and germline CNVs. Using existing computa-
tional methods to predict cryptic splice variants, we identi-
fied 109 candidate rare germline cryptic splice variants in
CPGs in 102 RCC patients (Supplementary Fig. 5A, Supple-
mentary Table 13, and Supplementary material). Of these,
86 patients had tumor and/or germline mRNA sequencing
data available to validate these predicted splice variants.
The available RNA sequencing data showed no evidence of
aberrant splicing for 82 variants (95.35%, 95% CI: 87.87–
98.50%). However, two cryptic splice variants in two RCC
risk genes, TSC1 and SDHA, demonstrated a clear pattern
of aberrant splicing (Fig. 5). The cryptic splice variant in
TSC1 in a chromophobe RCC patient changed antisense cyto-
sine upstream of a splice donor motif to thymine, leading to
complete exon skipping of exon 21. In the papillary RCC
patient with a variant in SDHA, the cryptic splice variant
introduced a cryptic donor motif inside exon 13 and
removed 15 amino acids at the end of the exon. Two other
cryptic splice variants in TP53 and LZTR1 showed aberrant
splicing, but the number of splice junction reads was too
low to confidently conclude them as clear splice variants
(Supplementary Fig. 5B and Supplementary material).

We next evaluated germline CNVs (Supplementary
material). Collectively, we identified 2503 high-quality rare
germline CNVs in 888 RCC samples (1211 deletions and
1292 duplications; Supplementary Fig. 6B and 6C, and Sup-
plementary material). Of these, 18 heterozygous CNVs in 18
(1.25%, 95% CI: 0.77–2.02%) RCC patients affected 14 CPGs
including RCC risk genes FH, VHL, and SDHA (Fig. 6A and
Supplementary Table 14). For example, we found a ccRCC
patient harboring a deletion spanning part of the last exon
of VHL (Chr3:10191124-10192282, GRCh37; Fig. 6C), and
another deletion was identified in a papillary RCC patient
overlapping the last 761bp of FH (Chr1:240070386-
241661618; Fig. 6D). We also identified a large 215 kbp
deletion completely spanning SDHA in a different papillary
RCC patient (Chr5:139251-354374; Fig. 6B), which dis-
rupted a region similar to a variant described previously
in the gnomAD structural variant database (gnomAD ID:
DEL_5_54065, Chr5:135575-308762) [43]. Thus, by charac-
terizing underappreciated variant types such as cryptic
splice and CNVs, we identified six additional putative PVs
in the established RCC risk genes, increasing the diagnostic
yield of rare germline PVs in risk genes from 2.1%
(n = 30/1436, 95% CI: 1.44–3.01%) to 2.5% (n = 36/1436,
95% CI: 1.79–3.49%).

4. Discussion

Thus far, 14 genes in the HIF, PI3K/mTOR, chromatin regula-
tion, and cell cycle pathways have been identified as estab-
lished RCC risk genes [44], but the estimated high genetic
heritability of RCC is not fully explained by germline PVs
detected in these genes. Multiple recent studies have built
on these foundational discoveries to report frequencies of
rare germline PVs in DDR genes in large RCC cohorts. How-
ever, analyses with proper cancer-free controls and statisti-
cal models accounting for population structure are
necessary to determine whether these PVs are significantly
enriched in RCC populations. Attempts to demonstrate asso-
ciation by comparing frequencies of PVs in RCC cases
against public databases such as ExAC [45] or gnomAD
[35] are fraught with major technical limitations, including
that the samples are likely not sequenced using the same
sequencing platform, variants were not called using the
same variant discovery pipeline and were not processed
identically, and cases and controls were not ancestry
matched to ensure a robust statistical comparison. Recently,
two studies leveraged case-control approaches to report an
association of rare germline PVs in CHEK2 with an elevated
risk of RCC [11,12]. However, both studies treated different
subtypes of RCC together as a single phenotype and
included CHEK2 variants with distinct population proper-
ties. Although Sekine et al [46] conducted a comprehensive
ancestry-matched burden analysis on ccRCC and nccRCC
separately, their study was constrained to Japanese patients
only. To address the gaps of knowledge in the field, we per-
formed histology-specific and case-control analyses of rare
germline PVs in RCC, finding that PVs in the three signifi-
cantly enriched genes—VHL, MET, and FH—had no signifi-
cant overlap in different RCC subtypes. This molecular
difference was also clearly demonstrated when we investi-
gated companion somatic variants and copy number events
stratified by histological subtype.

Furthermore, while adjusting for finer-scale population
stratification is the current standard in genome-wide asso-
ciation studies (GWAS), many case-control rare germline
variant studies in cancer (including most RCC studies)
adjusted only for population stratification by limiting their
association analysis to cases and controls of European des-
cent under the assumption that individuals of broad conti-
nental European ancestry would have a similar genetic
background. Consistent with prior observations that popu-
lation stratification can confound rare variant association
studies in other disease contexts [47–50], we found that a
standard Fisher’s exact test–based association model with-
out addressing finer-scale population stratification can lead
to a false association in this context, especially for CHEK2
that has several founder variants with varying population
frequency within Europe. For example, the most well-
studied CHEK2 c.1100del variant’s population frequency
varies substantially in different regions of Europe, ranging



Fig. 5 – Examples of cryptic splice variants in established RCC risk genes. (A) Disruption of splice donor motif led to complete exon skipping in TSC1. (B) The
cryptic splice variant in SDHA introduced a new splice donor motif GT inside an exon. Images at the left represent IGV screenshots of the tumor mRNA
sequencing data of the wild-type control (Fig. 5A) and the carrier of cryptic splice variant (Fig. 5B). Images at the right represent Sashimi plots showing the
pattern of splicing with the numbered split junction reads. IGV = Integrative Genomics Viewer; RCC = renal cell carcinoma.
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from �0% in Spain to 1.6% in the Netherlands, and has a rel-
atively lower population frequency in North America than
in Europe [51–57]. These factors may explain why in our
study, the CHEK2 variant was detected in only 0.35% of
RCC cases, where most patients were from the USA and
patients were unselected for family history. Meanwhile, this
variant was identified in >1% of RCC cases in a UK-based
RCC association study [11], and significant enrichment of
CHEK2 germline PVs was reported in studies with patients
selected for a positive family history [9] or positive CHEK2
germline variant carrier status in panel sequencing [12].
The variation in population frequency of CHEK2 variants
combined with prior studies lacking robust genetic ancestry
inference and case-control matching may partially explain
the disagreeing risk assessment within and across cancer
types for this gene [58]. Our result warrants caution against
the commonly used practice of treating all ‘‘White’’ or ‘‘Cau-
casian’’ individuals with predominantly European ancestry
as one group in cancer genetic studies. This practice can
substantially confound association studies, particularly for



Fig. 6 – Examples of rare germline copy number variants (CNVs) in established cancer-predisposing genes. (A) Bar-plot summarizing the counts of deletions
and duplications including the germline cancer predisposing genes. (B–D) Denoised linear copy ratio (DCR) plots indicating heterozygous copy number
deletion with a copy ratio of 1 for the carriers of CNVs. The blue line indicates DCR for the CNV carrier, and the dotted grey lines indicate DCR for the rest of
wild-type samples.
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studies including participants from the US population,
which consists of different European ancestry groups as
well as non-European ancestry groups.

Furthermore, in this study, RCC patients with germline
PVs in CHEK2 did not have frequent secondary somatic
events, whereas tumors from carriers of PVs in bona fide
RCC predisposition genes such as FH, MET, or VHL largely
exhibited secondary somatic events in these genes. In addi-
tion, in this cohort of RCC patients unselected for the age of
disease onset, RCC patients with germline PVs in CHEK2 did
not exhibit an earlier age of RCC onset, contrasting the rel-
atively early age of breast cancer onset for germline CHEK2
variant carriers reported in several studies [51,53,59–61],
which suggests uncertainty regarding the role of CHEK2
germline PVs in RCC risk. Unlike in breast cancer, the biolog-
ical role of DDR genes in Fanconi anemia or homologous
recombination pathways such as CHEK2 has not definitively
been demonstrated in RCC, and we did not identify any
enrichment of germline PVs in other DDR genes besides
CHEK2. Given these observations, we suggest caution in
including CHEK2 or any other DDR genes as RCC risk genes.
Critically, our analysis does not preclude the association of
CHEK2 with RCC, but advises for addressing population
stratification in larger cohorts that include different sub-
European ancestry groups to clarify the role of this gene
in RCC risk and heritability.

Moreover, the general focus on germline small nucleo-
tide variants and small indels in coding sequences in prior
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studies may limit our understanding of potential PVs in
established RCC risk genes or other candidate genes. Thus,
we also investigated rare germline cryptic splice variants
and germline CNVs that have not been well characterized
in RCC or cancer germline studies. Cryptic splice variants
can introduce or remove splicing donor or acceptor motifs
inducing aberrant mRNA splicing and loss of protein func-
tion [62,63]. However, these can be easily overlooked as
nonpathogenic because these are usually annotated as non-
truncating when using conventional annotation
approaches. In this study, we identified two rare germline
cryptic splice variants that induced aberrant splicing in
RCC risk genes SDHA and TSC1, which appear to reduce
wild-type transcript abundance based on our investigation
of matched transcriptome sequencing data. To our knowl-
edge, this is the first description of germline cryptic splice
variants in RCC and may warrant incorporation of them into
comprehensive clinical genetic testing strategies.

Lastly, to further augment the search space for germline
inherited risk events, we systematically characterized rare
germline CNVs in RCC patients. Rare germline CNVs are
known to increase susceptibility for different cancers [64–
69] and a few RCC studies reported CNVs detected in FLCN
and VHL in RCC patients [70,71]. However, systematic char-
acterization of germline CNVs using WES data has not been
explored fully in RCC despite the wider availability of WES
data and improved methods for germline CNV detection.
Here, we successfully identified 18 rare germline copy num-
ber duplications and deletions in CPGs from the whole-
exome sequenced samples, including four CNVs in RCC risk
genes FH, SDHA, and VHL. With the widespread use of WES
and improvement in CNV identification methods, investiga-
tion of germline single nucleotide variant and short inser-
tions and deletions together with cryptic splice and CNVs
should be considered a routine testing strategy for RCC
inherited risk assessment and possibly across cancer types.

The current study has several limitations. First, the find-
ings from our gene-burden analyses merit validation in
additional independent case and control cohorts, particu-
larly in larger and more diverse patient populations. Indeed,
even for the sub-European ancestry identification, we did
not have the means to distinguish Northwestern Europeans
from Eastern or central Europeans who might have clus-
tered together with the Northwestern Europeans in the
1000 Genomes Project–based inference, let alone for the
myriad subpopulations in other non-European continents.
In the future, more refined meta-analyses might take
advantage of reference panels representing diverse ancestry
groups to better address such subtle subcontinental differ-
ences. Further, we had to constrain the analysis to 143 CPGs,
as opposed to a comprehensive whole-exome–wide analy-
sis, due to the limited study power, further emphasizing
the need for larger and more diverse patient cohorts. Lastly,
the application of the new World Health Organization renal
cancer classification, which categorizes type 2 papillary as a
separate non-RCC entity [72], to pre-existing characterized
samples poses substantial practical challenges. These are
particularly pronounced when the required molecular and
immunohistochemical correlations were either not per-
formed or not readily available. Consequently, we opted to
use the previous tumor classification system of type 1 and
type 2 disease for papillary RCC. Further research should
consider incorporating the updated classification, distin-
guishing chromophobe RCC from papillary RCC, and includ-
ing other rare subtypes such as medullary or collecting duct
RCC for a more thorough characterization of inherited risk
events in heterogeneous nccRCC subtypes.
5. Conclusions

Taken together, this systematic population stratification–
aware analysis supports the link between several RCC risk
genes and elevated risk and describes distinct patterns of
inherited germline and somatic variants in different RCC
subtypes. Our results also call for caution when assessing
the risk conferred by germline PVs in CHEK2. Finally, it
broadens the definition of the RCC germline landscape of
pathogenicity to incorporate previously underutilized
germline variations.
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