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Abstract
Extracellular vesicles (EVs) play a key role in cellular communication both in physi-
ological conditions and in pathologies such as cancer. Emerging evidence has shown
that EVs are active carriers of molecular cargo (e.g. protein and nucleic acids) and
a powerful source of biomarkers and targets. While recent studies on EV-associated
DNA (EV-DNA) in human biofluids have generated a large amount of data, there is
currently no database that catalogues information on EV-DNA. To fill this gap, we
have manually curated a database of EV-DNA data derived from human biofluids
(liquid biopsy) and in-vitro studies, called the Extracellular Vesicle-Associated DNA
Database (EV-ADD). This database contains validated experimental details and data
extracted from peer-reviewed published literature. It can be easily queried to search
for EV isolationmethods and characterization, EV-DNA isolation techniques, quality
validation, DNA fragment size, volume of starting material, gene names and dis-
ease context. Currently, our database contains samples representing 23 diseases, with
13 different types of EV isolation techniques applied on eight different human bioflu-
ids (e.g. blood, saliva). In addition, EV-ADD encompasses EV-DNA data both
representing the whole genome and specifically including oncogenes, such as KRAS,
EGFR, BRAF, MYC, and mitochondrial DNA (mtDNA). An EV-ADD data metric
system was also integrated to assign a compliancy score to the MISEV guidelines
based on experimental parameters reported in each study. While currently avail-
able databases document the presence of proteins, lipids, RNA and metabolites in
EVs (e.g. Vesiclepedia, ExoCarta, ExoBCD, EVpedia, and EV-TRACK), to the best
of our knowledge, EV-ADD is the first of its kind to compile all available EV-DNA
datasets derived from human biofluid samples.We believe that this database provides
an important reference resource on EV-DNA-based liquid biopsy research, serving
as a learning tool and to showcase the latest developments in the EV-DNA field. EV-
ADDwill be updated yearly as newly published EV-DNA data becomes available and
it is freely available at www.evdnadatabase.com.
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 BACKGROUND

Extracellular material, such as extracellular vesicles (EVs), proteins and nucleic acids, emitted from cells are now recognized
as important mediators in normal physiology and in disease states. Such molecules can be easily isolated and purified from
biofluids, such as amniotic fluid, ascites fluid, bile, blood, breast milk, cerebrospinal fluid, pleural effusion, saliva, semen,
and urine, making them important candidates as biomarkers in many contexts, including cellular homeostasis, infectious
diseases, neonatal screening, and most studied: cancer. Cell-free DNA (cfDNA) (Bustamante et al., 2021; Keller et al., 2021;
Osumi et al., 2019) has been identified and isolated from liquid biopsies, and shows great potential to screen, detect and
monitor various cancers. This is reflected in the growing number of liquid biopsy tests approved by the Food and Drug
Administration (FDA), (i.e. Epi proColon (Nian et al., 2017), cobas EGFR test v2 (Kwapisz, 2017)). cfDNA is emitted during
senescence, necrosis, cell death (Rostami et al., 2020), and recently evidence has emerged of active secretion (Bronkhorst
et al., 2016; Jeppesen et al., 2019; Stroun et al., 2001; Yokoi et al., 2019). Moreover, studies have shown that DNA can be
associated with EVs, which has also garnered a lot of attention in the field of liquid biopsy biomarkers (Malkin & Bratman,
2020).
EVs are a highly heterogeneous group of nanosized phospholipid bilayered membrane entities emitted by virtually all tissue

cells. Aside from being isolated from the tissue of origin, these particles are shed and can be isolated with relatively high
purity from various human biofluids (Crescitelli et al., 2021; Raposo & Stoorvogel, 2013; Yáñez-Mó et al., 2015). They act as
messengers between cells and tissues by carrying molecular cargo, such as RNA, DNA, membrane-anchored and cytosolic
proteins, lipids, and metabolites inside and on the surface of the vesicle (Colombo et al., 2014; Neuberger et al., 2021). EVs
are categorized as large/medium and small structures based on their biogenesis, size and cargo. Large/medium EVs include
oncosomes, apoptotic bodies, exopheres, migrasomes, and microvesicles, while small EVs include exosomes (exosome-large,
90–120 nm and exosome-small, 60–80 nm) and small EV clusters (sEVC) (Ma et al., 2015; Malkin & Bratman, 2020; Théry
et al., 2018; Valcz et al., 2019; Witwer & Théry, 2019; Zhang et al., 2018). The list of EV subtypes continues to grow as the field
progresses and the above list is not exhaustive, but it provides evidence of EV heterogeneity. Recently, distinct nanoparticles
named ‘exomeres’ (size< 50 nm), have been discovered using asymmetric-flow field-flow fractionation (AF4) (Zhang et al., 2018,
2019). Exomeres are not the only small non-EV nanoparticles. More recently, supermeres (Clancy et al., 2021; Zhang et al., 2021)
and chromatimeres were also discovered (Choi et al., 2019). More comprehensive review articles on EV subtypes are reported
elsewhere (Doyle &Wang, 2019; György et al., 2011; Margolis & Sadovsky, 2019; Yáñez-Mó et al., 2015; Zaborowski et al., 2015). In
this manuscript, we will use EVs as a generic terminology for any nano-sized particles emitted naturally from cells (Théry et al.,
2018).
EVs can entrap biomolecules and mediate intercellular communication under various physiological and pathological condi-

tions (Yáñez-Mó et al., 2015). While much of the literature has focused on proteins and RNA cargo in EVs, numerous studies
have reported the presence of DNA either associated with the surface of EVs or within their lumen. To our knowledge, the first
report of EV carrying genomic DNA and mitochondrial DNA (mtDNA) in human plasma was published in 2013 (Cai et al.,
2013), followed by another report describing the presence of mutant KRAS and TP DNA in exosomes from cancer patient
serum (Kahlert et al., 2014). Since then, numerous studies have published on EV-associated DNA (EV-DNA) in cell culture
(Lee et al., 2014; Thakur et al., 2014) and biological fluids (Allenson et al., 2017; Fernando et al., 2018; Garcia-Silva et al., 2019; Jin
et al., 2016; San Lucas et al., 2016), the latter making EV-DNA a promising candidate for liquid biopsy (Chang et al., 2020; Garcia-
Silva et al., 2021; Malkin & Bratman, 2020). EVs are ubiquitously present in biological fluids and carry large fragments of intact
DNA due to lipid encapsulation providing protection against DNase-induced degradation (Cai et al., 2013; Degli Esposti et al.,
2021; Fernando et al., 2018; Kahlert et al., 2014; Vagner et al., 2018). This suggests that EV-DNA presents advantages compared
to cfDNA (Garcia-Silva et al., 2021), therefore the combination of EV-DNA and cfDNA analysis may improve assay sensitivity
and specificity (Castellanos-rizaldos et al., 2018; Zocco et al., 2020). EV-DNA is being investigated in a number of applications.
Recent studies suggested that exosome DNA isolated frommaternal plasma can be used to predict fetal sex and Rhesus D (RHD)
genotype (Yaşa et al., 2021). In cancer patients, bioactive DNA from EVs is being investigated as a biomarker, as a means to
monitor disease and treatment response in liquid biopsy (Choi et al., 2019; Yokoi et al., 2019) and to detect mutations to differ-
entiate cancer patients from non-cancer patients (Allenson et al., 2017; Bernard et al., 2019; Yang et al., 2017). Data has shown
that DNA contained in human serum-derived EVs spans the entire genome and reflects the mutational status of the parental
tumor (Bart et al., 2021; Degli Esposti et al., 2021; Kahlert et al., 2014; Wang et al., 2018). Moreover, studies have demonstrated the
utility of EV-DNA as a biomarker in cancer. Indeed, next-generation sequencing of EV-DNA for common hotspot mutations
(BRAF, EGFR and KRAS) has shown higher sensitivity compared to tumor and cfDNA derived from plasma. Fernando et al.,
reported that more than 93% of total cfDNA in plasma is located in exosomes (Fernando et al., 2017). In another study, ddPCR
of EV-DNA outperformed cfDNA for the detection of KRASmutant copies in pancreatic cancer patients (Allenson et al., 2017).
Moreover, EVs isolated from early-stage pancreatic cancer plasma demonstrated that KRAS mutant copies were significantly
higher in small EVs compared to the other seven fractions of blood (red blood cells, white blood cells, platelets, apoptotic bodies,
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large EVs, soluble proteins, and flowthrough/EV free-supernatant) (Hagey et al., 2021). Lastly, studies have shown that as little
as 0.2–1 ml of plasma can be used for the detection of hotspot mutations in EV-DNA (Allenson et al., 2017; Möhrmann et al.,
2018). EV-DNA, therefore, allows promising liquid biopsy approaches for diagnosis (Castellanos-rizaldos et al., 2018; Helmig
et al., 2015; Keserű et al., 2019; Sansone et al., 2017), prognosis (Allenson et al., 2017; Bernard et al., 2019) and monitoring of
treatment response inmany cancers (Möhrmann et al., 2018), as well as real-time evaluation of disease development (Wang et al.,
2021).
The topology of EV-DNA is also under investigation, and the true nature of DNA packaging and localization is not yet known

(Malkin & Bratman, 2020). While the early EV studies mainly reported EV-DNA inside EV lumens (Kahlert et al., 2014; Lazaro-
Ibanez et al., 2014; Lee et al., 2014; Takahashi et al., 2017; Thakur et al., 2014), recent studies found EV-DNAwas predominantly on
the surface of EVs, particularly in the small EVs (Lázaro-Ibáñez et al., 2019; Liu et al., 2022; Maire et al., 2021), and internal DNA
wasmainly in large EVs (Vagner et al., 2018). Using high-resolution iodixanol density fractionation, Lázaro-Ibáñez and colleagues
divided small EVs into high density (HD) and low density (LD) and found that most of the DNA was associated with the HD
fraction (Lázaro-Ibáñez et al., 2019), which was considered as non-canonical exosomes or non-vesicularmaterials that originated
from subcellular organelles (Liu et al., 2022). HD fractions also contained larger DNA fragments than LD fractions. Whether
the majority of EV-DNA is ssDNA or dsDNA is still under debate (Balaj et al., 2011; Lázaro-Ibáñez et al., 2019; Liu et al., 2022;
Thakur et al., 2014). Atomic force microscopy or specific enzymatic treatment are recommended for more precise determination
of ssDNA vs dsDNA ratio (Lázaro-Ibáñez et al., 2019; Liu et al., 2022). Furthermore, genotoxic drug treatment (Choi et al.,
2019; Liu et al., 2022) and antibiotics may influence EV-DNA emission. For example, in-vitro studies showed that Jurkat and
MiaPaCa cell lines treated with antibiotics (ciprofloxacin) emit chromosomal DNA and mtDNA on the surface of exosomes
(CD63+ and floating density 1.09 g/ml) (Németh et al., 2017). The surface-bound chromosomal DNA andDNA binding proteins
(histonesH2A andH3)mediate exosomal adhesion to extracellularmatrix protein (fibronectin) (Németh et al., 2017) and binding
to the recipient cell surface (Gladys et al., 2014). The topology of EV-DNA is associated with specific EV origin, EV size, EV
nomenclature, DNA size, DNA type, histone and DNA-binding proteins. Therefore, taking EV-DNA topology into account and
protecting EV surface DNA from nucleases during EV isolation and characterization is fundamental for yielding accurate results
in EV-DNA research (Lázaro-Ibáñez et al., 2019; Liu et al., 2022). Finally, a consensus-building approach is necessary (Malkin &
Bratman, 2020) in order to achieve standardization of the above-mentioned techniques to guarantee the reproducibility of EV
cargo characterization, which is especially important in the clinical setting.
Despite the growing interest in EV-DNA based liquid biopsy, the functional significance of EV-DNA derived from biofluids is

largely unknown. As EV-DNA is largely a result of cell death mechanisms, it potentially plays a role in maintaining physiological
hemostasis by acting as a mechanism to expel damaged DNA (Takahashi et al., 2017). Studies from our group and others have
suggested that cancer EVs can exert effects on recipient cells through transfer of cargo (Abdouh et al., 2019; Cai et al., 2013).
Reports have shown DNA integration into the genomes of recipient cells. Lee et al. demonstrated the transfer of full-length
double-stranded oncogenic H-RAS DNA via EVs, resulting in changes to recipient cell behaviour (Lee et al., 2014). However,
the biological role of EVs is still under investigation. A seminal work from the David Lyden group demonstrated that exosomes
derived from pancreatic cancer cells induce pre-metastatic niche formation in an in-vivomodel and facilitate tumor progression
(Costa-Silva et al., 2015).
The potential of EV-based liquid biopsy is still being explored, and the number of review articles and experimental

data published on EVs has increased in multiple scientific fields, particularly in the field of cancer biology (Supplementary
Figure 1). EV-associated miRNA, mRNA and proteins are already established and considered as promising candidates to serve
as biomarkers (reviewed in (Janas et al., 2015; Shen et al., 2020; Tamura et al., 2021)). This has led to the development of EV
databases such as ExoCarta (Keerthikumar et al., 2016), Vesiclepedia (Kalra et al., 2012; Pathan et al., 2018), EVpedia (Kim et al.,
2013), and EV-TRACK (EV-TRACK Consortium et al., 2017) that have been developed to uniformize and facilitate research
on EV-associated proteins, RNA, lipids, and metabolites. In contrast, EV-DNA experimental data remains buried in published
literature. As more data is generated on EV-DNA, it will be ever more imperative that available datasets are rendered computer
indexable, to allow for rapid tracking and facilitate access to users. Currently, there are no online resources on the collection
of EV-DNA information based on manually curated literature. To address this need, we have compiled all currently published
EV-DNA data from human liquid biopsy samples into a publicly available online database, named the Extracellular Vesicle
- Associated DNA Database (EV-ADD), which will serve as a repository of EV-associated DNA data derived from human
biofluids. The database was complemented with studies addressing the presence of EV-DNA in in-vitro set-ups. Data were
collected using Web of Science and NCBI’s PubMed system and literature reviews published in the EV-DNA field to assure
adequate and efficient coverage, and then manually curated into EV-ADD. Currently, EV-ADD comprises 13 different types
of EV isolation techniques and more than 10 methods of DNA isolation, five assays for EV-DNA quantification, eight human
biofluids types, 23 diseases and healthy control data (Table 1). The database will be expanded as more data is added by EV
communities.
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TABLE  Data summary of EV-DNA samples currently included in EV-ADD

Diseases Acute myeloid leukemia (AML)

Autism spectrum disorder (ASD)

Bladder cancer

Breast cancer

Coronary artery disease

Colorectal cancer

Dermatomyositis

Glioma

Hepatocellular carcinoma

Human Immunodeficiency Virus (HIV)

Late-stage ovarian cancer

Lung adenocarcinoma

Metastatic colorectal cancer (mCRC)

Metastatic melanoma

Multiple sclerosis

Neuroblastoma

Non-small cell lung cancer (NSCLC)

Osteosarcoma

Pancreatic ductal adenocarcinoma (PDAC)

Prostate cancer

Sepsis

Squamous cell carcinoma

Urothelial bladder carcinoma (UBC)

Human biofluids Ascites

Bronchoalveolar lavage fluid (BALF)

Lymphatic drainage

Plasma

Pleural effusion

Serum

Sweat

Urine

EV isolation techniques exoEasy kit

ExoLutionTM Plus

ExoQuick Exosome Precipitation Solution

Immunocapture

Lipid nanoprobe functionalized nanostructured silica platform

miRCURY™ Exosome isolation kit

MITEV (Microfluidic Isolation of Tumor-derived Extracellular Vesicles)

Rapid magnetic beads isolation with lipids based nanoprobes

Size exclusion chromatography

Sucrose density gradient

Total Exosome isolation kit

Ultracentrifugation

Vn96 ME Kit

(Continues)
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TABLE  (Continued)

EV-DNA isolation methods DNeasy blood & Tissue Kit

ExoLution PlusTM

MagAttract High Molecular Weight DNA kit

Maxwell® RSC ccfDNA Plasma Kit

miRNeasy Micro kit

Phenol-choloroform, ethanol precipitation

QIAamp Circulating Nucleic Acid Kit

QIAamp DNAMini Kit

SeleCTEV™ DNA sample-prep kit

TIANamp Genomic DNA Kit

DNA detection methods Bioanalyzer

Droplet digital PCR

Nanodrop

Next-generation sequencing

Quantitative PCR

Qubit

Taqman Copy Number RNase P Detection kit

 METHODS

. Database content compilation

To obtain comprehensive information on EV-DNA isolated from in-vitro (cell culture supernatants) and biofluids of patients
and healthy controls, a combination of keywords (Supplementary Table 1) ‘(((extracellular vesicles) OR (exosomes)) OR
(microvesicles)) AND (DNA)’ derived fromMedical Subject Headings (MeSH) and non-MeSH terms were searched in theWeb
of Science and PubMed from January 1980 until June 2022. Of note, human biofluid samples including ascites, bronchoalveolar
lavage fluid, cerebrospinal fluids, lymphatic drainage, plasma, pleural effusion, saliva, sweat, and urine were searched individ-
ually in both search engines. This filter returned 734 and 428 (total = 963) search results from Web of Science and PubMed,
respectively, for the biofluids database. Articles with duplicated PubMed IDs were excluded, and the remaining articles were
carefully examined using the title, abstract and full text of each publication. A total of 887 publications were eliminated because
they were reviews or did not address human biofluids samples. Finally, we also eliminated an article that was not published in
the English language (Figure 1). The list of articles obtained was manually verified, and only those reporting EV-DNA in human
biofluids were included (total= 76 studies). We then manually extracted critical information, particularly the reported methods
and variables that may affect the experimental outcome, including volume of biofluids, EV isolationmethod, EV characterization
strategy, EV-DNA isolation and detection technique, assays used to determine EV-DNA fragment size, genes used for EV-DNA
detection, enzymatic and detergent treatments (if any), DNA type, disease type and reference to the original paper. These data
are then provided as tabular archives in EV-ADD. If the data was not reported or is missing, EV-ADD reports ‘Not reported’ or
‘Not tested’, respectively. Moreover, if exosomes were not purified and characterized as per MISEV guidelines, EV-ADD reports
‘unspecified’ under the EV subtypes column. For the in-vitro data mining, we used the same keywords ‘(((extracellular vesicles)
OR (exosomes)) OR (microvesicles)) AND (DNA)’ without biofluids, and we obtained 1844 (PubMed) and 2152 (Web of Sci-
ence) articles. To date, we have reviewed 500 in-vitro studies. From these, we identified 52 eligible studies on EV-DNA from cell
culture supernatant, and these 52 studies have been added to EV-ADD. In the next update (January 2023), in-vitro studies will be
updated, and in-vivo studies will be added into the EV-ADD platform. Lastly, we have integrated a metric system in our database
in order to validate and report experimental parameters (EV-TRACK Consortium et al., 2017), as well as compliancy to the
MISEV guidelines (Théry et al., 2018). This system calculates and assigns a percentage designed to score a study on its reporting
of experimental procedures and EV characterizations. This system is intended to help the user identify the level of compliance
with MISEV 2018 guidelines (Théry et al., 2018). A percentage is generated by assigning different weights to several binary cate-
gories (yes/no) that include experimental procedures recommended by MISEV 2018 (Théry et al., 2018). In brief, each study is
scored on the reporting of biofluid processing, EV purification and EV-DNA isolation, and EV characterization. The greater the
compliance with the experimental recommendations, the higher the score. A table with the experimental parameters and their
weight on the overall score is shown in Supplementary Tables 2, Table 3A and B. Parameters were chosen based on their potential
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F IGURE  Simplified schematic workflow of EV-ADD. Workflow is presented in three steps: (1) identification of studies on EV-DNA isolated from
in-vitro and human biofluids samples; (2) screening of data for eligibility in EV-ADD; and finally (3) inclusion and upload of EV-DNA data to EV-ADD. As the
EV-ADD relies on publications from the EV community, clear communication and feedback between researchers and database curators is essential to maintain
the EV-DNA lifecycle.

influence on experimental results. We believe that the EV-ADD scoring system will allow users with an additional screening tool
for transparency on EV isolation and characterization protocols. In the future, the EV-ADD scoring system will continue to
evolve and be adapted to the most recent and updated MISEV guidelines (Witwer et al., 2021) (for example, MISEV 2022).

. Website design

The EV-ADD website is hosted on an Amazon Web Services (AWS) Lightsail server and it was built using WordPress (WP)
as the frontend, and an open-source content management system written in PHP. MySQL serves as the database to store EV-
DNA information at the backend. The connection between the frontend and the backend is through React.js (an open-source
JavaScript library for graphic components) and WP Data Access. The former provides a user-friendly graphical search menu
and sends user requests to WP Data Access. Upon user request, WP Data Access will filter the database and show the result as a
downloadable table. Summarized studies and search results can be downloaded to registered users.

 RESULTS

. The EV-ADD user interface allows for searchable criteria of all published EV-DNA data

EV-ADD displays data extracted from peer-reviewed publications on EV-DNA.Manually extracted from these publications and
included in the database are data on the following experimental criteria: type of disease, number of patients enrolled in the study,
volume of biofluids, EV isolationmethod, EV characterization, EV-DNA isolation technique, EV-DNA type, EV-DNA detection
method, EV-DNA fragment size, targeted gene(s), enzymatic treatment, results, applications of the EV-DNA, and an EV-ADD
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score based on the compliancy with MISEV guidelines. These appear on the user interface as filterable and searchable columns
(example shown in Figure 2). Moreover, EV-ADD offers search tools based on keywords such as authors, gene symbols and
mutations. We have also included a linked reference to the original paper for each entry.
All the data contained in EV-ADD are available for free to download to a spreadsheet in Excel or CSV file format. In addi-

tion, users can also upload their published data in the database by submitting a form. https://www.evdnadatabase.com/form/.
The Form page provides an interactive way of contributing to our datasets by submitting any newly published studies or miss-
ing studies. Importantly, before submission of EV-DNA data, users are encouraged to follow the ISEV and MISEV guidelines
and their study should meet the minimum requirements, which include EV biophysical characterization (transmission electron
microscope) and EV biochemical characterization (Alix and TSG101), surface tetraspanin marker expression analysis (CD63,
CD9 and CD81)), EV quantification (NanoSight), EV negative markers (plasma/serum; APOA1/2, APO B and albumin, urine,
Tamm-Horsfall Protein) (Théry et al., 2018), enzymatic treatment (DNase, RNase and proteinase) and detergent (Triton X-100
and NP-40).

. The EV-ADD currently houses data extracted from  papers from eight types of biofluids,
spanning  different diseases and  in-vitro papers

Up to June 2022, evidence of EV-DNA from 76 studies performed on human biofluids were deposited in EV-ADD.Moreover, we
have expanded our database with 52 in-vitro studies and additional studies will be added in the next update (January 2023). Of
themore than 50 genes used to detect cfDNA, BRAF, EGFR,KRAS, and TPmutations were themost commonly observed gene
mutations identified in EV-DNA isolated frompatient liquid biopsy samples (Supplementary Figure 2). Thismay be explained by
the association between hot spot mutations in these genes and various common cancer types (colon cancer, lung cancer and pan-
creatic cancer). Furthermore, the majority of gene mutations studied are acquired mutations and are involved in cell signalling,
oncogenes, tumor suppressors and DNA damage repair. EV-DNA was detected in ascites, bronchoalveolar lavage fluid (BALF),
lymphatic drainage, plasma, pleural effusion, serum, sweat and urine and quantified using Bioanalyzer, NanoDrop, quantitative
PCR (qPCR), Qubit and Reverse Transcription PCR (RT-PCR). Finally, single nucleotide polymorphism, copy number variation
and genomic DNAwas detected using droplet digital PCR (ddPCR), qPCR, RT-PCR, targeted tumor gene panel sequencing and
next-generation sequencing (NGS) (Figure 3).

. EV-DNA fragment size profile

Studies have shown distinct cfDNA fragmentation patterns between healthy people and cancer patients (Cristiano et al., 2019).
Moreover, cfDNA fragment size has emerged as an important tool to increase the sensitivity for detecting circulating tumorDNA
(Mouliere et al., 2018) and itmay have prognostic (Chen et al., 2021) and diagnostic (Mathios et al., 2021) value in advanced cancer
patients. EV-DNA size distribution profile is reported in 24 of the 76 studies in the EV-ADD with high fragment size variance
between studies (Supplementary Table 4). For example, a study demonstrated that the length of urine EV-DNA (1593–16,295 bp)
and serum EV-DNA (1508–29,640 bp) are significantly larger than that reported for cfDNA (Zhou et al., 2021). Similar studies
have indicated the presence of larger DNA fragments within EVs (Mao et al., 2019; Nguyen et al., 2020; Ruhen et al., 2021). It has
been reported that longer EV-DNA fragmentsmay improve the detection of single nucleotide variations, copy number variations
(San Lucas et al., 2016) and insertions/deletions during NGS sequencing performance and bioinformatic analysis (Waldenmaier
et al., 2022).
However, other studies reported the presence of shorter DNA fragments (152.4 bp, 160 bp) within EVs, with larger DNA

fragments possibly resulting from contamination with apoptotic bodies (Sun et al., 2021; Zhang et al., 2019). The comparison
between the above-mentioned studies is difficult due to different EV isolation methods resulting in purification of various EV
subtypes. This problem is further confounded by the use of different biofluids from various cancer types. Moreover, anti-cancer
treatment may also impact EV-DNA fragment length. In one study captured in EV-ADD, EV-DNA from the plasma of an acute
myeloid leukemia (AML) patient showed four distinct peaks at 188 bp, 377 bp, 561 bp, and 705 bp before treatment. These peaks
disappeared following treatment, with the EV-DNA length profile resembling that of healthy donors (Kontopoulou et al., 2020).
Overall, the above findings demonstrate the potential importance of the new field of EV-DNA fragmentomics.

. EV-ADD data scoring system

There has been a great effort from the ISEV community to provide sample preparation and EV isolation standards through
the development of the MISEV guidelines. Using this as a reference, we aimed to include a compliance metric based on the

https://www.evdnadatabase.com/form/
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F IGURE  Search results on EV-ADD. (A)
An example of a query for “KRAS gene” as a search
criterion in EV-ADD. (B) The database retrieves
data on type of diseases, number of patients,
EV-ADD data score system (% score), type of
EV-DNA detected, source of biofluids, EV-DNA
fragment size, methods of EV isolation, EV
purification and characterization, subtypes of EVs,
EV-DNA isolation techniques, EV-DNA
quantification methods, volume of biofluids,
enzymatic treatments, reference (Möhrmann et al.,
2018), method of DNA detections, results,
application, PubMed ID, EV-TRACK ID and score
(if any). NTA = nanoparticle tracking analysis,
SEM = scanning electron microscopy,
WB = western blot
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F IGURE  (A) An overview of the main functions in the EV-ADD. Published data on EV-DNA isolated from human biofluids is manually curated and
annotated in a web-based application in the EV-ADD which can be searched and sorted based on various categories. (B) EVs can be isolated from human
biofluids using (C) various EV purification techniques and (D) EV-DNA can then be isolated using commercial kits or in-house protocols. (E) Lastly, EV-DNA
mutations, SNPs and CNVs can be detected using various PCR and sequencing techniques. UC = ultracentrifugation, ddPCR = Droplet Digital PCR,
qPCR = Quantitative PCR, RT-PCR = Reverse Transcription PCR

reporting of sample preparation, EV isolation and characterization (Supplementary Table 2). This scoring system indicated that
the majority of studies (60%) scored > 50%. In terms of EV isolation techniques, more than 50% of the studies reported the use
of ultracentrifugation, while only 5% used size exclusion chromatography, despite its many advantages such as reproducibility,
scalability, and low cost (Sidhom et al., 2020). Moreover, despite using ultracentrifugation for EV isolation, 83% of reported
studies failed to report non-EV markers, indicating a lack of EV purity. It is noteworthy that relatively pure EVs can be obtained
with the sequential use of three isolation techniques (size exclusion chromatography, sucrose density gradient centrifugation and
ultracentrifugation) (Brennan et al., 2020). However, EV yield is significantly reduced, and various combinations of EV isolation
techniques may lower the likelihood of detecting EV-DNA. Thus, starting human biofluid volume and isolation techniques will
greatly influence the downstream applications. Finally, EV-ADD includes all the published EV-associated DNA studies without
any restrictions based on the EV-ADD score.

 DISCUSSION

EV-DNA holds tremendous promise as both a biomarker and in understanding fundamental processes underlying cell-cell com-
munication via EV cargo. As this field continues to grow, standardization of isolation, purification and analysis tools are needed.
In this paper, we introduce EV-ADD, a dedicated knowledgebase for the research community to access data and methodologies
on EV-DNA.
One of the goals of our database is to include all data that impacts EV isolation yield, quality and downstream analysis of

EV-DNA. During the building of EV-ADD, we identified variations regarding many of these parameters. Differential ultracen-
trifugation was the conventional EV isolation method used, with approximately 50% of all reported studies using this technique.
Surprisingly, the majority of these publications report different g-forces, rotor types and durations of ultracentrifugation (Allen-
son et al., 2017; Bart et al., 2021; Lazaro-Ibanez et al., 2014; San Lucas et al., 2016), all factors that significantly influence EV yield
and cargo, in particular protein, DNA and RNA quantity and purity (Cvjetkovic et al., 2014; Théry et al., 2018). Consistency is
needed in terms of isolation protocols when pelleting objects with similar sedimentation coefficients such as EVs. Differences
were also noted in the types of EVs derived fromhumanbiofluids. For instance, studies reported the presence of cfDNAwithin the
lumen of exosomes (Fernando et al., 2017; Kahlert et al., 2014). Another study demonstrated that the majority of large fragments
of DNA, including tumor DNA are enriched in large-EVs compared to small-EVs (exosomes) (Vagner et al., 2018). Interestingly,
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only low to negligible amounts of DNA were reported within EVs under normal physiological conditions and after acute
physical exercise, with the emission of cfDNA being shown to be independent of EVs (Helmig et al., 2015; Lazaro-Ibanez et al.,
2014; Neuberger et al., 2021).
However, it should be noted that the above-mentioned studies used ultracentrifugation and precipitationmethods (Invitrogen)

to isolate EVs. These crude and traditional ultracentrifugation methods are known to co-isolate impurities of non-vesicular
aggregates, albumin, as well as heterogenous EV populations (Ludwig et al., 2019; Patel et al., 2019). Recent studies have shown
a formation of complex biomolecule corona around the surface of EVs. For example, low density lipoprotein (LDL) corona was
spontaneously formed as soon as LDL particles weremixedwith the EVs (Sódar et al., 2016) and under genotoxic stress condition,
mtDNA is observed on the surface of small EVs (Németh et al., 2017). Protein corona was also formed spontaneously on the
surface of EVs derived from blood (Tóth et al., 2021). Moreover, various studies have shown that the Invitrogen precipitation
method leads to polyethylene glycol (PEG) contamination, microvesicles as well as additional protein aggregates, whichmay give
the false impression of isolating exosomes (Abramowicz et al., 2016; Patel et al., 2019). Finally, a lack of standardized terminology
of EVs throughout the literature has resulted in inconsistent nomenclature in the cited literature. Therefore, the International
Society of Extracellular Vesicle (ISEV) endorses the term ‘extracellular vesicle’ because currently there are no specific protein
markers that have been established to identify exosomes and ectosomes (microvesicles/microparticles) (Théry et al., 2018;Witwer
& Théry, 2019). DNA fragment sizes and quantity may also vary depending on the EV population isolated, emphasizing the
importance of these considerations (Chang et al., 2020; Vagner et al., 2018). Variations may also reflect different sources of EVs
(Jeppesen et al., 2019; Németh et al., 2017; Yokoi et al., 2019), EV isolation and DNA detection methods (Neuberger et al., 2021),
and EV heterogeneity (Théry et al., 2018). Currently, EV-DNA isolation methods are not standardized, and are based on either
commercially available kits (i.e. silica filtration and magnetic beads-based approach) or phenol chloroform method which can
affect isolation efficiency andDNA fragment size (Sorber et al., 2017; Tagliaferro et al., 2021). Downstream analysis methods were
also reported, such as Qubit fluorometer, nanodrop, Agilent bioanalyzer and qPCR, which present different levels of sensitivity
and specificity.
Approximately 72%of EV-DNA studies reported in EV-ADDwere performed on plasma, which contains a complexmixture of

biomolecules (Leeman et al., 2018; Psychogios et al., 2011). Therefore, extensive pre-analytical steps are generally required before
the EV isolation and purification steps. However, these pre-treatment aspects such as choice of blood collection tubes (Berckmans
et al., 2019; Palviainen et al., 2020), centrifugation conditions (Vila-Liante et al., 2016), filtration, extraction method and blood
processing time likely contribute to divergent results within the EV field (Bæk et al., 2016; Heatlie et al., 2020). We observed
that ethylenediaminetetraacetic acid (EDTA)-containing plastic tubes were widely used for EV-DNA isolated from plasma. In
addition, different centrifugation speeds and timehave been applied to obtain platelet-poor plasma (PPP) andplatelet-free plasma
(PFP). Centrifugation of whole blood at 4◦C may activate platelet and release platelet-activated particles (Arraud et al., 2014;
Coumans et al., 2017; Witwer et al., 2013). Only five studies have reported filtration steps after the centrifugation procedure.
One report suggested that 0.8 µm filter reduces the platelet contamination (Baranyai et al., 2015). Thus, measurement of residual
platelets using CD41 and CD31 markers was recommended in the EV preparation (Aatonen et al., 2014; Cappellano et al., 2021;
Venturella et al., 2019). To address these issues, an automated exosome isolation approach from undiluted whole-blood sample
called ‘acoustofluidic platform’ has been developed, eliminating biofluid preprocessing steps and increasing exosome purity,
yield and reproducibility with a shorter experimental time (Wu et al., 2017). The ISEV taskforce has recognized the importance
of preprocessing of biofluids and provided a roadmap for blood preprocessing procedure for EV analysis (Clayton et al., 2019;
Witwer et al., 2013). Importantly, ISEV blood workshops and symposiums (uEV 2022) are also being held to bring together EV
researchers to provide updates, bringing us closer to the standardization of protocols. Extensive reviews on the standardization of
blood collection and processing have been reported elsewhere (Coumans et al., 2017; Venturella et al., 2019). Taken together, these
variations among studies introduce variabilities in analysis outputs, limiting inter-study comparisons of EV-DNA (EV-TRACK
Consortium, 2017; Théry et al., 2018; Cvjetkovic et al., 2014). EV-ADD provides a repository of these experimental variables,
aiding researchers to determine appropriate EV-DNAmethodologies that are relevant to their research context (Supplementary
Table 3A and B).
While liquid biopsy-based EV-DNA analysis may offer important advantages over cfDNA isolation, such as DNA protection

from degradation, the clinical biomarker utility of EVs remains limited due to the complexity of isolating pure EV subtypes from
biological fluids (Théry et al., 2006). Large volumes of plasma, ranging from 10 to 20 ml, are required for nucleic acid isolation
from tumor-derived EVs, rendering it impractical for clinical use (Bernard et al., 2019; Cai et al., 2015; Castillo et al., 2018; San
Lucas et al., 2016). Thus, ultrasensitive, efficient and state-of-the-art on-chip-based EV isolation assays are being tested in these
settings (Chiriacò et al., 2018; Liang et al., 2017). These assays require very low amounts of plasma and can capture specific
populations of EVs (tumor-specific EVs) based on surface markers, thus improving the sensitivity and specificity of detecting
mutant molecules. In addition, single-EV-based liquid biopsy using a high-throughput Nano-bio Chip Integrated System for
Liquid Biopsy (HNCIB) has shown promising results in detecting tumor-derived EV surface proteins (PDL1+) and internal cargo
(mRNA/miRNA). A proof-of-concept study demonstrated that Glypican-1 (GPC1) is specifically enriched on cancer-derived
exosome surface and only GPC1+ exosomes carry mutant KRAS transcript (G12D) (Melo et al., 2015). Simultaneous analysis of
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multiple cargos in a single EV will improve the accuracy and sensitivity of disease markers that single parametric approaches
may miss (Zhou et al., 2020).
While studies have reported the presence of EV-associated DNA in cell culture (Lee et al., 2014; Thakur et al., 2014) and

biological fluids (Allenson et al., 2017; Fernando et al., 2018; Garcia-Silva et al., 2019; Jin et al., 2016; San Lucas et al., 2016),
these observations have been challenged. Researchers have demonstrated that classical exosomes and small EVs do not carry
double-stranded DNA and DNA-binding histones in specific cancer cell lines, and that active DNA emission is independent
of exosome emission pathways, rather relying on the amphisome pathway (Jeppesen et al., 2019). However, simultaneous work
demonstrated a mechanism whereby genomic DNA is loaded into exosomes via micronuclei. In the latter, authors demonstrated
dsDNA spanning the entire human genome, thus reflecting the patient’s genomic signature (Yokoi et al., 2019). A more recent
study demonstrated that dsDNA recruitment into tumor-derived vesicles (TMV) occurs by activation of ADP ribosylation factor
6 (ARF6) with the cytosolic DNA sensor, cGAS and independent of amphisome pathway and micronuclei (Clancy et al., 2022).
Taken together, data suggest that the loading of DNA into EVs may be context specific. The growing number of studies on
EV-DNA will help to clarify the mechanisms of loading, biological role and research utility of EV-DNA.
While the EV research community is thriving, little consensus exists on optimal isolation and purification techniques for EVs

and their cargo (EV-TRACK Consortium, 2017; Cvjetkovic et al., 2014; Lotvall et al., 2014). MISEV guidelines and other publi-
cations have reported the importance of pre-analytic parameters for human biofluids and EV isolation standardization (Lacroix
et al., 2012; Muller et al., 2014; Mullier et al., 2013; Théry et al., 2018; Witwer et al., 2013; Yuana et al., 2015). Over the past decade,
comprehensive and pure EV isolation techniques have been amajor challenge in the EV field (Kalluri & Lebleu, 2020; Keerthiku-
mar et al., 2016). Slight variations in isolation methods or within protocols lead to enrichment of certain EV subtypes and cargo,
hindering reproducibility and large meta-analyses (EV-TRACK Consortium, 2017; Théry et al., 2018). A crowdsourcing knowl-
edgebase named EV-TRACK, screens and compiles EV-focused publications to encourage standardization and advance the EV
community (EV-TRACK Consortium, 2017). EV-ADD seeks to reach that same goal, providing a platform for users to find
methodologies that have been successful in identifying EV-DNA. EV-ADD and EV-TRACK reveal a wide range of different pro-
tocols and reagents for EV and EV-DNA isolation within EV publications (EV-TRACKConsortium, 2017) (Table 1), highlighting
the need to consider processing and analytical variables when interpreting data. Therefore, we have integrated an EV-ADD data
metric system to validate experimental parameters and to ensure that relevant captured data in each article deposited in our
database is reliable (EV-TRACK Consortium, 2017; Keerthikumar, S. 2016). Altogether, the EV-ADD metric highlighted a lack
of standardization and data reporting in the EV-DNA field. Future studies following MISEV recommendations are critical for
developing EV-DNA biomarker discovery and validation.

 CONCLUSION

Taken together, the field of EV-DNA is in its early stages, and as it grows, limitations persist, especially in the standardization
of validated protocols, consistent data and interpretation of clinical correlations in disease. With exponential growth in EV-
related publications, especially with the introduction of next-generation sequencing for EV-DNA-based liquid biopsy research
(Castillo et al., 2018; Kahlert et al., 2014; San Lucas et al., 2016), a massive accumulation of experimental data will be generated
and will require efforts to organize and continuously update databases. EV-ADD provides a knowledgebase of manually curated
published EV-DNA data. Publicly and freely available, it begins to address many of the challenges in the EV field, providing a
one-stop repository of experimental EV-DNA data across the literature. The current version of EV-ADD includes data from
76 published articles based on EVs isolated from human biofluids covering varying diseases. In the future, it will include EV-
DNA data derived from in-vitro and in-vivo animal model systems. Additionally, EV researchers can register for free and deposit
published EV-DNA findings directly into EV-ADD, thus centralizing experimental procedures, findings and interpretation into
one platform. With its simplicity and easy accessibility, we hope that EV-ADD propels EV-DNA research forward and becomes
an important resource for researchers in the EV field.
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