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Prediction complements explanation in
understanding the developing brain
Monica D. Rosenberg 1, B.J. Casey1 & Avram J. Holmes1,2

A central aim of human neuroscience is understanding the neurobiology of cognition and

behavior. Although we have made significant progress towards this goal, reliance on group-

level studies of the developed adult brain has limited our ability to explain population

variability and developmental changes in neural circuitry and behavior. In this review, we

suggest that predictive modeling, a method for predicting individual differences in behavior

from brain features, can complement descriptive approaches and provide new ways to

account for this variability. Highlighting the outsized scientific and clinical benefits of pre-

diction in developmental populations including adolescence, we show that predictive brain-

based models are already providing new insights on adolescent-specific risk-related beha-

viors. Together with large-scale developmental neuroimaging datasets and complementary

analytic approaches, predictive modeling affords us the opportunity and obligation to identify

novel treatment targets and individually tailor the course of interventions for developmental

psychopathologies that impact so many young people today.

Understanding how the brain gives rise to cognition and behavior is a fundamental goal of
human neuroscience. Scientists, philosophers, and statisticians have long debated the
nature of understanding, but tend to agree that there are two routes to achieving it:

explanation and prediction1–4. Despite the historical dominance of explanation as a route to
understanding, scientists and philosophers of science have emphasized the importance of both
these approaches5–8. As noted by the philosopher Heather Douglas, “explanation and prediction
are best understood in light of each other and thus … should not be viewed as competing goals
but rather as two goals wherein the achievement of one should facilitate the achievement of the
other”7.

Foundational cross-species research has made significant progress on the path towards neu-
roscientific explanation. Researchers have described neural bases of cognition, characterizing
how patterns of brain organization from neural circuits to functional networks relate to behavior
and psychopathology9–14. Although this work has traditionally taken a cross-sectional, group-
level approach to studying the developed adult brain, there is growing consensus that com-
prehensive models in neuroscience must account for the facts that neural phenotypes and
behavior vary widely across the population and change over time within individuals15–18.

The road to prediction is less traveled. Recently, however, the use of machine-learning
methods to predict behavior from brain measures has become increasingly common, due in part
to the emergence of large data sets and new analytic and computational tools19. Representing a
critical avenue to understanding, these approaches provide new ways to account for
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developmental changes in behavior, dynamic brain systems, and
associated individual differences while offering statistical rigor8,20

and clinical and translational benefits for personalized medicine
and education5,6.

Although much predictive modeling research has focused on
adults, forecasting outcomes in childhood and adolescence pre-
sents unique opportunities for scientific discovery and clinical
application. First and foremost, biological and statistical models
that account for developmental change are necessary for truly
understanding how neural circuits emerge to give rise to cogni-
tion and behavior. Predicting behavior from brain features during
development represents initial progress towards this goal, and
predicting future outcomes from past developmental changes
represents an important next step. Predictive models of current
and future behavior may be especially beneficial in adolescence, a
developmental period of rapid social, emotional, psychological,
and physical change characterized by mental and physical health
vulnerability, but also opportunities for growth and
intervention21.

In this forward-looking review, we highlight how predictive
modeling in developmental neuroscience can account for devel-
opmental trajectories in behavior, dynamic brain systems, and
individual differences in both. After discussing these concepts in
the context of adolescence, we introduce predictive modeling and
its applications in developmental populations. Using adolescence
as a case study, we address two complementary questions. First,
how can prediction inform models of risk taking, a phenotype
that is strikingly elevated in adolescence? Second, how can con-
sidering adolescence inform predictive modeling techniques and
motivate future research? We conclude by emphasizing the
importance of approaches that predict current and future beha-
vior from developmental trajectories of brain structure and
function. In doing so, we discuss how these methods complement
and extend ongoing research on the neurodevelopmental pro-
cesses that underlie the emergence and disruption of cognition
and behavior.

Changes in behavior and brain systems across adolescence
Human abilities and behavior change dramatically across the
lifespan, emerging over development from the dynamic interplay
between genes and experience. Developmental changes reflect
neurobiological constraints shaped by evolution to meet the
unique challenges of each stage of life, including adolescence22.
That evolutionary pressures have presumably tailored adolescent
behavior to facilitate the transition to independence, however, is
frequently overlooked. Instead, adolescents, whose behavior is
sometimes judged as immature relative to their physical devel-
opment, are often considered impaired mini-adults22–24. In the
following section, we emphasize the importance of considering
developmental changes, dynamic brain systems that unfold over
time, and interindividual variability when seeking to establish
descriptive and predictive models of behavior.

Developmental trajectories in behavior. When we think of the
prototypical adolescent (or recall our own teenage years), a
number of quintessential traits may come to mind. We might
consider (or remember) risky behaviors like dangerous driving,
illegal substance use, irresponsible sexual behavior; preoccupa-
tions with peer groups and social hierarchies; an uptick in feelings
of anxiety; and heated conflicts with parents, teachers, or other
well-meaning figures of authority.

Epidemiological studies confirm that our stereotypes largely
reflect typical adolescent behavior. Adolescents are more likely to
be injured or killed in motor vehicle accidents, contract sexually
transmitted infections, engage in criminal activity, and

experiment with drugs than children or adults22,23. These
behaviors are thought to stem from adolescents’ increased
sensation-seeking25,26 and reward-sensitivity27,28, as well as
decreased self-control29 and emotional regulation abilities,
especially in social contexts30–34. The prevalence of anxiety
disorders also peaks in adolescence, underscoring this develop-
mental period as a time of both vulnerability and opportunity for
intervention21.

Given that risky behavior during development has potentially
dire consequences, why does it persist across generations and
species35? Fear learning provides a useful example of potential
evolutionary benefits of seemingly costly behavior during
adolescence36,37. Across altricial species, whose young rely on
parents for survival, fear learning is suppressed in early infancy,
presumably to ensure caregiver attachment even in cases of
neglect or abuse38,39. In adolescence, fear of previously aversive
environmental contexts is diminished whereas fear of previously
aversive cues (i.e., conditioned stimuli) is amplified, a pattern that
may facilitate exploration and independence but also safety from
immediate threat40,41. Importantly, these survival-relevant beha-
viors do not develop in a vacuum. Rather, common genetic
variations42 and early life stressors43–45 affect how fear learning
changes over time, influencing risk for negative outcomes such as
anxiety disorders42. Just as developmental changes in fear
learning confer both costs and benefits, changes in risk taking
during adolescence are advantageous at the group level but in
some contexts may be detrimental for the individual24. The same
is likely true for other processes following their own nonlinear
trajectories across development, including decision making46,
reward learning47, and sensitivity to motivational48, appetitive,
and aversive cues49,50.

Although stereotypes can paint teenagers in an unflattering
light, recognizing that adolescent behaviors are single points
along broader, evolutionarily advantageous developmental tra-
jectories provides a more accurate, nuanced (and perhaps
sympathetic) picture. Analytic perspectives that consider beha-
vioral shifts during the transitions into and out of adolescence, as
well as their differential expression across environmental and
social contexts, are necessary for understanding how the brain
gives rise to behavior over time.

Dynamic brain systems. The nonlinear behavioral trajectories
observed across adolescence emerge from a cascade of hier-
archical changes in brain circuitry that were themselves shaped
over the course of our evolutionary lineage22. First to mature are
connections within subcortical-limbic circuits, followed by con-
nections between cerebral cortex and subcortical-limbic circuits,
and, finally, connections across cortex51,52.

Evidence for this developmental cascade comes from observa-
tions of earlier changes in synaptic morphology and neurotrans-
mitter systems in subcortical relative to cortical regions and an
earlier plateau in synaptic formation and subsequent pruning in
unimodal sensory, motor, and subcortical regions relative to
multimodal association areas53,54. These processes likely con-
tribute to gray matter volume and cortical thickness changes
observed during adolescence and early adulthood55–58 that end in
the association cortices59–61. Selective degradation of excitatory
synapses also affects the excitatory-inhibitory balance across
cortex, an equilibrium related to shifts in cognitive abilities and
behavior51,62. The relative decrease in prefrontal behavioral
regulation is reflected in changes in dopamine receptor density,
related to learning and reward prediction, that peak in the
striatum during adolescence but not until early adulthood in the
prefrontal cortex63–65.

Structural and functional brain connections follow similar
patterns of development, providing additional evidence for a
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hierarchically emerging system first dominated by mature
subcortical circuits and then balanced through interactions with
late-maturing prefrontal systems51,66. As early as 1920, Flechsig’s
histological studies revealed protracted myelin development in
association cortex67,68. Reflecting this property of brain matura-
tion, diffusion tensor imaging studies, which measure water
diffusion modulated in part by axon myelination, suggest that the
development of posterior cortical-subcortical tracts precedes that
of fronto-subcortical tracts supporting top-down control of
behavior69–72. Functional brain connectivity studies support
these results, observing a general pattern of weakening short-
range functional connections followed by strengthening long-
range cortical connections across adolescence73–76.

Altogether, this work provides evidence for the progressive
development of connectivity within and between subcortical and
cortical brain regions, and offers a plausible neurobiological
account of nonlinear trajectories in risk-related processes such as
self-control, reward sensitivity, and emotion regulation. Emo-
tional reactivity, for example, may arise from the early dominance
of subcortical over cortical circuitry, later waning as cortical-
subcortical circuits related to top-down control, and then cortical
circuits involved in processes such as cognitive reappraisal,
mature during adolescence and adulthood52. More broadly, these
findings highlight how approaching the study of adolescence
from a dynamic, multimodal, circuit-based perspective (rather
than a view that focuses on snapshots of individual brain regions
in isolation) can inform our understanding of self-regulation and
risk-taking behavior during development51,52.

Individual differences. Although neurobiology and behavior
tend to unfold in predictable ways across development, significant
individual differences lie atop this scaffolding. This variability
applies not only to an adolescent’s current behavioral and neural
characteristics, but also to their past and future phenotypes. That
is, while one stereotype of adolescents is that they engage in risky
behaviors such as binge drinking, there are plenty of young
people who do not fit this mold. Even among adolescents who
drink excessively, some may go on to develop substance use
disorders, while others may never progress to disordered
drinking.

Despite recognizing these individual differences, in research,
clinical, legal, and educational practice, we often treat variance
around average behavioral and neural phenotypes and trajectories
as noise, or collapse it into discrete categories (e.g., patients vs.
controls, adults vs. minors, etc.). Although these groups can be
useful in practice, they do not necessarily represent biologically
plausible or informative qualitative distinctions. Instead,
approaches that characterize the normative trajectories of
dimensional behavioral and neural phenotypes, and investigate
how genetics and experience affect the timing and shape of these
curves, are necessary for understanding how these processes
unfold in development18,66,77. In addition to informing models in
basic science, individual differences approaches can provide
clinically applicable insight into the factors that confer risk for
and resilience to psychopathology44 and guide personalized
treatments21.
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Fig. 1 Existing, ongoing, or planned data sets including structural and/or functional neuroimaging data from ~500 or more children or adolescents. These
data sets, which represent both prospective and retrospective samples, include the Adolescent Brain Cognitive Development study83 (ABCD; USA),
Healthy Brain Network82 (HBN; USA), Lifespan Human Connectome Project Development80 (HCP-D; USA), National Consortium on Alcohol and
NeuroDevelopment in Adolescence149 (NCANDA; USA), Pediatric Imaging, Neurocognition, and Genetics study150 (PING; USA), Philadelphia
Neurodevelopmental Cohort151 (PNC; USA), Saguenay Youth Study152 (SYS; Canada), High Risk Cohort Study for the Development of Childhood
Psychiatric Disorders153 (HRC; Brazil), Autism Brain Imaging Data Exchange81 (ABIDE; USA, Germany, Ireland, Belgium, Netherlands), Enhancing
NeuroImaging Genetics through Meta-Analysis154 (ENIGMA; worldwide), IMAGEN79 (England, Ireland, France, Germany), Dutch YOUth cohort (part of
the Consortium on Individual Development, or CID; Netherlands), Generation R Study155 (Gen R; Netherlands), NeuroIMAGE156 (follow-up of the Dutch
arm of the International Multicenter ADHD Genetics, or IMAGE, project; Netherlands), Consortium on Vulnerability to Externalizing Disorders and
Addictions (c-VEDA; UK, India), Consortium for Reliability and Reproducibility157 (CoRR; China, USA, Canada, Germany), and ADHD-200108 (USA, China).
Although samples are distributed across the globe, African, Middle Eastern, South Asian, Oceanian, and Central and South American populations are
underrepresented. Data collection efforts in these regions and others will be important for ensuring diverse, representative samples that will allow
researchers to uncover general principles of the developing brain. (Map outline courtesy of Wikimedia user ‘Loadfile’ and is licensed under a CC BY SA 3.0
license)
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Predictive modeling and its importance in developmental
neuroscience
Studying developmental trajectories, dynamic brain systems, and
individual differences is becoming increasingly feasible with the
rise of high-throughput data collection efforts78. Longitudinal and
cross-sectional samples of neuroimaging data from children and
adolescents, such as the IMAGEN study79, Lifespan Human
Connectome Project Development80, Brain Imaging Data
Exchange81, Healthy Brain Network Biobank82, and Adolescence
Brain Cognitive Development Study83, have accelerated advances
in basic and applied neuroscience (Fig. 1). Collaborative initia-
tives have also helped democratize data access, improve statistical
power, and facilitate transparent, reproducible research. The
unique challenges posed by large-scale imaging samples, such as
how to perform adequate quality control84, account for scanner
and site effects85,86, and disentangle meaningful explanatory
power from statistical significance87, are also motivating the
development of new data collection88, preprocessing84, and
analytic89 approaches.

Large neuroimaging data sets are not only advancing under-
standing of how brain features relate to behavior at the group
level, but are also renewing focus on the individual. Although
cognitive and developmental neuroscientists have long been
interested in interindividual differences in abilities and behavior,
traditional experiments have focused on tens, rather than

hundreds or thousands, of participants. These small samples, with
tightly controlled demographics and circumscribed behavioral
phenotypes, are not always conducive to studying population
variability. Larger samples that capture a broad range of pheno-
types provide opportunities not only to describe brain–behavior
relationships, but to predict behavior from brain features at the
level of single individuals90,91. In this vein, researchers are
searching for neuromarkers, or brain features that predict beha-
vior, clinical symptoms, risk for or resilience against illness, or
treatment response5,6,92. The pursuit of generalizable neuro-
markers goes hand-in-hand with predictive modeling, a techni-
que that leverages brain–behavior relationships to predict
outcomes in novel individuals (Box 1 and Fig. 2).

The statistician George Box famously claimed that “all models
are wrong but some are useful”93. Models that predict outcomes
from previously unseen observations can be especially useful for
both scientific discovery and clinical decision-making5,6. From a
basic science perspective, predicting brain–behavior relationships
at the level of single subjects represents progress towards under-
standing how individual differences in brain features relate to
individual differences in cognition and behavior94. In addition,
because predictive models are by definition validated on inde-
pendent data, they can help foster robust, reproducible discoveries.

The benefits of individualized predictions of current and future
behavior are especially pronounced in developmental populations

Box 1 | Predictive modeling

Whereas descriptive modeling is the process of learning associations between features and outcomes, predictive modeling leverages these
relationships to make predictions from previously unseen data. Here, we reserve the term “prediction” for the output of models applied to novel
individuals rather than to describe brain–behavior correlations6. Although prediction pipelines are diverse, they typically involve four primary steps:
feature selection, model building, model testing, and prediction evaluation (Fig. 2). Importantly, both feature selection and model building are performed
using only training data. The resulting model is then applied unaltered to data from previously unseen individuals.
Feature selection: Methods for feature selection, the process of identifying model predictors, fall into two broad categories: hypothesis-driven and data-
driven approaches. Hypothesis-driven methods, which leverage existing knowledge to select features, are useful for testing predictions of existing
scientific models. Data-driven methods rely on statistical techniques to identify the features most relevant to individual differences in behavior. These
include filter methods (selecting features based relationships with behavior), wrapper methods (considering the predictive power of different feature
combinations, e.g., by systematically eliminating the least predictive features from a model), and embedded methods (incorporating feature selection
into model building, such as in lasso, elastic net, and ridge regression)147.
Both hypothesis- and data-driven approaches can incorporate predictors from multiple domains, including genetics, brain structure and function, and
behavior. The developmental trajectories of these measures, such as slope, intercept, or inflection point, may also be included. Systematically removing
a predictor or predictor class from a model can identify its unique contribution to predicting outcomes or behavior124. Although there is no theoretical
limit to the number of model features, it is best practice that they not exceed the number of observations to avoid modeling noise (overfitting)147.
Furthermore, it is important to consider the inherent tensions between interpretability, generalizability, and variance explained. While models with
fewer features may be easier to interpret, models with more features may capture additional variance in behavior and better characterize complex
multimodal neural phenotypes.
Model building: Following feature selection, the relationship between predictors and behavior is formalized with a classifier or regression model. The goal
of a classifier, such as a support vector machine or logistic regression, is to make discrete predictions. In neuroimaging research, classifiers represent
the vast majority of predictive models: Of all multivariate models in translational neuroimaging, 75% were built to distinguish patients from control
participants, whereas <3% were used to predict continuous symptom scores5. Regression models, including linear and support vector regression
algorithms, make continuous rather than categorical predictions, and can facilitate the development of transdiagnostic profiles of risk or resilience for
psychopathology18. Both classifiers and regression models can be applied to cross-sectional or longitudinal data, and the latter may incorporate
techniques such as growth–curve modeling to predict past or future change148.
Model testing: Model testing, or applying a predictive algorithm to test data to evaluate its generalizability, distinguishes predictive from descriptive
models. The utility of out-of-sample validation for protecting against overfitting and false positives has been discussed in detail elsewhere5,8. Here we
highlight one dimension along which potential predictive models vary: how far out of sample they generalize.
Internal validation (i.e., k-fold or leave-one-subject-out cross-validation) tests whether a model generalizes to novel individuals from a single data set.
Although internal validation is useful for optimizing models and conferring statistical rigor when multiple data sets are not available, it may generate
biased estimates of predictive power even when evaluated with permutation testing. Despite this limitation, the vast majority of predictive models in
neuroimaging have been tested with internal validation alone5. External validation tests whether a model generalizes beyond an initial training data set
to individuals from completely independent samples. Curated data sets and platforms such as OpenfMRI101 that encourage data and model sharing can
facilitate external validation and model refinement.
Prediction evaluation: Methods of model evaluation depend on whether predictions are discrete or continuous. Classifier output can be evaluated with
percent accuracy; sensitivity (the true positive rate, or percent of correctly identified patients) and specificity (the true negative rate, or percent of
correctly identified controls); and/or the positive predictive value (percent of individuals called patients who are true patients) and negative predictive
value (percent of individuals called controls who are true controls), which depend on disease prevalence. Regression model predictions can be assessed
with measures such as correlation or mean-squared error20. In all cases it may be useful to visualize all data points to fully evaluate relationships
between behavior and predicted scores or category labels.
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including adolescents. Because behavior and psychopathology are
best viewed as the result of developmental processes that unfold
across the lifespan21,66, characterizing individual arcs in
brain–behavior relationships over time can move us even closer
to understanding targets for change. Addressing the unique
challenges presented by prediction in adolescence, including the
complex dynamics linking neurobiological, behavioral, and
environmental change, can also help us better model periods such
as prenatal development, infancy, aging, and illness course.

Predictive models may not only contribute to progress in basic
developmental neuroscience, but may also have implications for
education, mental health, and legal policy. For example, early
predictions of behavioral impairments could facilitate earlier
treatments and improved health or educational outcomes6. Pre-
diction can also inform pressing policy questions, such as char-
acterizing the maturity of a particular individual in specific
contexts to inform whether they should be treated as an adult in
the justice system95,96. Thus, although machine-learning models
of behavior in development may be “wrong” in the sense that they
(necessarily) simplify complex neurobiological systems, they are
useful in that they can inform theories of how cognition and
behavior emerge from dynamic brain systems and speak to
general educational, medical, and social policies.

Predictive modeling and risk preference
One of the most common reprimands of wayward youths is: “Act
your age!” The phrase — immortalized in the English-language
idiom “act your age, not your shoe size” — is so ubiquitous that it
even makes an appearance in song lyrics from the musical artist
Prince. Its sentiment, however, is not straightforward. What does
it mean for an adolescent or young adult to act his or her age?
What counts as typical adolescent behavior? One possibility is
that “act your age” means, “make the most responsible decision
you have the capacity to make”. What this entreaty fails to
recognize, however, is that there is a discrepancy between how
responsibly adolescents and young adults can act in nonsocial,

unemotional situations relative to social or emotionally charged
contexts23,96.

Recent work from Rudolph and colleagues97 used predictive
modeling to identify the neural basis of this phenomenon, asking
whether functional brain organization looks less mature in
emotional contexts, and whether this effect relates to individual
differences in risky behavior. To this end, the authors calculated
functional connectivity patterns from fMRI data collected while
212 individuals aged 10–25 performed a go/no-go task in neutral
and emotional contexts. During emotional contexts, participants
anticipated an aversive noise or a reward; during neutral contexts
there was no anticipation of noise or reward. Using partial least
squares regression and 10-fold cross-validation, the authors first
built a model to predict chronological age from functional con-
nectivity patterns observed in the neutral context, and then
applied the same model to connectivity observed during the
emotion manipulation. They found that a prediction made from
an individual’s neutral context pattern (their “neutral brain age”)
was closer to their chronological age than a prediction made from
their emotional context pattern (their “emotional brain age”).
Further, both predictions tended to be younger than chron-
ological age in teens. Interestingly, there was a trend such that
adolescents were more likely to look younger in emotional rela-
tive to neutral contexts, but young adults who showed this pattern
had greater risk preference and lower risk perception97 (Fig. 3).
These findings illustrate the power of predictive modeling in
delineating dynamic developmental changes and individual dif-
ferences in risk taking behaviors.

In addition to helping explain why adolescents may not “act
their age” under emotional arousal, the Rudolph et al. findings
raise two notable points about predictive brain-based models in
general.

First, when the model of chronological age was wrong, it was
wrong in interesting ways: A young adult incorrectly predicted
younger in an emotional context was more likely to show a “risky
phenotype” than an individual incorrectly predicted older. Thus,
in some cases, model errors may be as informative as model
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successes in unraveling the brain bases of individual differences in
behavior.

Second, this model—along with many in cognitive and
developmental neuroscience—predicts outcomes from functional
connectivity data. Given that functional connectivity patterns can
be affected by cognitive state94, such models may not generalize
across contexts as well as models based on state-independent
features such as structural connectivity. (There is evidence,
however, that functional connectome-based models generalize
across task-engaged and resting states to predict abilities such as
attention98.) Thus, researchers hoping to build an age-prediction
model with optimal predictive power and generalizability may
consider including structural features that may capture more
“trait”-related than state-related variance as predictors (see the
section entitled “Include multimodal predictors”).

Finally, it is important to note that although here maturity was
assessed with a single number—akin to the difference between an
individual’s functional connectivity pattern and the age-typical
pattern—maturity does not lie on one continuum from “less”
(in emotional states) to “more” (in unemotional states).
Rather, temporal differences in the fine-tuning of interacting
neural systems with age and experience impact behavioral
phenotypes differently across development and vary across
individuals and contexts52. For example, Rudolph and colleagues
show that, on average, adolescents’ functional connectivity
profiles look younger in emotional contexts, and that young
adults who maintain this profile show riskier choices. This
work suggests that future studies can characterize each indivi-
dual’s unique multivariate maturational profile, that is, the age-
typicality of both their trait- and state-dependent neural
phenotypes.

The road ahead
Just as building predictive models can inform how we understand
risk taking in adolescence, studying adolescence can inform how
we approach behavioral prediction. Here, motivated by predictive
and descriptive models of development, we suggest eight direc-
tions for future research and highlight their importance for

understanding the neurobiological basis of adolescent behavior.
In particular, we encourage researchers to bridge data sets and
levels of analyses to develop generalizable, trajectory-based
models that predict current and future outcomes.

Leverage multiple data sets to build and validate predictive
models. Predictive models will be most theoretically and practi-
cally useful when they generalize beyond a single data set.
Although historically replication and external validation samples
were rare in fMRI due to cost and time constraints, open-access
data sets and a growing culture of data sharing are removing
barriers to access. Consider, for example, a group of investigators
interested in predicting impulsivity from resting-state functional
connectivity data. These researchers could download data from
the Human Connectome Project99, model the relationship
between impulsivity and functional connectivity, and then apply
their model to completely independent data from the Brain
Genomics Superstruct Project100 to evaluate its generalizability.

Training and testing predictive models with open data sets has
obvious benefits. For our hypothetical investigators, downloading
data may cost a fraction as much as running their own, smaller
fMRI study. Open data sets also tend to offer relatively large
sample sizes, capturing a wide range of behavior and allowing
researchers to fit complex models90 and refine model parameters
with nested cross-validation techniques. In addition, open
samples can provide opportunities to validate models across
unique behavioral measures. Although this approach can be
challenging given that different-but-related measures may index
similar-but-not-identical mental processes, it is a useful way to
investigate whether a model is capturing individual differences in
a specific performance metric or a general cognitive function. For
example, imagine that researchers build a model to predict
impulsivity questionnaire scores. If they apply this model to a
new sample in which impulsivity is measured with task
performance, predictive power will be limited by the ground-
truth relationship between questionnaire scores and task
performance. Successful generalization would provide additional
evidence that the model is related to individual differences in
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emotional contexts tend to show greater risk preference. This trend is most pronounced in young adulthood. Open bars represent individuals predicted
younger in emotional contexts, and filled bars represent individuals predicted older. Red bars show participants grouped by age predictions in positive
emotional contexts; blue bars show participants grouped by age predictions in negative emotional contexts. c Functional network nodes, scaled by their
importance in the age-prediction model, are grouped into the following functional networks defined previously13: default mode (red), dorsal attention
(green), frontoparietal (yellow), salience (black), cingulo-opercular (purple), visual (blue), subcortical (orange), and ventral attention (teal).
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impulsivity per se rather than individual differences in ques-
tionnaire scores alone. Thus, validating models in open data sets
can help establish their specificity and generalizability.

This should not be taken imply that targeted studies are
obsolete. Instead, experiments designed to probe specific
behavioral phenotypes with carefully designed psychological
tasks are crucial complements to open data analyses. Because
targeted studies have greater flexibility in the participants they
recruit, the behavioral measures they collect, and the tasks they
administer, they can help elucidate brain–behavior relationships
across populations and cognitive states. The impulsivity research
group, for example, could use data from a targeted study to ask
whether the same functional network that predicts impulsivity in
adults emerges in development to support children’s impulse
control. (In fact, they may not even need to collect their own data
to do so: Relevant targeted samples may be available on data-
sharing platforms such as OpenfMRI101.) Recent work examining
the heritability of the functional connectome used a similar
approach, building a model of siblingship in a locally acquired
data set, and validating it in the Human Connectome Project
sample102.

The sustained attention connectome-based predictive model is
another recent example of a model validated across multiple
imaging data sets98,103–107. This model was defined to predict
individual differences in the ability to maintain focus from
patterns of task-evoked and resting-state functional connectiv-
ity103. During fMRI, adult participants performed a challenging
sustained attention task, which presumably perturbed attention-
relevant neural circuitry and amplified behaviorally relevant
individual differences in functional connectivity. Models defined
on task-based data generalized to predict left-out participants’
task performance not only from data acquired as they were
engaged in the task, but also from data collected as they simply
rested. External validation with data from the ADHD-200
Consortium108 revealed that the same functional networks that
index attention task performance in adulthood predict ADHD
symptoms in childhood. Together these results suggest that a
common functional architecture supports sustained attention
across developmental stage (adults vs. children and adolescents),
clinical population (ADHD vs. control), and cognitive state (task
vs. rest)103.

Another targeted study provided insights into potential
mechanisms of the model’s predictive networks. That is, the
same sustained attention connectome-based predictive model
distinguished individuals who had taken a single dose of
methylphenidate (Ritalin) from controls, raising the possibility
that networks reflect the expression of neurotransmitters whose
extracellular concentration is modulated by methylphenidate104.

Although the anatomy of the sustained attention model is
complex, broad trends align with previous findings and suggest
new targets for intervention103. Functional connections between
sensorimotor and cerebellar regions predict more successful
sustained attention, whereas intra-cerebellar, intra-temporal, and
temporal-parietal connections predict less successful attention.
The participation of the cerebellum, implicated in ADHD109,110,
provides convergent evidence of its importance for attention.
Frontal and parietal regions traditionally related to attention and
attention impairments do appear in the predictive networks, but
they represent >35% of all connections in the model, accentuat-
ing the importance of data-driven approaches to feature selection.

In light of the sustained attention model’s out-of-sample
generalizability—a recent proof-of-principle example—we are
optimistic that, moving forward, a combination of high-
throughput data sets, targeted experiments, and “green science”
data sharing initiatives will facilitate robust, generalizable models
of cognitive abilities and behavior across development.

Develop trajectory-based models with longitudinal data. Neu-
robiology is inherently dynamic, and understanding any dynamic
process in terms of both description and prediction requires
appreciating changes over time. Atmospheric models, for exam-
ple, rely on dynamical equations to predict the weather111, and
stock forecasting models use measures of how a stock’s perfor-
mance has changed in the past to predict how it will perform in
the future. We often use longitudinal data to make folk psycho-
logical predictions, such as when we consider how quickly a
young tennis player climbed the rankings to estimate her shot at
winning Wimbledon, or use what we know about a friend’s recent
stress levels to predict how he will react in an emotional situation.

Models that predict behavior from brain features can also
benefit from longitudinal measures. Consider again the case of
attention deficits. Pioneering work applied growth–curve models
to cross-sectional and longitudinal data to establish delays in
cortical thickness and brain surface area maturation112,113, as well
as a down-shifted trajectory of cerebellar growth109 in children
and adolescents with ADHD (Fig. 4; but see refs. 114–117 for
methodological considerations related to effects of head motion).
Recent work also suggests that the age-typicality of a child’s or
adolescent’s functional connectivity patterns is related to their
psychiatric symptoms, including attention deficits118,119. In other
words, children and adolescents with attention deficits show
delayed maturational patterns of cortical thickness and functional
connectivity on average, and single snapshots of functional
connectivity predict single snapshots of attentional abilities in
novel individuals. It follows that a teenager’s unique trajectory of
functional connectivity and cortical thickness development may
provide more nuanced information about his or her attentional
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Fig. 4 a Developmental changes in cerebellar volume, cortical thickness,
and functional connectome distinctiveness in healthy individuals and
individuals with attention deficits. Curves are based on data from
refs. 109,113,119. b Developmental changes in a hypothetical adolescent with
attention deficits. A model trained to use the developmental trajectories of
multiple brain measures to predict future outcomes may best characterize
whether this individual’s deficits will improve, persist, or worsen. These
predictions may have implications for future treatment or cessation of
treatment
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abilities, predicting not only deficit severity, but also perhaps
symptom persistence or abatement. Developmental neuroscien-
tists pursuing trajectory-based predictive models can take
advantage of large longitudinal samples such as IMAGEN or
the open-access ABCD collection effort, and of biostatistical
techniques developed to predict clinical outcomes from long-
itudinal biomarkers120–123.

In addition to potentially increasing predictive power,
individualized trajectory-based models can inform theories of
how neural phenotypes give rise to typical and atypical
development. For example, although we know that delayed
cortical maturation trajectories characterize ADHD patients at
the group level113, it is not yet known whether a delayed
trajectory confers risk for attention deficits at the level of
individual subjects. Extending similar group-level findings to the
level of individual subjects can enhance the clinical utility of
research findings and inform novel interventions44.

Predict future outcomes. Models that predict current behavioral
tendencies are technically postdictive in that they make retro-
spective, rather than prospective, predictions. Although these
models can inform relationships between neural and behavioral
phenotypes, models that predict future outcomes may be most
useful in clinical and translational contexts, allowing for earlier
intervention, treatment, or cessation of treatment.

Recent work demonstrates that models that make future
forecasts are possible in the context of development. For example,
Whelan and colleagues124 modeled neural and psychological
profiles of alcohol misuse before its onset in adolescence. Using
measures of brain structure and function, personality, cognitive
abilities, environmental factors, life experiences, and genetic
variants, the authors built a model that distinguished adolescents
who go on to binge drink from those who do not. New findings
suggest that brain features can predict clinically relevant
outcomes even earlier in development: cortical surface area and
functional connectivity observed at 6–12 months, for example,
predict autism diagnosis at age two125,126.

In addition to models that predict the onset of clinical
symptoms or risky behavior, models that predict improvements
in clinical outcomes can help identify resilience factors for
psychopathology. Recently, Plitt and colleagues127 used func-
tional connectivity patterns to predict improvements in adoles-
cents’ and young adults’ autism symptoms. They found that
functional connectivity in the salience, default mode, and
frontoparietal networks, implicated in attention and goal-
directed cognition11,12, predicted symptom changes over time,
even when accounting for age, IQ, baseline symptoms, and
follow-up latency. Hoeft and colleagues128 also showed that
prefrontal activity and right superior longitudinal fasciculus
fractional anisotropy, but not reading or language test scores,
predicted which children with dyslexia would show reading skill
improvement over the course of 2.5 years. Functional and
structural measures, therefore, can predict not only the onset of
clinical symptoms, but also the abatement. In addition, brain
features can predict future outcomes over and above behavioral
measures alone—an important check when evaluating the utility
of predictive models.

In the future, trajectory-based approaches may better char-
acterize not just where a child or adolescent has been or is
currently, but where he or she is going. For example, models that
use a child’s developmental growth curve (e.g., precocious,
delayed, deviant, regressive, or resilient18,77,) to predict the
persistence or worsening of clinical symptoms could have
implications for treatment. Such models may also have implica-
tions for the cessation of treatment. A child with attentional
impairments but a resilient developmental trajectory for ADHD

could, for example, be titrated off of medication sooner than
otherwise possible (Fig. 4).

Include multimodal predictors. Models in human neuroscience
often focus on a single type of brain feature, such as functional
connectivity, to predict behavior. Although this approach is useful
for targeting specific neural mechanisms, constraining a model’s
feature space to a single modality may limit predictive power.
Open-access data sets including a variety of scan types (e.g., T1-
weighted, T2-weighted, proton density, T2-FLAIR, DTI, BOLD)
facilitate the construction of models incorporating a range of
features (e.g., myelination patterns, structural connectivity, task-
based and resting-state functional connectivity) to maximize
predictive power and uncover the unique contributions of dif-
ferent neural systems to current and future behavior.

Researchers have demonstrated that including multiple feature
classes improves individualized predictions in development not
just in theory, but also in practice. For example, in the first-ever
example of predictive modeling in developmental neuroscience,
Dosenbach and colleagues129 asked whether resting-state func-
tional connectivity patterns can predict an individual subject’s
chronological age. Using data from 238 individuals aged 7–30,
they trained models to predict categorical (child vs. adult) and
dimensional (chronological age) measures of maturity. A support
vector machine classifier correctly predicted whether an indivi-
dual was a child or an adult 91% of the time, and a support vector
regression algorithm accounted for 55% of the variance in
chronological age. Motivated to find the unique contribution of
multiple neuroanatomical features to age predictions, Brown and
colleagues130 built a model based on structural features that
accounted for 92% of the variance in age in a sample of 885
individuals aged 3–20. Interestingly, different features contributed
to model performance at different ages: Whereas T2 signal
intensity in subcortical ROIs was most diagnostic of age in
childhood, fiber tract diffusivity and subcortical structure volume
were most informative in adolescence, and ROI diffusivity was
most informative in adulthood130. Franke et al.131 additionally
found that predictions of a “brain age” model based on multiple
neuroanatomical features were significantly younger for adoles-
cents born preterm than full term. Although the variance
explained by functional connectivity and neuroanatomy cannot
be directly compared given differences in methodology and
participant samples across studies, multimodal approaches may
capture more variance in individual differences than do unimodal
ones.

Black box models that use an assortment of brain features to
predict outcomes may not necessarily provide interpretable links
between neurobiology and behavior. How can researchers unravel
the unique contributions of different feature classes to individual
differences? In modeling alcohol misuse in adolescence, Whelan
and colleagues provide one example of how this may be achieved.
To start, their model of future binge drinking included neural,
behavioral, lifestyle, and genetic factors. They then systematically
removed each feature class from the model to isolate its
contribution to predictive power. The approach revealed that life
history, personality, and brain variables were most uniquely
predictive124. Other approaches, such as dimensionality reduction
strategies and penalized regression methods, can also help
eliminate redundant predictor variables and identify those most
tightly coupled with individual differences in behavior.

Although hypothesis-driven modeling approaches that use a
single feature or feature type to predict outcomes can advance
knowledge about the neurobiological bases of behavior, multi-
variate models that incorporate both structural and functional
features may improve prediction accuracy and offer converging
insights (e.g., Fig. 4).
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Continue to focus on dimensional outcomes. Centuries of
observation and research tell us that cognitive abilities and
behavior vary along a continuum at every stage of life. Consider
the example of impulsivity: Although variability in impulsivity
can be captured, to some degree, with a categorical measure like
an ADHD diagnosis, it may be better quantified with dimensional
measures such as symptom severity or impulse-control task
performance.

When characterizing brain–behavior relationships in develop-
ment, the costs and benefits of using categorical vs. dimensional
measures should be carefully considered. Although categorical
labels align with the current diagnostic system in clinical
medicine and can help make results easier to interpret and
present, dichotomizing continuous variables can reduce statistical
power, obscure nonlinear relationships between variables and
outcomes, and increase the risk of false positive results132,133. In
addition, categorical models are often built on balanced samples
of patients and control participants to avoid biased predictions,
but this ratio rarely reflects real-world illness prevalence. Thus,
reported measures of a model’s sensitivity and specificity may
exaggerate its translational utility, and positive and negative
predictive values may be more useful measures of performance134

(see Box 1). Dimensional measures may better characterize the
full range of behavior and clinically relevant outcomes, especially
in development, when small differences in behavioral or neural
phenotypes can have important implications for treatment.

Although dimensional measures are frequently used to
characterize individual differences in cognitive and developmen-
tal neuroscience and psychology18,135, such approaches are
infrequent in predictive modeling5. Models that predict chron-
ological age97,129–131, fluid intelligence136–138, attention103,118,139,
and improvements in math skills140 and autism symptoms127,
however, demonstrate that such approaches are powerful ways to
identify robust transdiagnostic biomarkers of abilities and
behavior.

Looking ahead, modeling approaches that consider multiple
dimensional approaches at once, or those that identify latent
distributions from which behavior emerges, may help delineate
subtypes of clinical disorders and improve outcome predictions
and treatment17. Regression models that predict dimensional
outcomes and consider subgroups that make up heterogeneous
patient populations will also continue to be valuable complements
to classifiers that predict group membership.

Establish boundary conditions. Given that brain structure and
function change dramatically across development, models trained
in one developmental period (e.g., adulthood) should not always
generalize to others (e.g., adolescence). Rather, upper bounds on
models’ predictive power will be influenced by the reliability of
the brain and behavioral measures, their stability across devel-
opment, and the developmental trajectories of the underlying
neurobiology.

Testing models across different developmental periods can help
identify critical change points in the relationship between
neurobiological processes and behavior. As a concrete example,
the sustained attention connectome-based predictive model
introduced earlier generalized from an adult to a developmental
sample98,103. The model, however, did not perform equally well
in all age groups. Although predictions were significantly related
to ADHD symptoms in children 8–9 (n = 30), 10–11 (n = 28), and
12–13 (n = 41), they did not reach significance in adolescents
14–16 (n = 14; unpublished results). Although certainly not
conclusive given the exploratory nature of this analysis and the
fact that predictive power is influenced by factors including
sample size, data quality, and group variance in ADHD scores,
this outcome motivates future research by tentatively suggesting

that the functional architecture of attention in adolescence may
differ from that in childhood and adulthood. These findings also
underscore the importance of understanding the nonlinear
expression of dynamic and hierarchical changes in brain features
and behavior with development.

Moving forward, it will be important to tailor predictive
models to particular scientific questions and/or practical goals.
For example, models trained on one developmental period and
tested on another can inform questions about common functional
mechanisms, whereas models trained on a range of age groups
may better characterize trajectories in brain–behavior relation-
ships and offer greater predictive power across the lifespan.
Further, it is important to keep in mind that because children and
adolescents are not simply “little adults” in terms of either
neurocircuitry or behavior, predictions in these populations will
likely often rely on development-specific models rather than
models defined in adults and applied to developmental data.
Future work testing whether models are valid across develop-
mental stages, clinical populations, and cognitive or affective
states can provide additional insight into the scope of their
generalizability.

Bridge statistical predictability and biological plausibility.
Predictive modeling in developmental neuroscience has two
parallel goals: to discover how the brain gives rise to behavior
across development, and to identify practically useful neuro-
markers of behavior and clinically relevant outcomes. It is not
always obvious, however, how models that achieve the second
goal can help make progress toward the first. Instead, predictive
models are sometimes considered opaque “black boxes” far
removed from biology and uninformative about the neural cir-
cuits supporting behavior. Some models are more susceptible to
this concern than others. Supekar and colleagues140, for example,
used hippocampal volume and functional connectivity to predict
children’s response to math tutoring. In doing so, they provide
clear evidence of the role of learning- and memory-relevant brain
regions in math skill improvements. On the other hand, models
that use deep neural networks to generate predictions may
sometimes preclude easy (linguistic) interpretations of relation-
ships between predictors and outcomes. As bigger data sets and
more sophisticated algorithms result in greater and greater pre-
dictive power, it will be important for researchers to keep the first
goal of modeling—advances in basic science—in their sights.

Large-scale data sets that include behavioral, neuroimaging,
and genetic data provide exciting opportunities for researchers to
explore the biological plausibility of predictive models. To
illustrate the promise of approaches that link levels of analysis,
let’s return to the hypothetical research group interested in
impulsivity. Imagine that the research team identifies a pattern of
functional connectivity that predicts impulsivity across indivi-
duals. A subsequent issue of clear importance is the extent to
which this network reflects the underlying function of molecular-
genetic mechanisms. To get initial traction on this question, the
researchers could ask whether this network is heritable, or
whether structural genetic variants predict its function, which in
turn predicts impulsive behavior. They could also pursue cross-
species work, asking whether important model features map on to
known anatomical circuits, or whether hypothetical genes that
impact network function in humans affect behavior in rodents.
Thus, approaches that combine data sets to bridge levels of
analysis and link genotype, neural phenotype, and behavior
across development may suggest new etiological hypotheses and
possible treatment targets of cognitive function and dysfunction.

Acknowledge limitations to advance understanding. Enthu-
siasm for large neuroimaging data sets and individualized
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predictions should be coupled with realistic assessments of
potential pitfalls related to methodology, interpretation, and
implementation. Carefully considering these limitations,
researchers are already beginning to develop new analytic
approaches and field-wide standards to address
them84,87,89,141,142.

Methodological pitfalls can erode the impact of predictive
models. For example, because head motion introduces significant
confounds in both structural and functional imaging data,
especially in developmental populations115,143, up-to-date data-
collection and preprocessing techniques are necessary for
ensuring that predictions do not rely on motion-induced artifacts.
In addition, just as descriptive models may reflect sample noise,
predictive models may be overfit to training data. Although
nested cross-validation techniques can help protect against
overfitting, external validation is critical for testing model
generalizability (Box 1). Finally, it is important that methodolo-
gical choices be tailored to research goals. For example, is the goal
to predict current phenotypes or future change? To make
absolute predictions (e.g., that a child will grow to be six feet
tall) or relative ones (that he or she will be in the 95th percentile
for height)? To predict behavior from functional brain features
observed during task engagement, or to test whether a cognitive
process can be measured in the absence of an explicit task116? To
maximize subgroup-level accuracy, or population-level general-
izability? To prioritize statistical predictability, biological plausi-
bility, or feature weight interpretability? Mismatches between
study methods and goals can undermine the usefulness of
predictive models.

Working with large data sets also poses several challenges to
interpretation. For example, when samples are large enough,
brain–behavior relationships with even tiny effects sizes may
reach statistical significance. Although such effects may be
interesting from a basic science perspective if robust to noise
and replicable, they are unlikely to offer much clinical or practical
benefit in the near term87. In addition, although large data sets
may be more representative of the general population than
smaller samples, they may offer a “false sense of security” since
they can still suffer from selection bias and skewed demo-
graphics144 and are not equally distributed across the globe (See
Fig. 1). The careful evaluation of both statistical and clinical
significance will be important for establishing scientifically valid,
practically useful models.

Although neuroimaging-based predictive models have the
potential to offer significant benefits, challenges can arise when
applying them in clinical contexts. Recent work has highlighted
the “perilous path from publication to practice”, outlining a
variety of scientific, implementation, and business-related obsta-
cles145. As scientists pursue individualized predictions, close
collaborations with clinicians, bioethicists, industry professionals,
and regulatory bodies will be necessary for effectively translating
models to real-life patient-care settings141,146.

Finally, as models begin to make their way from bench to
bedside, it is important to consider their ethical implications,
especially in the context of development. First, researchers need
to keep in mind—and clearly communicate to participants,
patients, and the public—that predictive models are probabilistic
rather than deterministic in nature, and, just like traditional pen-
and-paper tests, will never perfectly predict abilities or behavior.
Predictions are thus best considered tools for scientific discovery
and opportunities for informing clinical decision-making rather
than portents of the future. Moving forward, the potential
benefits of predictive modeling in development must be
continuously evaluated in light any of potential risks to privacy
or hyperbolic claims about our ability to predict the future.

Conclusions
A rich tradition of research in human neuroimaging has made
progress in explaining the neurobiology of cognition and beha-
vior. Less attention, however, has been devoted to predicting
cognitive abilities and behavior from brain features. Here we
argue that predictive modeling approaches that forecast outcomes
at the level of individuals are important complements to work
describing brain–behavior relationships at the group level, espe-
cially in the context of adolescence.

Not only can predictive models enhance the clinical and
translational utility of neuroimaging research, they can also
account for critical features of behavior often overlooked in
cross-sectional studies of the developed adult brain: develop-
mental trajectories, hierarchically emerging brain systems, and
individual differences in both. So far, investigating when models
accurately predict behavior and when they fail to do so has
illuminated potentially adolescent-specific34 changes in beha-
vioral and neural phenotypes related to risk-taking and attention.
Looking ahead, models that offer probabilistic insights into
individuals’ current and future behavior from their past devel-
opmental brain trajectories have the potential to provide deep
insights into human brain development and function in both
health and disease.
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