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ABSTRACT
Oncolytic peptides are highly effective on remodeling the 
tumor microenvironment and potentiating the anticancer 
immunity through multiple mechanisms, particularly by 
inducing immunogenic cell death. Intriguingly, a recent study 
demonstrates that LTX- 315, one of the most promising 
and extensively studied oncolytic peptides, inhibits PD- L1 
expression via ATP11B, thus enhancing the effectiveness of 
cancer immunotherapy by targeting the PD- 1/PD- L1 axis. 
Therefore, this commentary discusses the broad effects and 
perspectives of oncolytic peptides on anticancer immunity, 
further highlighting the potential issues and directions of 
oncolytic peptides in cancer immunotherapy.

ONCOLYTIC IMMUNOTHERAPY
Physicians and radiologists noticed decades ago 
that local chemical or physical treatments such 
as radiotherapy can lead to the regression of 
distant and untreated malignant lesions.1 It was 
suggested that the destruction of local tumor 
cells has unique mechanisms and broad influ-
ence on the activation of body immune system 
that induces abscopal effects for the immune 
elimination of the tumor and long- term 
benefits in patients with cancer.2 Today, this 
concept has been supported by a wide range 
of studies, from preclinical models to clinical 
trials. Furthermore, local treatments have been 
constantly optimized for highly efficient and 
systemic immune- stimulatory effects. Among 
numerous strategies, the oncolytic immuno-
therapy emerges as one of the most prom-
ising approaches to boost antitumor immune 
response.

Viral and non- viral oncolysis have been widely 
investigated in cancer immunotherapy. Viral 
oncolysis, also known as oncolytic virus therapy, 
is considered as a major milestone in the devel-
opment of immunotherapeutic approaches. 
Previous clinical trials showed that the local 
injection of oncolytic viruses induces a robust 
and systemic antitumor immune response, 
especially when combined with immune check-
point inhibitors.3 In 2015, the Food and Drug 
Administration approved talimogene laher-
parepvec, a genetically modified virus encoding 

granulocyte- macrophage colony- stimulating 
factor, as the first oncolytic virus for the treat-
ment of inoperable melanoma.4 However, 
the use of the oncolytic viruses is still limited 
because of multiple concerns, particularly in 
their undetermined safety, high cost and storage 
requirements, as well as complex administra-
tion procedures. In recent years, multiple forms 
of non- viral oncolysis have been reported and 
attracted increasing attention. The approaches 
include but are not limited to: (1) hyperthermic 
methods, causing coagulative necrosis in the 
central zone of tumors with a complete denatur-
ation of the proteins (radiofrequency ablation, 
microwave ablation, laser therapy, and high- 
intensity focused ultrasonography); (2) cryo-
therapy, causing tumor cell death by freezing 
and thawing the tumor tissues with protein 
denaturation in a less extent; (3) irreversible 
electroporation, causing membrane rupture 
with a less change of antigen conformation by 
the delivery of high- voltage electrical pulses; 
(4) electrochemotherapy, causing both direct 
and indirect cellular injury by permeabilizing 
cells with electrodes following the application 
of chemotherapy; (5) photodynamic therapy, 
causing tumor cell apoptosis by inducing a high 
amount of reactive singlet oxygen using photo-
sensitizer agents and high- intensity light; (6) 
local chemical agent injection, causing onco-
lytic cell death by cytotoxic chemical agents 
injected directly into the tumors (transarterial 
chemoembolization, radioembolization, and 
oncolytic peptides).4 These non- viral tech-
niques not only cause distinct types of tissue 
destruction, inducing variable antitumor immu-
nity compared with oncolytic virus therapies, 
but they are also relatively safe, inexpensive, and 
easily accessible.

ANTITUMOR IMMUNITY INDUCED BY ONCOLYTIC 
PEPTIDES
The oncolytic peptide is one of the most prom-
ising chemical oncolytic agents derived from 
natural antimicrobial peptides. These peptides 
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include [D]-K3H3L9, LL37, Pardaxin, NK- 2, AMP CSP32, 
RT53, LTX- 315, LTX- 401, DTT- 205, and DTT- 304, which are 
predominantly cytotoxic and can be injected directly into 
the targeted lesions.5 Despite the similar cytolytic effects, 
the oncolytic peptides are usually characterized by their own 
tropism for malignant cells due to their different affinity for 
various cellular membranes, including plasma membranes 
(RT53, LTX- 315, HNP1- 3, pardaxin, and AMP CSP32), 
mitochondrial membranes (LTX- 315 and LL37), endo-
plasmic reticulum membranes (LTX- 401 and Pardaxin,), 
Golgi membranes (LTX- 401), and lysosome membranes 
(LTX- 401, DTT- 205, and DTT- 304).4 5 Numerous pieces of 
evidence demonstrated that the oncolytic peptides exert 
anticancer activity by activating durable antitumor immunity 

and promoting immune infiltration in tumors through 
multiple mechanisms in different malignancies. Among the 
above promising oncolytic peptides, LTX- 315 is the most 
extensively investigated agent in various malignancies due 
to its outstanding effect on promoting anticancer immunity 
and tumor growth inhibitions (Figure 1).

Promotion of positive immune regulation
The local injection of oncolytic peptides is able to inflame 
the tumor microenvironment, partially by promoting 
positive immune regulation. Such effects on the activa-
tion of the immune system and the enhancement of the 
immune response are largely derived from the ability of 

Figure 1 Multiple mechanisms of LTX- 315 to confer anticancer immunity. LTX- 315 treatment mimicks immune checkpoint 
blockade by inhibiting ATP11B/CMTM6 complex to promote PD- L1 lysosome- dependent degradation in tumor cells, meanwhile 
generating immunogenic oncolysis by inducing immunogenic cell death with the release of different types of DAMPs, including 
ATP, ANXA1, and HMGB1, as well as the exposure of CALR. These therapeutic responses cause both inhibition of negative 
immune regulation and promotion of positive immune regulation, and eventually cocontribute to the favorable immunobiological 
outcomes relevant to treatment success, including enhanced DC recruitment, homing, and maturation, as well as improved T 
cell priming, infiltration, and activation. ANXA1, annexin A1; APC, antigen- presenting cell; CALR, calreticulin; DAMP, danger- 
associated molecular pattern; DC, dendritic cell; GZMB, granzyme B; HMGB1, high mobility group B1; IDO, indoleamine 
2,3- dioxygenase; LAG3, lymphocyte activation gene- 3; MHC I/II, major histocompatibility complex I/II.
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the oncolytic peptides to induce immunogenic cell death 
(ICD).

ICD is characterized by the release of different types 
of danger- associated molecular patterns (DAMPs), 
including ATP, annexin A1, and high mobility group 
B1 (HMGB1), as well as the exposure of calreticulin.6 
These signals operate on a series of receptors on antigen- 
presenting cells to promote antigen presentation, leading 
to the activation of tumor- targeted T cells. The ability of 
various oncolytic peptides to promote positive immune 
regulation through the induction of ICD has been 
investigated in multiple mouse tumor models. LTX- 315 
treatment induces ICD of melanoma tumor cells with 
an enhanced release of HMGB1.7 The injection of LTX- 
315 stimulates T- cell infiltration and results in complete 
regression of the tumors, and mice treated with LTX- 315 
are protected from tumor cell rechallenge compared 
with non- treated control animals. In addition, ELISA 
analysis of the mouse plasma revealed that LTX- 315 treat-
ment leads to an increased level of IL- 6. Similar effects 
are also found using RT53, which is also reported to 
boost antitumor immunity by inducing ICD of melanoma 
cells.8 Moreover, the local administration of LTX- 401 in 
hepatocellular carcinoma induces an increased release of 
DAMPs and enhances tumor- specific immune responses.9 
LTX- 401 treatment inhibits the growth of both local and 
distal metastatic lesions, indicating a robust abscopal anti-
tumor effect. Furthermore, the injection of HNP1- 3 in 
soft tissue sarcoma leads to ICD of tumor cells, increased 
immune infiltration in the tumors, and inhibition of 
tumor growth.10

In addition to the induction of ICD, the administra-
tion of such oncolytic peptides results in the differenti-
ation and maturation of proinflammatory immune cells. 
The intratumoral injection of LTX- 315 in breast tumor 
models leads to the reconfiguration of the tumor immune 
microenvironment and the inhibition of tumor growth 
in an NK- cell- dependent manner.11 Moreover, in vitro 
analyses showed that CSP32 regulates the polarization of 
murine macrophages and induces M1 macrophages with 
enhanced production of proinflammatory cytokines.12 
Furthermore, the administration of LL37 triggers the 
activation and maturation of dendritic cells (DCs), by 
enhancing the transport of self- RNA released by dying 
cells to the endosomal compartments of DCs.13

Inhibition of negative immune regulation
The local injection of oncolytic peptides also leads to 
the inhibition of the negative immune regulation at the 
molecular and cellular levels, hence reprograming the 
tumor immune microenvironment and inducing durable 
antitumor immunity.

Tumors upregulate a variety of immunosuppressive 
molecules to escape the immune surveillance, while 
the oncolytic peptide therapy stimulates the antitumor 
immune response by targeting these molecules. LTX- 315 
has recently been found to downregulate the expression 
of PD- L1, a representative immune- inhibitory checkpoint 

molecule, and enhance CD8+ T cell infiltration in pancre-
atic cancer.14 Interestingly, ATP11B has been identified 
as a potential target of LTX- 315 for the regulation of 
PD- L1 expression. Briefly, in vitro analyses revealed that 
ATP11B interacts with PD- L1 in a CMTM6- dependent 
manner. ATP11B depletion induces the downregulation 
of PD- L1 through the lysosomal degradation mediated 
by CMTM6. Consistently, rescue assays demonstrated that 
LTX- 315 downregulates PD- L1 expression by inhibiting 
the ATP11B/CMTM6/PD- L1 axis in pancreatic cancer. 
The in vivo models further confirmed the ability of LTX- 
315 to reactivate the tumor immune microenvironment 
and its synergic effect with PD- 1/PD- L1 targeting therapy 
on tumor growth. Additionally, the injection of pardaxin 
in oral squamous cell carcinoma models induces a robust 
anticancer immunity by reducing the levels of the immu-
nosuppressive PGE2, another representative immune- 
inhibitory checkpoint molecule. Pardaxin treatment 
synergizes with chemotherapy and significantly inhibits 
tumor growth in dimethyl benzanthracene- induced 
tumor model.15

In addition to the inhibition of immunosuppressive 
molecules, oncolytic peptides play a critical role in the 
depletion of immunosuppressive cells, including regula-
tory T cells (Tregs), suppressive myeloid cells, regulatory 
B cells, and myeloid- derived suppressor cells (MDSCs), 
so as to reshape the tumor microenvironment toward an 
immunoactive profile. According to a previous study, the 
intra- tumoral injection of LTX- 315 significantly reduces 
the recruitment and accumulation of Tregs and MDSCs 
in mouse sarcoma models, although the infiltration of 
DCs does not significantly change. Such depletion of 
immune suppressive cells further facilitates the accumu-
lation of polyfunctional T cells, sensitizing the tumor 
response to CTLA- 4 blockade.16 Notably, the abundant 
reduction of Tregs results in a lower level of PD- 1 expres-
sion in effector T cells, contributing to a better response 
to PD- 1 blockade in LTX- 315 treatment.

Potential issues and directions of oncolytic peptides in clinical 
practice
Based on the promising therapeutic effects of LTX- 315 
in preclinical models, several exploratory clinical inves-
tigations have been conducted on distinct malignancies. 
Jebsen et al reported a 29- year- old woman with a desmoid 
tumor treated with LTX- 315.17 The injection of LTX- 
315 under ultrasound guidance induced a significant 
shrinkage of the tumor, with an increased CD8+ T cell 
infiltration. Spicer et al reported the first phase I clinical 
trial using this oncolytic peptide, in which 39 patients 
diagnosed with refractory solid tumors were enrolled 
and received LTX- 315 treatment.18 Stable diseases were 
achieved in nearly half of the patients and 82% expe-
rienced abscopal effect in at least one single lesion. 
However, according to the Immune- Related Response 
Criteria, no objective response was observed in patients 
treated with LTX- 315, indicating the limited effects on 
clinical tumor inhibition.
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Despite the encouraging results in the use of onco-
lytic peptides in preclinical models, the unsatisfying 
outcomes in the clinical application of oncolytic 
peptides may be due to the following reasons: (1) The 
mechanisms underlying the ability of oncolytic peptides 
to reprogram immune microenvironment are still not 
fully understood, particularly those independent from 
membrane- targeted lytic effects. For instance, the alter-
ations in the cGAS- STING signaling pathway or domi-
nant immune checkpoint molecules in tumor cells 
resistant to oncolytic peptide treatments need to be 
further addressed. (2) The heterogeneity of the patient 
populations, the complexity of tumor immune micro-
environment, and the diversity of targets highlight the 
importance of potential biomarkers in governing the 
treatments with oncolytic peptides. The identification 
of biomarkers for antitumor immune responsiveness 
may help the development of an appropriate thera-
peutic regimen and eventually improve the overall 
efficacy of the oncolytic peptide treatment in clinical 
practice.19 (3) The intratumoral injection, currently 
the most common approach for oncolytic peptide 
delivery, limits the application of oncolytic peptides 
in tumors with deep locations, although ultrasound 
and CT may provide some guidance. New delivery 
approaches, such as intravenous delivery systems based 
on tumor- targeting nanocarrier, may represent a pref-
erable route of administration in patients with tumors 
in deep locations.

Altogether, cancer immunotherapy based on onco-
lytic peptides is at a preliminary stage in clinical practice. 
Further studies focusing on mechanism demonstration 
for enhancing their efficacy, biomarker identification 
for optimizing their regimen, and approach improve-
ment for expanding their application may jointly facil-
itate the translation of the use of oncolytic peptides to 
the clinical setting in the future.
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