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Classification and Visualization 
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Recently, deep-learning-based approaches have been proposed for the classification of neuroimaging 
data related to Alzheimer’s disease (AD), and significant progress has been made. However, end-to-end 
learning that is capable of maximizing the impact of deep learning has yet to receive much attention 
due to the endemic challenge of neuroimaging caused by the scarcity of data. Thus, this study presents 
an approach meant to encourage the end-to-end learning of a volumetric convolutional neural network 
(CNN) model for four binary classification tasks (AD vs. normal control (NC), progressive mild cognitive 
impairment (pMCI) vs. NC, stable mild cognitive impairment (sMCI) vs. NC and pMCI vs. sMCI) based 
on magnetic resonance imaging (MRI) and visualizes its outcomes in terms of the decision of the CNNs 
without any human intervention. In the proposed approach, we use convolutional autoencoder (CAE)-
based unsupervised learning for the AD vs. NC classification task, and supervised transfer learning is 
applied to solve the pMCI vs. sMCI classification task. To detect the most important biomarkers related 
to AD and pMCI, a gradient-based visualization method that approximates the spatial influence of 
the CNN model’s decision was applied. To validate the contributions of this study, we conducted 
experiments on the ADNI database, and the results demonstrated that the proposed approach 
achieved the accuracies of 86.60% and 73.95% for the AD and pMCI classification tasks respectively, 
outperforming other network models. In the visualization results, the temporal and parietal lobes were 
identified as key regions for classification.

To date, the analysis of neuroimaging data, such as those obtained from magnetic resonance imaging (MRI), pos-
itron emission tomography, functional MRI (fMRI), and diffusion tensor imaging, has primarily been performed 
by experts such as radiologists and physicians, thus requiring a high degree of specialization. Alzheimer’s disease 
(AD), characterized by the progressive impairment of cognitive and memory functions, is the most common 
type of dementia that often appears in persons over 65 years old1. To slow the progression of dementia, timely 
treatment is crucial, which requires the early diagnosis of AD and its prodromal stage, mild cognitive impairment 
(MCI). To this end, a reliable diagnosis from brain imaging is necessary, and a robust diagnostic system aided 
by the analysis of neuroimaging data would allow for a more informative and reliable approach and could also 
potentially increase diagnostic accuracy. Traditional analytic methods for exploring neuroimaging biomarkers for 
the analysis of neuropsychiatric disorders have been based on mass univariate statistics under the assumption that 
different regions of the brain act independently. However, this assumption is not appropriate given our current 
understanding of brain functioning2.

Recently, machine learning (ML) methods that can take the intercorrelation between regions into account 
have become an attractive and fundamental element of computer-assisted analytical techniques3,4, and has been 
widely employed for the automated diagnosis and analysis of neuropsychiatric disorders. Although various 
machine-learning models have been used for automated neurological disorder prediction, two major research 
directions involve support vector machine (SVM)-based and deep learning (DL)-based diagnosis models. In this 
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regard, extensive reviews related to medical imaging using machine learning techniques have been published5,6. 
SVM-based, automated diagnostic models for neuropsychiatric disorders7–9 tend to use hand-crafted features 
due to their inability to extract adaptive features. The functional connectivity y (FC) patterns representing brain 
region correlations are a popular feature of existing SVM-based diagnosis models. Individual FC patterns are 
extracted for pairs of segmented brain patches defined by automated anatomical labeling. Despite its popularity, 
SVM has been criticized for its poor performance on raw data and for requiring the expert use of design tech-
niques to extract informative features10,11.

In contrast, DL models allow a system to use raw data as input, thereby allowing them to automatically dis-
cover highly discriminative features in the given training data set12. This end-to-end learning design philosophy 
is the fundamental basis of DL. The primary advantage of end-to-end learning is that all steps in the process-
ing pipeline are simultaneously optimized, potentially leading to optimal performance. This paper proposes an 
end-to-end hierarchy for the domain of brain MRI analysis, as shown in Fig. 1. The levels of the hierarchy range 
from 1 (none) to 4 (full). Most of the existing studies use Level 1 or Level 2, whose performances depend heavily 
on specific software and sometimes even on the hyper parameter setting and manual noise removal. Due to these 
dependencies, performance evaluation in those studies used only a subset of the original datasets, excluding 
seeming outliers and making a fair performance comparison difficult. Another advantage of end-to-end learning 
is that an effective visual explanation for why the CNN reached its classification decision is possible. The expla-
nation helps the doctor to understand the behaviors of the CNNs and to discover new biomarkers. In Level 2, 
the explanation is limited to the segmented part, which may block the possibility of discovering new biomarkers 
located in the eliminated region. In Level 1, an explanation is impossible or unreliable since a backward mapping 
to the 3D space is completely broken at the input level.

Early DL-based approaches4,13–17 operate at Level 1 and are far from automatic feature extraction. For exam-
ple, three-dimensional (3D) or 4D volume data are rearranged into 1D vector form for the use of the DL net-
work’s input, such as restricted boltzmann machine (RBM) and deep belief network (DBN). The reliance on 
hand-crafted features can be attributed to data scarcity and high dimensionality, which are endemic characteris-
tics of medical data. For example, the ADNI dataset only has several hundred images, while each image has over 
11 million dimensions (256 × 256 × 170 voxels). It is critical to note that the aforementioned methods distort 
neighbor relations (spatial locality) in brain-imaging data during the feature extraction stage. Without preserving 
spatial relations, it is difficult to expect a reliable explanation of how the network reaches a classification decision.

The convolutional neural network (CNN) has been proven to be a very powerful DL model, which is suitable 
for grid-like data such as RGB images and MR images. Starting with the great success of AlexNet on the natu-
ral image classification problem18, the application of CNNs has rapidly expanded into diverse fields. In medical 
image analysis, early successful adoptions were achieved in 2D images such as retinal and chest X-ray images19 
and then extended to 3D images such as MRI. Existing CNN-based methods for MRI typically belong to Level 
2. Some studies20,21 segment the gray matter (GM) region during preprocessing and then employ it as an input 
of the CNN. Rieke et al.22, Yang et al.23, and Korolev et al.24 presented 3D-CNN–based approaches with several 
regularization techniques, such as dropout (DO), batch normalization (BN), and residual module. Although 
these approaches yielded impressive results by adopting appropriate regularization techniques, no unsupervised 
learning was involved. In the field of DL, unsupervised learning is regarded as an essential element when faced 
with data scarcity and high dimensionality. Strategies based on scratch training may cause bias by initializing the 
weights randomly for limited amounts of data. Hosseini-Asl et al.25, whose method belongs to Level 3, reported 
the first successful application of a volumetric CNN-based architecture on MRI data by employing 3D-stacked 
Convolutional Autoencoders (3D-sCAE) for the classification of AD vs. NC; in their method, a pretraining model 
to learn sparse representations and fine-tuning techniques are used to construct the final supervised network 
models. However, our reproduction of their model achieved only 80% accuracy on AD vs. NC classification. 
Furthermore, there was no attempt to explain how the classification decision was reached.

Multimodal DL approaches4,16,17,26–28 have attempted to incorporate different inputs and DL models to 
improve the classification accuracy of AD. Lee et al.16 extracted multimodal features, reflecting MRI, Cohort data 
and CSF data, and employed an RNN to predict AD. Additionally, Suk et al.27 employed MRI, PET, MMSE and 

Figure 1.  Notion of the end-to-end learning levels.
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CSF data to classify AD vs. MCI. Feng et al.28 proposed an incorporated framework for 3D-CNN and LSTM and 
fed MRI and PET data together to the network. They showed that multimodal data are effective in improving 
classification performance.

Some of the studies presented visual explanations. In particular, Yang et al.23 and Rieke et al.22 focused on an 
explanation of 3D-CNNs by applying several visual explanation methods, illustrating patchwise prediction differ-
ences and Grad-CAM29. Although they were able to illustrate how the CNNs arrived at the classification decision, 
no attempt has yet been made to explain classification task of progressive MCI (pMCI) vs. stable MCI (sMCI).

From a clinical viewpoint, the diagnosis of pMCI patients, who are at risk for progression to dementia, is 
crucial for the effective treatment of early AD. Despite its importance, few studies20,30,31 have addressed the prob-
lems of MCI classification. Cheng et al.31, whose method operates at Level 1, presented the advantage of transfer 
learning for the classification of pMCI vs. sMCI. In their study, an AD vs. NC task was considered as source 
domain data. A recent study20 also proposed a CNN-based transfer learning scheme using the GM region and 
showed that transfer learning is useful for CNN-based studies at Level 2. However, their effort to find important 
biomarkers only showed the mean activation map at the outputs of the first convolutional layer rather than using 
a backpropagation-based explanation model. Since the stream of the important weights derived from the target 
output node was ignored, this explanation is limited.

The aims of this study are to develop a volumetric CNN-based approach for AD classification and to visualize 
the spatial attention of the CNN’s decision to discover important biomarkers related to AD in an end-to-end 
learning manner (Level 3). The main contributions and characteristics of this study can be summarized in 
detail as follows: (1) We proposed a notion of the end-to-end hierarchy for MRI classification problems and 
proposed a method operating at level 3. For successful learning without overfitting at Level 3, we adopted sev-
eral schemes for data augmentation and regularization. A transfer learning scheme for the pMCI classification 
that transfers the weights learned during AD vs. NC to pMCI vs. sMCI is presented. (2) We applied a gradient 
backpropagation-based visualization technique to learned models and identified important biomarkers from 
these much cleaner visualization results. To the best of our knowledge, this is the first successful explanation of 
CNNs for the classification of pMCI with end-to-end learning.

Methods
The schematic diagram of the proposed approach for classifying neuroimaging data is summarized in Fig. 2 and 
presented in detail in this section. First, MRI scans of patients with AD and of NCs were pretrained based on 
CAE-based unsupervised learning, and then, supervised fine-tuning was conducted to build the classifier to 
differentiate AD vs. NC. Second, since the pMCI vs. sMCI classification task is more difficult and subtler than the 
classification of AD/NC, we employed a transfer learning procedure, for which the visual representations drawn 
from the classification task of AD/NC were transferred to the pMCI vs. sMCI learning model to improve the 
generalization capability of the pMCI vs. sMCI classification task. Finally, the most important biomarkers on each 
classification task were detected using the class saliency visualization technique.

Figure 2.  Overall architecture of the proposed approach. (1) CAE-based unsupervised learning is conducted 
to extract sparse representations; (2) the AD vs. NC classifier is constructed through supervised fine-tuning; 
(3) to construct the pMCI vs. sMCI classifier of pMCI vs. sMCI, the representations of the AD vs. NC task are 
considered as initial weights under a transfer learning manner. Finally, the important biomarkers are localized 
using a gradient-based approach.
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ADNI data and preprocessing.  In this study, we use the Alzheimer’s Disease Neuroimaging Initiative 
(ADNI) dataset, which is publicly available on the web (http://adni.loni.usc.edu/). The ADNI aims to identify 
more sensitive and accurate methodologies for diagnosing Alzheimer’s disease at earlier stages as well as mark 
the progress of AD through biomarkers. In this work, we used a total of 694 structural MRI scans that were ini-
tially classified into AD (n = 198), NC (n = 230), pMCI (n = 166), and sMCI (n = 101) at baseline. The 166 pMCI 
subjects were initially diagnosed with MCI at baseline, but conversion to AD was reported within a 36-month 
follow-up. The subjects were between 55 and 90 years old, and the ranges of MMSE scores for each group were 
20–26 (AD), 24–30 (MCI), and 24–30 (NC). The clinical dementia rating (CDR) scores were 0 for the NC sub-
jects, 0.5 and with a mandatory memory box score of at least 0.5 for the MCI subjects, and 0.5 or 1 for the 
AD subjects. Given the single modality of sMRI, most of the available sMRI scans in the ADNI database were 
used, except for the scans of unknown MCI (n = 130), in which the subjects were missing a diagnosis at 36 
months from the baseline. The sMRI scans (T1-weighted MP-RAGE sequence at 1.5 Tesla) typically consisted of 
256 × 256 × 176 voxels with a size of approximately 1 mm × 1 mm × 1.2 mm. The characteristics of the subjects 
included in this study and the p-values of the t-test comparisons for each group are summarized in Table 1. For 
preprocessing, all T1-weighted scans were corrected for bias-field inhomogeneities prior to being downloaded as 
a part of the ADNI preprocessing protocol. The MRI scans were then spatially normalized to the MNI space using 
Statistical Parametric Mapping (SPM12; HTTP://WWW.FIL.ION.UCL.AC.UK/SPM/) and the Diffeomorphic 
Anatomical Registration Exponentiated Lie Algebra (DARTEL) registration method32. The dimensions after spa-
tial normalization were uniformly rescaled to 120 × 160 × 120 for CNN learning. The intensities of the MRI scans 
were normalized to [0 1]. As previously mentioned, unlike most of the existing approaches, no skull striping and 
segmentation methods, which are heuristic and fragile, were used to maximize the capability of end-to-end learn-
ing. Note that in this study, the spatial normalization must be performed to address the proposed visualization 
process for which a statistical saliency map is computed.

Convolutional autoencoder based unsupervised learning.  Autoencoders are unsupervised neural 
network models whose main purposes typically include dimensionality reduction and information retrieval tasks. 
In particular, dimensionality reduction was one of the first applications of representation learning and DL, and 
discriminative representations in a lower-dimensional space can improve the performance of a classification 
task33,34. Moreover, this process does not require labeled data. However, AEs, which ignore the spatial structure of 
an image, are unsuitable for analyzing 2D- or 3D-image data because the effectiveness of localized spatial features 
has already been demonstrated by successful object-image-analysis models35. Convolutional Autoencoders 
(CAE), which extend AEs, have been employed for image data analysis and generally comprise the following 
encoding and decoding steps: input data are transformed into a lower-dimensional feature space during the 
encoding phase, and then the encoded data are reconstructed in the original space in the output layer during the 
decoding phase. For a 3D tensor X (of size h × w × d), the encoder is defined as follows:

  σ= φ ∗W X( ( ( ))) (1)i k i k, ,

where Wi k,  is the i-type 3D filter (i.e., the case in which an inception module has multiple types of convolutional 
filters) for the k-th feature tensor, * denotes 3D convolution, and  ⋅( ) and σ(⋅) denote the dropout and the ele-
mentwise nonlinear activation functions (ReLU [10] in this paper), respectively. Following the encoding phase, 
the decoder can be defined as follows:

T F∑∑σ′ = φ′ ′ ⁎X W( ( ( ))) (2)ki k i k, ,D ε ε

where ′X  denotes the 3D reconstructed map and ′Wk is the 3D filter for the decoding process. From Eq. (1),  is 
the group of filter types,  represents the group of feature tensors corresponding to each filter type, and ϕ and ϕ′ 
are max-pooling and upsampling, respectively. The loss function used to minimize the error between the input, 
X, and the reconstructed input, ′X , is the cross entropy:

∑θ = − + − −
=

′ ′X X X XE log log( ) [ (1 ) (1 )]
(3)k

N

i i i i
1

where N is the number of training samples and θ ′= W W{ , } denotes the set of trainable parameters. Finally, the 
error given by Eq. (3) is minimized using the Adam optimizer36, and the weight parameters for the layers are 
updated by backpropagation. Unlike the case of 2D convolution, the 3D feature space is explored by moving the 

Category AD NC pMCI sMCI
P, AD vs 
NC

P, pMCI 
vs sMCI

P, NC vs 
pMCI

P, NC vs 
sMCI

P, AD vs 
pMCI

P, AD vs 
sMCI

Number 198 230 166 101

Female/male 97/101 112/118 103/63 35/66 0.968* 0.631* 0.028* 0.018* 0.044* 0.027*

Age (mean ± SD) 75.65 ± 7.76 75.98 ± 5.00 74.85 ± 7.71 74.15 ± 7.66 0.585 0.721 0.230 0.206 0.604 0.445

MMSE (mean  ± SD) 23.39 ± 2.04 29.12 ± 0.99 26.45 ± 2.81 28.19 ± 1.71 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

GlobalCDR (mean  ± SD) 0.76 ± 0.25 0.00 ± 0.00 0.50 ± 0.00 0.50 ± 0.00 <0.001 — — — — —

Table 1.  Clinical characteristics of the subjects. *P according to chi-square test.
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3D convolutional filters, resulting in 4D feature tensors (in the 2D case, convolutional filters are used to construct 
the 3D tensors). In this work, we constructed two types of models, traditional and inception module-based CAE 
models, and their architectures are illustrated in Fig. 3(a,b), respectively. Each of the proposed Conv layers com-
prises the following components: convolution, dropout, ReLU, and pooling (or upsampling). Note that we 
employed a padding function to preserve the original scale. In the ICAE approach, the third and fourth Conv 
layers were replaced with the inception module.

Inception module for the convolutional autoencoder.  In an attempt to discover highly advanced rep-
resentations and reduce dependency on the fully connected (FC)-layer, we applied an inception module to the 
convolutional autoencoder. Note that the FC layer typically contains a large number of parameters, resulting in 
overfitting. Our inception module is based on GoogLeNet inception version 237, which is a parallel structure 
comprising differing 3D convolution, pooling filters, and concatenation. Rather than using a single convolution, 
the inception module extracts multilevel representations over the same input tensor in parallel and concatenates 
the results into a single output tensor. As shown in Fig. 4, since our model is based on a 3D tensor, the result of the 
inception module is a 4D, concatenated, single tensor. The entire architecture of the inception module-based CAE 
(ICAE) is illustrated in Fig. 3(b). The ICAE mainly comprises three encoding and decoding phases, with each 
proposed network module receiving its input based on the output of the previous module. We included two stem 
layers with traditional structures (convolution + pooling) in both the encoder and decoder layers, similar to the 

Figure 3.  Convolutional autoencoder-based unsupervised learning. Architecture (a) represents the traditional 
CAE, and the inception module is applied to architecture (b).

Figure 4.  Example of the inception module for a 3D tensor.

https://doi.org/10.1038/s41598-019-54548-6
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arrangement found in GoogLeNet37. For calculation convenience, we employed a padding function to preserve 
the original scale in the convolution and pooling processes of each inception module. Therefore, a scale reduction 
was accomplished by pooling operations following the inception modules (or convolution). To increase compu-
tational efficiency, we replaced the 5 × 5 × 5 convolution block with two layers of 3 × 3 × 3 convolution blocks, 
and a 1 × 1 × 1 filter was employed to reduce a dimension of the feature map prior to the expensive 3 × 3 × 3 and 
5 × 5 × 5 convolutions. In addition, the strategy by which 1 × 1 convolutions are followed by classic convolutions 
is known to increase the nonlinearity of the learning model compared to conventional convolutional layers, thus 
helping detect more highly advanced visual representations than the previous strategy.

Fine-tuning the convolutional neural network.  Unsupervised learning procedures are typically used to 
find a good initialization for joint training over all layers for the supervised task38,39. In the proposed method, we 
employed a task specific fine-tuning technique40,41 using predefined initial weights drawn from CAE-based unsu-
pervised learning rather than randomly initializing the trainable weights. To this end, the first three Conv layers 
of the 3D-CNNs were initialized using the pretrained weights from the encoding layers of the abovementioned 
CAE (Fig. 3), and the supervised fine-tuning of CNNs was performed for each task-specific binary classification. 
In general, the network architecture implements the following two main phases: a) generic features from neuro-
imaging data are extracted in the convolutional layer and b) the extracted generic features are classified into AD 
vs. NC and pMCI vs. sMCI in the classification layer. This strategy is able to partially overcome the overfitting 
problem caused by the limited amount of data as well as by data with high dimensionality.

Transfer learning for MCI classification.  Research involving transfer learning is motivated by the fact 
that people can intelligently utilize related knowledge that has been previously learned in solving new problems 
faster or finding better solutions41,42. In transfer learning, the learning must be performed in two or more tasks, 
and this multitask learning can be achieved by representation learning when useful features can be extracted from 
the related domain. This is typically regarded as a supervised learning context where the input is the same, but the 
target task may be of a different nature34. Recently, transfer learning has become very popular in the field of DL, 
since it has been shown to be a powerful methodology that enables DL training with comparatively insufficient 
data. For example, if there is sufficiently more data in the first task in source domain 1, it may help to quickly 
improve the generalization capability of the learning model in the second task, even if it includes little data, in 
target domain 2. This is because many visual representations share low-level generic notions, such as edges, 
visual shapes, changes in intensity or lighting, and the effects of geometric changes. In this study, the amount of 
MRI data for the second task (pMCI vs. sMCI) is relatively smaller than that for the first task (AD vs. NC); addi-
tionally the second task has been known to be a more difficult problem than the first task. Fortunately, it is known 
that both tasks typically share significant biomarkers43,44 and references therein. Based on this observation, we 
thus employed a knowledge transferring technique to solve the pMCI vs. sMCI classification problem rather than 
considering an unsupervised learning approach. In this part of the section, we indicate some notations and defi-
nitions of transfer learning in reference to a survey study45. A domain  is comprised of two factors, a feature 
space  and a probability distribution P (X), where = … ∈X X XX { , , , }n1 1 . In this study,  can be consid-
ered as the feature space of all possible MRI data in the specific domain ; then, xi is the ith MRI data (instance), 
and X is a particular class. Given some domain  = {, P(X)}, a task  consists of two factors, a label space  and 
a predictive function ⋅f ( ) that is trained by the representation of the MRI and the corresponding label pairs {xi, 
yi}, where xi ∈ , yi ∈ . The function ⋅f ( ) is employed to classify new instances into their corresponding labels 
and can be written as P(y|x). Note that the volumetric CNN can be considered the predictive function ⋅f ( ) in our 
implementation. Now, we define a domain  = {, P(X)} and a task T Y= ⋅f{ , ( )}. For transfer learning, we used 
the AD vs. NC problem as the source domain data, where AD = {(xAD1, yAD1), …, (xADn, yADn)}. In the same man-
ner,  the  target  domain data  ref lec t ing the  pMCI vs .  sMCI problem can be  written as 
 = …x y x y{( , ), , ( , )}pMCI pMCI pMCIn pMCInpMCI 1 1 . In the following description, the source and target tasks are 
defined as T Y= ⋅f{ , ( )}AD AD AD  and T Y= ⋅f{ , ( )}pMCI pMCI pMCI , respectively. We now provide a definition of trans-
fer learning for the detection of pMCI.

Definition 1. Given a source domain AD with its task AD and a target domain pMCI with its task pMCI, transfer 
learning aims to boost the generalization capability of the target predictive function ⋅f ( )pMCI  through the transfer 
of knowledge from AD and AD, where D D T T≠ ≠orAD pMCI AD pMCI.

In implementing the MCI classification model, a set of trainable weights for the first three Conv layers are 
denoted as θ = W b{ , }pMCI pMCI pMCI , and the set of weights θpMCI is replaced with those of the pretrained weight set 
θ = W b{ , }AD AD AD  that is trained from the AD vs. NC problem, where θ θ←pMCI AD; then, joint supervised learn-
ing is implemented over all of the layers to construct the pMCI vs. sMCI classifier.

Class saliency visualization approach.  In this section, we describe a class saliency visualization (CSV) 
method46 for approximating the spatial influence of a DL model’s decision on a given target class. The CSV 
method calculates how much each input voxel Xijk contributes to the final activation of the target class. Given an 
MRI data X , a target class c, and a classification model, the method computes the voxelwise saliency scores of X 
based on the influence on the prediction score Xf ( )c . A motivational example of the CSV method is expressed as 

ω= +X Xf b( ) ,c c
T

c  where the function Xf ( )c  represents a simple linear model, which computes a score of spe-
cific class c, and ωc and bc denote the weight vector and the bias of the model, respectively. Because the important 
regions of X are generally linked by larger weights, the magnitude of ω can be considered the saliency score of the 
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CNNs’ decision. Since CNNs are more complex nonlinear models than the motivational example, the first-order 
Taylor expansion is employed to approximate ω≈ +X Xf b( )c

T . The class saliency map M, which has the same 
scale as the original input X, is calculated by the partial derivatives:

ω= =
∂

∂
M

f
X (4)

ijk h i j k
c

ijk
( , , )

Since each voxel in the MRI is connected by at least one weight, the saliency map can be expressed as ωh(i,j,k), 
where h(i, j, k) denotes the index of the ω that spatially corresponds to MRI voxel Xijk. For this reason, the 3D sali-
ency map can be obtained by rearranging vector ω, which is calculated by backpropagation. To construct a visually 
pleasing saliency map, we applied a 9 × 9 × 9 smoothing filter to the visualization results. In the code of Algorithm 
1, we present the proposed procedure for generating the saliency map. Given classifier f, target class c, and the 
corresponding MRI scan X, instancewise saliency maps were calculated using the CSV approach; then, after apply-
ing a smoothing filter, the entirety of the saliency maps were linearly integrated and normalized to obtain the final 
explainable saliency map. Note that this model requires no additional annotation, such as a segmentation mask or 
bounding box, to localize the important regions of the neuroimaging data because it directly produces saliency 
voxels by interpreting the pretrained CNN model. This approach is useful in neuroimaging domains in which the 
differentiating characteristics of the various disease classes may not be well established by helping to identify 
meaningful findings in the neuroimaging data that can be used to guide practicing physicians.

Experimental setup.  The evaluation of the proposed and competing methods is conducted on four binary 
autodiagnostic problems: (1) AD vs. NC, (2) pMCI vs. NC, (3) sMCI vs. NC, (4) pMCI vs. AD, (5) sMCI vs. AD, 
and (4) pMCI vs. sMCI classifications. Due to the limited amount of data, data augmentation was performed. The 
input MRIs are randomly rotated by [−5, 5], shifted by [0, 0.1] and rescaled by [0.8, 1.2]; second, we perform the 
intensity changes by randomly adjusting brightness, contrast, saturation and hue. The augmentation operations 
are based on a uniform distribution.

The evaluation procedure is carried out using nested five-fold cross-validation described in Fig. 5. In this study, 
two important hyperparameters, DO ratio and the L1/L2 weighting factors, were optimized using the grid search 
technique. The nested cross-validation consists of outer and inner procedures. First, an inner cross-validation is 
used to tune the hyperparameters and select the best model. Second, an outer cross-validation is used to evaluate 
the model selected by the inner cross-validation. To avoid possible bias caused by the random partitioning of the 
datasets, the five-fold nested cross-validation is repeated 20 times independently, and the average is reported. Since 
the same MRI data must be considered for fair performance comparisons, we compare the proposed model with 
the state-of-the-art model using the same training and testing datasets from the ADNI database. The performance 
is evaluated via the following quantitative metrics: accuracy (ACC) = (TP + TN)/(TP + TN + FN + FP), sensitivity 
(SEN) = TP/(TP + FN), specificity (SPE) = TN/(TN + FN), area under the receiver operating characteristic curve 
(AUC), and balanced accuracy (BAC) = (SEN + SPE)/2. TP, TN, FP, and FN denote the numbers of true-positive, 
true-negative, false-positive, and false-negative classification results, respectively. Here, if an AD patient is classi-
fied into the AD group, this is regarded as a TP and otherwise as an FN. Likewise, TN represents the number of 
normal subjects classified into the normal group, and FP represents the number of those who are not.

Details of learning models.  For the baseline models, we consider existing models22,24,25 that are based on 
volumetric CNN architectures. Unlike most hand-crafted feature-based diagnostic methods, the baseline models 
encourage end-to-end learning by preserving spatial information from the neuroimaging data. In terms of meth-
odology, the baseline models are closely related to the proposed approach. The details of the baseline models are 
as follows: (1) the baseline model presented by Hosseini-Asl et al.25 is built upon unsupervised learning with a 
stacked CAE (sCAE) and supervised learning with CNNs, and the architecture is comprised of three 3 × 3 × 3 
Conv layers with 10 feature maps each, two FC layers with 128 and 64 nodes, and an output layer with two fea-
ture maps; (2) in the existing study24, a residual neural network47-based model was applied. This architecture is 
comprised of 21 layers containing six residual modules: first, three 3 × 3 × 3 Conv layers with 32 feature maps 
each, then an FC layer with 128 nodes, and finally an output layer with two feature maps; (3) the architecture 

Algorithm 1.  Generation of explainable saliency map.
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proposed by Korolev et al.24 is comprised of four Conv layers with 8–16–32–64 feature maps sequentially, batch 
normalization40 and 2 × 2 × 2 max-pooling after each convolution, dropout of 0.8 before the first FC layer, two FC 
layers with 128 and 64 nodes, and an output layer with two feature maps. For the implementation of the baseline 
models22,24,25, we used the hyperparameters as described therein.

In the proposed approach, we constructed CAE- and ICAE-based network models, and the overall architec-
tures are as follows: (1) The CAE-based model is comprised of three 3 × 3 × 3 Conv layers with 10 feature maps 
each, two FC layers with 32 and 16 nodes, and an output layer with two feature maps; each of the Conv layers is 
followed by ReLU and 2 × 2 × 2 max-pooling; Gaussian dropout48 with a dropping ratio 0.8 is applied between 
the Conv layers; and in the FC and output layers, we used scaled exponential linear unit (SELU) activation49 to 
speed up learning and take a normalization effect, resulting in the CAE-based network having a total of 1.44 
million parameters. (2) The ICAE-based model comprises two 3 × 3 × 3 Conv layers with 10 feature maps each, a 
single inception module with 40 feature maps, and an output layer with two nodes; in this network, the results of 
the inception layer are directly fed to the output layer without the FC layer; each of the Conv layers is followed by 
ReLU and 2 × 2 × 2 max- pooling, and the inception module contains multilevel convolutional kernels of different 
sizes (3 × 3 × 3, 1 × 1 × 1) and stacks their output feature maps in a channel domain to extract visual representa-
tions at different scales. We also applied Gaussian dropout between Conv and inception layers, and SELU activa-
tion was considered before the soft-max. The ICAE-based network has a total of 0.34 million parameters. In both 
the CAE- and ICAE-based models, the unsupervised learning technique (Convolutional autoencoder) is applied 
before supervised learning to extract a sparse visual representation of neuroimaging data. In the supervised learn-
ing, the Adam optimizer was established with a mini-batch size of 10, β_1 = 0.9, and β_2 = 0.9, an initial learning 
rate of 1 × 10−4, and a weight decay of 1 × 10−5. In the experiment, most cases reached a convergence state within 
200 training epochs, and we considered this as a performance evaluation during the inner cross-validation.

Results
Classification performances.  In Table 2, the worst results were observed for CNNs (Scratch), for which the 
pretraining technique was not considered. This clearly shows the importance of AE-based unsupervised learning, 
which helps a model learn sparse representations in high-dimensional space, before applying supervised learning. 
For the unsupervised learning-based models, we set up the following experiments: AD vs. NC, pMCI vs. NC, 
sMCI vs. NC, pMCI vs. AD and sMCI vs. AD. The results of the CAE- and ICAE-based models showed better 
performances, which were improved by 5~12% and 7~14% compared to the baseline models22,24,25, respectively. 
Additionally, we measured the receiver operating characteristic (ROC) curves of our model and of the existing 
models, and our curve is consistently higher than those of the other models (Fig. 6). In Fig. 7, the use of the reg-
ularization techniques reflecting L1, L2 and DO improved the classification accuracy by 3~6% and 4~8% in the 
CAE and ICAE approaches, respectively. The accuracy changes according to the L1/L2 regularization methods and 

Figure 5.  Flowchart of the evaluation procedure using k-fold cross validation.
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their parameters are described in Fig. 8. During the cross-validation, the pentameters except L1/L2 were fixed to 
verify their effects. The results show favorable performances when applying both the L1 and L2 methods together, 
and the parameters between 1 × 10−3~1 × 10−4 outperform those of the other cases regardless of various changes 
in experimental condition.

From a clinical perspective, the early autodiagnosis of MCI patients, who are at risk of progressing to having 
AD, is more crucial than the AD vs. NC problem for the effective treatment of AD. However, the classification of 
pMCI and sMCI is more challenging than that of AD and NC, since the anatomical changes that must be identi-
fied are subtler. In Table 3, the results of the CAE- and ICAE-based models showed poor accuracies of 60.69 and 
61.39%, respectively, and we hypothesized that the complex patterns inherent in MCI subjects made it difficult 
to find proper initial weights for the network. To verify this assumption, we employed the pretrained AD vs. NC 
model to classify MCI subjects into pMCI and sMCI. To this end, pMCI and sMCI were considered as AD and 
NC, respectively, and an accuracy of 64.41% was observed, which was more favorable than that of the unsuper-
vised learning method. Additionally, previous studies30,31 indicated that a source knowledge learned with an AD 
vs. NC task was effective for helping with pMCI detection. Motivated by this, we applied the supervised transfer 
learning technique to solve the pMCI vs. sMCI autodiagnosis problem. When implementing transfer learning, 
the convolutional layers of the 3D-CNNs were initialized using the pretrained weights of the AD/NC diagnostic 
model, and then, a joint supervised fine-tuning was performed to construct the network model for the pMCI/
sMCI problem. In Table 3, the results clearly show that the transfer learning-based approach leads to substantially 
better accuracies, 73.23% and 73.95%, respectively, than those of the other approaches. In Fig. 9, we conducted 
an additional experiment to measure the correlation between the generalization capability of the source task and 
the transfer learning of the target task; as a result, no significant finding was observed, which shows that the high 
performance of the source task (AD vs. NC) does not guarantee better results for the target task (pMCI vs. sMCI).

Visualization results.  We employed the CSV method46 to visualize features that make significant contri-
butions to the determination of the given class. To this end, the validation data with the specific class were fed to 
the CSV method, and then the entirety of the saliency maps were linearly integrated and normalized to obtain 
the explainable saliency map using Algorithm 1. Subsequently, a highlighted salient region has statistical signif-
icance; this presentation may help readers intuitively understand the CNN model’s decision. The saliency maps 

Task Method #params ACC (%) SEN (%) SPE (%)

AD vs. NC

Hosseini-Asl et al. 2018 ~9,100 K 80.23 ± 4.57 82.97 77.60

Korolev et al. 2017 ~5,610 K 76.53 ± 7.47 79.38 73.93

Rieke et al. 2018 ~5,324 K 74.30 ± 6.34 76.21 72.50

CNNs (Scratch) ~1,446 K 75.75 ± 6.08 81.45 73.16

CAE ~1,446 K 85.24 ± 3.97 88.28 82.39

ICAE ~371 K 86.60 ± 3.66 88.55 84.54

pMCI vs. NC

Hosseini-Asl et al. 2018 ~9,100 K 71.01 ± 5.47 74.11 67.91

Korolev et al. 2017 ~5,610 K 68.85 ± 6.73 72.59 65.51

Rieke et al. 2018 ~5,324 K 69.95 ± 4.94 71.97 77.45

CNNs (Scratch) ~1,446 K 68.12 ± 5.88 75.42 60.91

CAE ~1,446 K 76.57 ± 3.96 82.66 70.03

ICAE ~371 K 77.37 ± 3.55 81.03 74.07

sMCI vs. NC

Hosseini-Asl et al. 2018 ~9,100 K 61.79 ± 4.44 61.98 61.61

Korolev et al. 2017 ~5,610 K 60.84 ± 5.23 62.23 59.56

Rieke et al. 2018 ~5,324 K 61.19 ± 4.89 63.04 69.37

CNNs (Scratch) ~1,446 K 59.50 ± 5.84 61.47 57.74

CAE ~1,446 K 62.83 ± 5.17 66.07 60.02

ICAE ~371 K 63.04 ± 4.16 59.02 67.11

pMCI vs. AD

Hosseini-Asl et al. 2018 ~9,100 K 60.83 ± 5.41 60.99 60.65

Korolev et al. 2017 ~5,610 K 59.24 ± 4.89 62.88 56.18

Rieke et al. 2018 ~5,324 K 60.53 ± 5.11 64.31 56.97

CNNs (Scratch) ~1,446 K 55.62 ± 5.84 55.15 56.13

CAE ~1,446 K 59.47 ± 6.32 60.00 58.92

ICAE ~371 K 60.97 ± 5.33 64.53 56.13

sMCI vs. AD

Hosseini-Asl et al. 2018 ~9,100 K 67.69 ± 6.41 69.58 65.63

Korolev et al. 2017 ~5,610 K 70.64 ± 5.83 70.08 71.28

Rieke et al. 2018 ~5,324 K 65.68 ± 4.19 61.33 69.44

CNNs (Scratch) ~1,446 K 63.39 ± 7.14 66.31 60.12

CAE ~1,446 K 74.68 ± 6.04 75.20 74.07

ICAE ~371 K 75.06 ± 3.86 76.55 73.39

Table 2.  Classification performances (%).
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for AD and NC subjects with their corresponding classes are shown in Fig. 10. The most discriminative features 
for the AD vs. NC classification task were mainly distributed around the medial temporal lobe. In detail, the left 
hippocampus is relatively more highlighted than other regions. Figure 11 shows the significant brain areas that 
result in CNNs classifying NC subjects into the AD category when implementing a brain shrinkage simulation. To 
this end, we simulated a brain shrinkage condition using a supervoxel-segmentation–wise occlusion method22 in 
which the original segment is replaced with a value of 0. After the simulation was performed on NC subjects, the 
most important brain areas calculated by accumulating the segments that resulted in the CNN’s original decision 
being overturned appear around the temporal lobe and include the amygdala and hippocampus.

As shown in Fig. 12, the left amygdala, angular gyrus, and precuneus were selected as the key biomarkers for 
the pMCI vs. sMCI classification problem. Unlike the AD vs. NC problem, the parts of the parietal lobe contain-
ing the angular gyrus and precuneus were additionally activated, and the left hippocampal region was deacti-
vated, while its activation point was moved exactly to the left amygdala.

Discussion
The aim of this research was to study a way to encourage the end-to-end learning of a CNN-based model for AD/
NC/MCI classification to ultimately have the capacity to obtain and analyze an explainable visualization map 
without human intervention. We devised a notion of the end-to-end learning hierarchy, and our work was built 
upon level 3 for which intensity and spatial normalization are only considered. We believe that this method is 
capable of maximizing the full ability of CNNs. A main advantage of CNNs compared to other machine learning 
methods is that the features can be automatically learned from raw data without any expert supervision. In this 

Figure 6.  Quantitative performance comparisons of our model and the existing models using ROC curves and 
AUC. From left to right: (top) AD vs. NC, pMCI vs. sMCI, sMCI vs. AD; (bottom) pMCI vs. NC, sMCI vs. NC 
and pMCI vs. AD.

Figure 7.  Performance comparisons according to regularization techniques. “None” represents the results 
without regularization techniques (DO/L1/L2).
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regard, output feature maps of each convolution layer automatically extracted by the CNNs are shown in Fig. 13. 
Some intense regions and segmentation clues can be observed in the first two convolution layers, and global 
feature maps that look like binary patterns can be extracted in the third convolution layer. The CNNs seem to 
conduct a level 2 preprocessing such as the white matter, CSF and skull segmentation automatically in the first 
two layers. Some sparse patterns are shown in the last layer, and we assume that they are related to the locations 
of important biomarkers. Additionally, the ability to achieve higher orders of abstraction and complexity rela-
tive to other machine learning methods renders CNNs better suited for detecting complex, scattered, and subtle 
patterns in data. Thus, this advantage may allow us to discover unknown biomarkers for neuroimaging analysis. 
Due to the endemic problem of neuroimaging caused by the high dimensionality, diversity, and lack of quantity 
associated with data, our methodology was strategically designed to overcome overfitting. To this end, we focused 
on encouraging network sparsity by using various regularization techniques to extract the sparse representations 
from the MRI scans. In the experimental results, it is worth noting that our strategy, in which network sparsity is 
reinforced by using regularization techniques (L1, L2, CAE-based, unsupervised learning and dropout with a high 
dropping ratio) dramatically boosts the performance of the network. Our strategy outperforms the existing meth-
ods22,24,25 and can be explained as follows. First, since no pretraining was considered in the baseline studies22,24, 
they suffer from biases caused by the random initialization of trainable weights, leading to performance decreases 
during the iterative performance evaluation. Similarly, this phenomenon was observed in our experiment for 
which scratch training was considered. Second, due to a lack of consideration of regularization techniques, the 
baseline model presented by Hosseini-Asl et al.25, which has an outdated architecture, seems to fail to achieve 
any favorable performance. We also observed that ICAE, even using fewer parameters, consistently improved the 

Figure 8.  Performance comparisons according to different L1/L2 parameters.

Method #parms ACC (%) SEN (%) SPE (%)

Hosseini-Asl et al. 2018 ~9,100 K 62.64 ± 5.53 65.15 60.53

Korolev et al. 2017 ~5,610 K 61.22 ± 5.63 65.53 59.06

Rieke et al. 2018 ~5,324 K 62.81 ± 6.15 66.93 58.85

CNNs (Scratch) ~1,446 K 60.64 ± 5.56 61.05 59.15

CAE ~1,446 K 60.69 ± 3.72 61.43 60.04

ICAE ~371 K 61.39 ± 4.76 62.56 60.41

CAE (Transfer learning) ~1,446 K 73.23 ± 4.21 74.96 71.53

ICAE (Transfer learning) ~371 K 73.95 ± 4.82 77.46 70.71

Table 3.  Classification performances of pMCI vs. sMCI (%).

Figure 9.  Comparison of transfer learning performances according to the accuracies of the source task. Target 
task: pMCI vs. sMCI; source task: AD vs. NC.

https://doi.org/10.1038/s41598-019-54548-6


1 2Scientific Reports |         (2019) 9:18150  | https://doi.org/10.1038/s41598-019-54548-6

www.nature.com/scientificreportswww.nature.com/scientificreports/

Figure 10.  Distribution of discriminative regions in the classification of AD vs. NC.

Figure 11.  The most important brain areas that result in the CNNs classifying NC subjects into the AD 
category when implementing brain shrinkage simulation. Each left-hand image represents ROIs corresponding 
to the right binary supervoxel segment in the right-hand images (threshold 80% of max intensity).

Figure 12.  Distribution of discriminative regions in the classification of pMCI vs. sMCI.
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accuracy by 1~2% relative to CAE, and the strategy in which the network’s nonlinearity is encouraged appears to 
have a positive effect. Of particular interest, in the pMCI vs. sMCI classification task, we saw that the CAE-based 
unsupervised learning was not effective, and this may be attributed to the following two factors: first, the patterns 
inherent in MCI subjects are subtler; and second, the number of subjects is relatively smaller than that that of the 
AD vs. NC problem. It can sometimes be more effective to train the model on a simpler task and then move on 
to confront the more difficult task34. Inspired by this, we used the supervised transfer learning technique based 
on the pretrained AD vs. NC model, leading to performance increases of approximately 8~11%. In our transfer 
learning, this enabled the model to learn a representation of an MCI subject based on the discriminative bio-
markers inherent in the problem of AD vs. NC, and this characteristic may be a reason for the favorable result. 
We are particularly sure that the knowledge transferring strategy can be applied to other neuroimaging domains 
that suffer from the same problem as we did initially when implementing end-to-end learning. After implement-
ing the ADNI preprocessing protocol, only TPM-based spatial normalization was applied to encourage Level 3 
end-to-end learning and produce an explainable saliency map. Although neuroimaging studies suffer from the 
abovementioned endemic data problems, the standardized spatial clue of the sMRI is a valuable characteristic 
that can be rarely found in most natural image processing methods having wide diversity, and we inferred that 
this characteristic was quite useful for CNN learning in the limited environment. To verify why the CNNs arrived 
at the classification decision given a particular instance and a target class, we produced a saliency map using the 
CSV approach. In the saliency maps shown in Figs. 10 and 12, the temporal and parietal lobes were selected by 
CNNs for accurate classification of AD, NC, and MCI subjects. These brain regions have previously been known 
to be closely related to dementia in many existing studies26,27,43,44,50–56. In particular, several previous studies43,44, 
references therein26 have found that the activity of the hippocampus is effective in the autodiagnosis of AD vs. 
NC. Consistent with previous studies, the hippocampus was a discriminative region in the classification of AD 
vs. NC in our study as well. Because of the dependency on and the significance of the hippocampal region, the 
CNNs appear to decide that it does not require other biomarkers to solve the AD vs. NC classification problem. 
Hippocampal volume is known to be a biomarker of Alzheimer’s disease that precedes cognitive impairment. 
For discriminating pMCI and sMCI, the CNNs seem to learn more complex representations than the AD vs. 
NC problem. Although the model achieved an accuracy of 73.95%, which is not high enough to be used in a real 
world situation, the saliency map included meaningful biomarkers, such as the amygdala, angular gyrus, and the 
precuneus, which have already been extensively reported in previous studies51–55. With regard to the temporal 

Figure 13.  Visualization results of selected convolutional layer feature maps. From top to bottom: first, second 
and third convolutional layers.
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lobe, the hippocampus has received far less attention compared to the AD vs. NC problem, but the left amygdala 
was significantly activated. In this regard, the amygdala is affected early in AD, with neuropsychiatric symptoms 
leading to functional deficits; due to the early damage to the amygdala, neuropsychiatric symptoms are very com-
mon in mild stages of AD57. In addition, a relevant study58 that employs volumes of predefined ROI has reported 
that the amygdala is a more important biomarker than the hippocampus for detecting pMCI. Although the hip-
pocampus has been a general feature for AD diagnosis, it may be inferred from this result that the hippocampus 
has no significant influence on minimizing the learning error of the CNNs for the classification of MCI subjects. 
Furthermore, our previous experiment, which considered the pretrained classifier gazing at the hippocampus 
region, yielded a relatively low accuracy of 64.41% for pMCI detection. However, after supervised transfer learn-
ing, the CNNs adjusted their gaze to several different biomarkers, leading to a performance increase of 8~11%. In 
terms of subject group, no significant findings were observed according to target class and subject group changes 
in both classification tasks. This demonstrates that the CNNs’ fixation is toward the same biomarkers, regardless 
of the type of subject group.

Conclusions
In this section, we draw a number of conclusions. End-to-end learning without the use of hand-crafted features 
is possible, even in the endemic problems of neuroimaging where the training data are scarce and sample dimen-
sionality is very high. Through this, we also produced an explainable visualization map intrinsically blocking the 
intervention of expert knowledge; this protocol is expected to serve as a differentiating method to find biomarkers 
related to AD or other neuropsychiatric disorders. The experimental results on the ADNI data demonstrated that 
our model achieved favorable performance and efficiency relative to current state-of-the-art models. However, 
this study has several limitations: First, as the number of subjects used for the training and test phases was still 
small for encouraging end-to-end learning, any performance improvement compared with the prior conventional 
models is limited. However, we believe that this approach shows a better generalization capability of learning 
models than hand-crafted–based approaches when a larger quantity of data is available in the future. Second, in 
the visualizing process performed by CSV, we had to approximate a coarse-scale saliency map on the template 
brain image because the exact localization of salient regions was limited. This limitation should be overcome in 
subsequent research. Despite these drawbacks, to the best of our knowledge, this is the first study to visualize most 
discriminant biomarkers related to AD/MCI without hand-crafted features by using the end-to-end learning of 
volumetric CNN architecture. Third, as there was gender difference between the several pairs of groups, this may 
have affected the outcome. In future work, extensive experiments involving network shape, hyperparameters, and 
different neuroimaging data may be required to determine an optimal network model.
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