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The use of antineoplastic drugs has a central role in treatment of patients affected

by cancer but is often associated with numerous electrolyte derangements which, in

many cases, could represent life-threatening conditions. In fact, while several anti-cancer

agents can interfere with kidney function leading to acute kidney injury, proteinuria,

and hypertension, in many cases alterations of electrolyte tubular handling and water

balance occur. This review summarizes the mechanisms underlying the disturbances

of sodium, potassium, magnesium, calcium, and phosphate metabolism during

anti-cancer treatment. Platinum compounds are associated with sodium, potassium, and

magnesium derangements while alkylating agents and Vinca alkaloids with hyponatremia

due to syndrome of inappropriate antidiuretic hormone secretion (SIADH). Novel

anti-neoplastic agents, such as targeted therapies (monoclonal antibodies, tyrosine

kinase inhibitors, immunomodulators, mammalian target of rapamycin), can induce

SIADH-related hyponatremia and, less frequently, urinary sodium loss. The blockade

of epidermal growth factor receptor (EGFR) by anti-EGFR antibodies can result in

clinically significant magnesium and potassium losses. Finally, the tumor lysis syndrome

is associated with hyperphosphatemia, hypocalcemia and hyperkalemia, all of which

represent serious complications of chemotherapy. Thus, clinicians should be aware of

these side effects of antineoplastic drugs, in order to set out preventive measures and

start appropriate treatments.

Keywords: electrolytes abnormalities, antineoplastic drug exposure, antidiuretic hormone (ADH), renal

tubulopathies, tumor lysis syndrome

INTRODUCTION

A series of electrolyte derangements can develop during treatment with anti-cancer drugs. While
some of these alterations may be paraneoplastic (1), in many cases specific pharmacodynamic
mechanisms can be identified impacting on fluid and electrolyte metabolism. Besides the possible
occurrence of acute kidney injury, proteinuria, and hypertension (2), several antineoplastic agents
can affect electrolytes tubular handling, as well as urinary water excretion by interfering with
antidiuretic hormone (ADH). The aim of this review is to analyze in detail the mechanisms
underlying the disorders of the metabolism of sodium, magnesium, potassium, calcium, and
phosphate during anti-cancer drug treatment.
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METHODS

An extensive review of English language literature was performed
to identify all relevant articles describing the epidemiology,
pathogenesis, preventive measures, and outcomes of electrolyte
disorders induced by antineoplastic drugs. To this purpose,
we searched PubMed, EMBASETM, CINHAL, Web of Science
and Cochrane databases for relevant articles. Related search
terms were used as follow: (“Hyponatremia”[Mesh]) OR
“Diabetes Insipidus, Neurogenic”[Mesh]) OR “Diabetes
Insipidus, Nephrogenic”[Mesh]) OR “Hypokalemia”[Mesh]) OR
“Magnesium Deficiency”[Mesh]) OR “Hypercalcemia”[Mesh])
OR “Hypocalcemia”[Mesh]) OR “Hypophosphatemia”[Mesh])
AND “Antineoplastic Agents”[Mesh]).

Medical subject heading terms were used to enhance
electronic searches. Additional studies of interest were identified
by hand searches of references, and at least two reviewers
independently reviewed each article for eligibility. Conference
proceedings were excluded. The search was last updated on
December 12, 2019. Nomenclature of drugs and their molecular
targets conforms the recently published IUPHAR/BPS Guide to
Pharmacology nomenclature classification (3).

PHYSIOPATHOLOGY OF ELECTROLYTE
DISORDERS

Sodium (Na+) is the main cation of extracellular space,
where it is actively extruded from the intracellular space by
sodium-potassium ATPase. Total body Na content is pivotal
in maintaining extracellular fluid and arterial volume, both
related to tubular Na reabsorption and urinary excretion. Serum
Na concentration (136-144 mmol/L) depends on the ratio of
total body exchangeable Na and potassium to total body water
(TBW). Serum Na changes are mainly related to TBW, which
is regulated by ADH (4). Hyponatremia (Na<136 mmol/L) is
classified as mild, moderate and severe degrees when serum
Na level is between 130 and 135, 120 and 129 and lower than
120 mmol/l, respectively (1). In cancer patients, hyponatremia
has an overall prevalence up to 47% with mild, moderate and
severe degrees accounting for 36, 10, and 1% (5). Hyponatremia
is as an independent risk factor for mortality and prolonged
hospitalization (6, 7). According to extracellular fluid volume,
hypovolemic, hypervolemic, and euvolemic hyponatremia can
be distinguished (8). Hypovolemic hyponatremia results from
a loss of TBW lower than total body Na and occurs in salt-
wasting nephropathy, renal or extrarenal losses or adrenal
insufficiency. Hypervolemic hyponatremia results from a rise
of TBW greater than the excess of total body Na and occurs
in either edematous disorders such as congestive heart failure,
decompensated liver cirrhosis, nephrotic syndrome, or in end-
stage renal failure. In edematous disorders, when effective
arterial volume is reduced and ADH levels are high, the use of
non-steroidal anti-inflammatory drugs (both non-selective and
cyclooxygenase-2 selective drugs) can affect free water excretion
and further increase ADH secretion and activity (9), determining
or worsening hyponatremia (10). Euvolemic hyponatremia

is the most frequent hypotonic disorder and presents with
normal extracellular volume. The syndrome of inappropriate
antidiuretic hormone secretion (SIADH) represents the classic
euvolemic hyponatremia where ADH secretion, despite the
hypo-osmolality state, is not suppressed and is potentiated by
several drugs (antineoplastic treatments, antidepressant such
as selective serotonin reuptake inhibitors, antipsychotics, anti-
epileptics such as carbamazepine, oxcarbazepine, eslicarbazepine,
sodium valproate, lamotrigine, levetiracetam, and gabapentin)
(11) or alternatively is oversecreted as the expression of a
paraneoplastic syndrome. Hyponatremia constitutes a potential
complication of thiazide diuretic treatment through mechanisms
affecting maximal urinary dilution ability, through stimulation of
ADH release and ensuing euvolemic hyponatremia (12). Again,
the simultaneous use of non-steroidal anti-inflammatory drugs
can facilitate the development of hyponatremia (10).

Conversely, hypernatremia (serum Na > 144 mmol/L) occurs
mostly as a result of an excessive loss of TBW relative to Na
content, leading to a free water deficit (13). Hypernatremia
(prevalence ∼3%) is far less frequent than hyponatremia in
hospitalized cancer patients (14).

Clinical manifestations of hypo- and hypernatremia are
similar, and concern mainly the central nervous system: they
are related to the severity and the rate of development of
serum Na derangement (13). Both hypo- and hypernatremia
can be associated with confusion, behavioral changes, headache,
irritability, nausea and vomiting, lethargy, drowsiness/coma,
seizures, and respiratory arrest.

Potassium (K+) is the main intracellular cation and is
fundamental for resting membrane potential. Altered serum K
concentration can modify the electrical activity of excitable cells
(cardiac myocytes, skeletal muscle cells and vascular smooth
myocytes), leading to serious adverse effects, such as life-
threatening arrhythmias. Normal serum K levels range between
3.5 and 5.3 mmol/L. Chemotherapeutic agents may induce serum
K derangements mainly through alterations of renal tubular
transport. Hypokalemia (K < 3.5 mmol/L) prevalence is around
12% in cancer population patients (15); this figure increases
between 43 and 64% in acute leukemia (16). Hyperkalemia (K >

5.3 mmol/L) is often related to tumor lysis syndrome (TLS) or to
acute and/or chronic oliguric kidney disease.

Magnesium (Mg++) is the second most abundant divalent
cation in the human body (1). It is mainly stored in bone,
muscle, and soft tissues, and is important for neurotransmission,
protein, and DNA synthesis, hormone-receptor interaction. Its
normal serum concentration ranges between 1.6 and 2.6 mg/dL
(0.65-1.07 mmol/L), and its homeostasis depends on intestinal
absorption and renal excretion. In the kidney, transient receptor
potential cation channel, subfamily M, member 6 (TRPM6),
a Mg channel located in the apical cellular membrane of the
thick ascending limb of Henle’s loop and distal convoluted
tubule, and exerts the rate-limiting step for Mg tubular transport.
The activity of TRPM6 is regulated by the epidermal growth
factor (EGF) and its receptor (EGFR) (17, 18). As TRPM6 and
EGF/EGFR are mainly expressed in the distal convoluted tubule,
this segment represents the main site of regulation of urinary
Mg excretion. Mild hypomagnesemia can be pauci-symptomatic,
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whereas a severe disorder can represent a life-threatening
condition. Symptoms involve cardiovascular system, with
electrocardiographic alterations (prolonged QT interval), and
the neuromuscular system with tremor, paresthesia, tetany,
spasms, and seizures (1). Hypomagnesemia is also associated
with reduced release and activity of parathyroid hormone
(PTH) and reduced synthesis of active vitamin D and its
receptors (19). Both hepatic 25-hydroxylation and renal 1α-
hydroxylation of vitamin D leading to the active form of 1,25-
dihydroxycholecalciferol are magnesium-dependent process (20)
In addition, magnesium plays a central role in natural and
adaptive immunity by interacting with vitamin D metabolites
activity (21). In hospitalized cancer patients, hypomagnesemia
(Mg < 1.5 mg/dL) has a prevalence around 17 % although
antineoplastic drugs can increase this figure (e.g., up to 90% with
cisplatin) (22, 23).

Calcium (Ca++) plays important roles in intracellular
signaling, neurotransmission, membrane stability and bone
metabolism. Its homeostasis is regulated by PTH via calcium-
sensing receptors on parathyroid cells. PTH stimulates tubular
Ca reabsorption, mobilizes Ca from bone and enhances
the synthesis of 1,25-dihydroxycholecalciferol, which in turn
increases Ca intestinal absorption, modulates PTH release
and PTH-mediated bone demineralization. Serum total Ca
concentration ranges between 8.5 and 10.5 mg/dL, with ionized
Ca between 4.7 and 5.2 mg/dL (24). In hospitalized cancer
patients, hypocalcemia (Ca<8.5 mg/dL) has a prevalence around
13% (23). Generally, symptomatic hypocalcemia presents with
irritability, tetany, psychosis, and prolonged QT interval (1). Ca
levels should be checked in case of hypomagnesemia, because of
a concomitant low PTH activity (22). Agents, such as platinum-
compounds and anti-EGFR Monoclonal Antibodies (MoAbs),
causing hypomagnesemia may also induce hypocalcemia (25).
Hypercalcemia is far more common than hypocalcemia, ranging
between 20 and 30% in patients with advanced cancer, in
particular lung, breast and hematological malignancies (26).
Three major mechanisms of hypercalcemia have been identified:
(i) PTH-related peptide secretion by cancer cell, (ii) osteolytic
lesion, (iii) 1,25-dihydroxycholecalciferol (calcitriol) secretion by
the cancer cells.

Phosphate (PO4−− ) is predominantly stored as an inorganic
salt in bone as hydroxyapatite crystals. In plasma phosphate
circulates both as an inorganic anion, or as an organic
component of intracellular nucleic acids and cell membranes.
Normal phosphate levels range between 2.5 and 4.5 mg/dL,
and result from the balance between intestinal absorption, renal
excretion, and release from the bone exchangeable fraction which
is regulated by PTH, fibroblast growth factor 23 and calcitriol.
Fibroblast growth factor 23 and PTH decrease phosphate serum
levels by inhibition of tubular reabsorption. Conversely, calcitriol
increases the intestinal absorption of phosphate and inhibits PTH
secretion. Hypophosphatemia occurs as a result of phosphate
redistribution between extra- and intracellular compartments,
poor intestinal absorption, increased renal excretion, or
prolonged hemodialysis/hemofiltration. Clinical manifestations
include weakness, proximal myopathy, rhabdomyolysis,

hemolytic anemia, and heart failure. Antineoplastic drugs may
induce tubular damage and thus alter phosphate reabsorption,
resulting in the development of hypophosphatemia. Proximal
convoluted tubule dysfunction determines urinary wasting of
phosphate, glucose, urate, and bicarbonate and leads to the
acquired Fanconi Syndrome (FS). Phosphate levels lower than
2.5 mg/dL were reported in 49% of patients with advanced cancer
whereas a lower fraction (23%) had phosphate levels less than
2.0 mg/dL (27). Hyperphosphatemia (phosphate > 4.5 mg/dL)
is related to TLS, particularly in hematologic malignancies, and
occurs more frequently as a consequence of chemotherapy than
in spontaneous TLS (28).

ANTINEOPLASTIC DRUGS

Platinum-Derived Compounds
Platinum-derived drugs include cisplatin, carboplatin, oxaliplatin
and nedaliplatin, and electrolyte disorders associated with these
drugs are shown in Table 1. Nephrotoxicity represents the
limiting factor of these drugs (2, 22). Compared with cisplatin
and nedaliplatin, carboplatin and oxaliplatin appear to be less
nephrotoxic and associated with less electrolyte derangements
(34). Cisplatin nephrotoxicity results from cell damage in the
S3 segment of the proximal tubule, distal convoluted tubules
and collecting ducts (22). Electrolyte disorders are also related
to cisplatin-induced DNA damage of thiazide-sensitive sodium-
chloride co-transporter genes and to the apoptosis of distal tubule
cells (34). Cisplatin treatment may cause hyponatremia through
SIADH, related to both higher secretion of and sensitivity to
ADH (32). Nausea and vomiting, which are common side effects
of platinum-derived chemotherapy, are also powerful stimuli
for ADH secretion. The incidence of hyponatremia can reach
59% (severe hyponatremia 12%) with cisplatin, whereas 20%
is reported with carboplatin (29–31). Rarely, cisplatin-related
hyponatremia may result from Renal Salt Wasting Syndrome
(33). Hypernatremia can also develop with cisplatin due to
acquired nephrogenic diabetes insipidus with ensuing hypotonic
polyuria (34).

Platinum-derived agents can induce hypokalemia due to renal
K wasting secondary to hypomagnesemia. The incidence of
cisplatin-related hypokalemia is around 27% (35). Intracellular
magnesium depletion reverts inactivation of voltage-dependent
renal outer medulla K channels (ROMK), thus increasing
kaliuresis. Increased distal Na delivery or elevated aldosterone
levels are also required for exacerbating K wasting (36).
Potassium supplementationmay fail to correct hypokalemia until
hypomagnesemia is corrected.

Hypomagnesemia is the most frequent electrolyte alteration
caused by cisplatin and is related to its cumulative dose (50).
Hypomagnesemia is associated with shorter survival (35, 50),
and its incidence ranges between 56 and 90% of patients
receiving cisplatin, being lower with carboplatin (22, 23, 37–
39). It is mainly related to an impaired Mg reabsorption
in the proximal tubule. However, cisplatin was shown to
downregulate the TRPM6/EGF pathway resulting in Mg loss
(41), and patients receiving platinum drugs can also develop
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TABLE 1 | Platinum derived drugs.

Electrolyte disorder Drug Incidence (%)

Type of study

Mechanism(s)

Hyponatremia Cisplatin

Carboplatin

43-59 (B) (29, 30)

20 (C) (31)

SIADH;

RSWS, DNA damage of the gene encoding the thiazide-sensitive

chloride channel (29, 32–34)

Hypernatremia Platinum-drugs n.a. Acquired NDI (32)

Hypokalemia Cisplatin

Carboplatin

27 (D,B) (31, 35) Renal potassium wasting due to hypomagnesemia;

Decreased intestinal absorption due to enterocyte

cytoxicity (35, 36)

Hypomagnesemia Cisplatin

Carboplatin

56-90 (B, D) (22, 23, 37)

7-29 (D) (38–40)

Calcium-sensing receptor impairment;

TRPM6/EGF pathway downregulation

(18, 22, 41)

Gitelman-like syndrome (42)

Hypocalcemia Cisplatin

Carboplatin

6-20 (B, D) (43)

16-31 (B, D) (43)

Impaired PTH release due to hypomagnesemia (24, 44, 45)

Altered bone metabolism due to hypomagnesemia; Low vitamin D

due to decreased 1-alpha-OHase activity

(24, 43, 46)

Hypophosphatemia Cisplatin alone

(combined with Cyclophosphamide)

10-77 (D) (47, 48) Partial proximal tubular damage;

Acquired FS (47, 49)

Incidence and type of study column: the letter after the percentage indicates the type of evidence available: A isolated case; B case series; C pharmacovigilance notifications or registry;

D observational study, clinical trial, metanalysis of clinical trials. n.a. not available. References in bracket square. FS = Fanconi Syndrome; NDI, Nephrogenic Diabetes Insipidus; PTH,

Parathyroid hormone; RSWS = Renal Salt Wasting Syndrome; SIADH, Syndrome of inappropriate antidiuretic hormone secretion; TRPM6, Transient Receptor Potential Cation Channel,

subfamily M, member 6/EGF = Epidermal Growth Factor.

persistent distal tubular dysfunction with a Gitelman-like
syndrome characterized by hypocalciuria, hypomagnesemia and
hypokalemic metabolic alkalosis (42).

Cisplatin long-term treatment can cause hypocalcemia in
a dose-dependent manner (46); low-dose cisplatin combined
with 5-Fluorouracil and interferon-alpha can also induce
hypocalcemia (44). Frequently, hypocalcemia is associated
with hypomagnesemia (45). Cisplatin can decrease 1-alfa-
hydroxylation activity and result in low vitamin D3 levels. In
cisplatin-treated patient, hypocalcemia incidence is around 6–
20%, and is 16–31% in those treated with carboplatin (43).

Hypophosphatemia may often complicate treatment with
platinum agents, with incidence reaching up to 77% (47, 48).
Cisplatin causes proximal tubule cell apoptosis and necrosis,
resulting in partial or complete acquired FS (49).

Considering the development of the individual ion
disturbances, there are also differences related to the cumulative
dose and to the cycles of chemotherapy schedule. In particular,
among platinum-derived drugs, cisplatin-induced hyponatremia
occurred in 50% of the patients after a median critical dose
of 195mg at cycle 2, while higher cumulative doses had to
be administered to observe hypokalemia (560mg at cycle 7).
Median critical doses for development of hypomagnesemia and
hypocalcemia in 50% of the patients were 160mg and 240mg
at cycle 2 and 3, respectively, supporting the concept of a lower
dose required to induce hypomagnesemia versus others ion
disorders (35).

Alkylating Agents
Table 2 shows the electrolyte disorders observed in patients
treated with Alkylating agents. These drugs can frequently

cause hyponatremia by impairing free water excretion.
Hyponatremia usually occurs 12–48 h after the administration of
cyclophosphamide (CYC). CYC can induce severe symptomatic
hyponatremia through different mechanisms: (i) a tumor lysis-

related SIADH due to massive release of ADH or ADH-like
peptides from damaged tumor cells or normal pituitary cells.
(56), (ii) an ADH-like activity of CYC metabolites on renal
collecting tubules (57), (iii) an upregulation of vasopressin V2
receptors and aquaporin-2 channels through the suppression of

IL-1 and TNF-α, leading to increased ADH effects (58), (iv) a
CYC-induced nephrogenic SIADHwith activation of vasopressin
V2 receptors in absence of ADH stimulation (59). Although
most cases (up to 89%) are related to intravenous treatment with

single-pulse high-dose of CYC (51, 69), hypotonic hyponatremia
was also reported after low-dose treatment (14% incidence) (51).
High doses of CYC (30–40 mg/kg of body weight), moderate

doses (20–30 mg/kg) and low doses (<20 mg/kg) can produce
hyponatremia with different frequencies (51–53, 69). Indeed, as
a half-saline hydration protocol is performed before and after
CYC administration in order to force diuresis and minimize the

risk of hemorrhagic cystitis, the administration of large volumes
of hypotonic fluid can facilitate hypotonic hyponatremia during
CYC treatment. Thus, isotonic solutions should be preferred as
treatment. Several cases of SIADH-related hyponatremia have
also been reported with chlorambucil, melphalan, busulfan, or
ifosfamide (54, 60).

Ifosfamide (especially when combined with cisplatin) may
induce hypokalemia as a consequence of proximal or distal
tubular acidosis, or acquired FS. Ifosfamide enters proximal
tubular cells through organic cation transporter 2 and, after
metabolization to chloracetaldehyde, induces glutathione
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TABLE 2 | Alkylating agents.

Electrolyte disorder Drug Incidence (%)

Type of study

Mechanism(s)

Hyponatremia Cyclophosphamide

Ifosfamide, Chlorambucil Busulfan,

Melphalan

Low dose 14;

High dose 89

(D) (51–53)

15 (<120 mmol/L) (B) (54, 55)

Central SIADH; preventive infusion of hypotonic solutions (56)

Upregulation of vasopressin V2 receptors (57, 58); Nephrogenic

SIADH (59)

SIADH (60)

Hypokalemia Ifosfamide

Bendamustine

15 (D) (61)

5 (<2.4 mmol/L) (D] (62, 63)

Proximal tubular damage (tubular acidosis, acquired FS) due to

metabolite (chloroacetaldehyde) (34, 64, 65)

Renal distal tubulopathy (acquired Giltelman syndrome) (63)

Hypophosphatemia Ifosfamide 1-16 (41, 66, 67) Proximal tubular injury (acquired FS) (68)

Incidence and type of study column: the letter after the percentage indicates the type of evidence available: A isolated case; B case series; C pharmacovigilance notifications or registry;

D observational study, clinical trial, metanalysis of clinical trials. n.a. not available. References in bracket square. FS, Fanconi Syndrome; SIADH, Syndrome of inappropriate antidiuretic

hormone secretion.

depletion and lipid peroxidation (64, 65). Ifosfamide is also
associated with proximal tubular injury, phosphaturia, and
hypophosphatemia especially at cumulative doses greater than
60 g/m2: its incidence is between 1% (moderate dose, 1–1.5
g/m2 over 1–10 days) and 16 % (high dose, 3.33 g/m2, over
1–4), but can increase if patients are pretreated with cisplatin
(47, 55, 68, 70).

Bendamustine, a chemotherapeutic agent designed to have
both alkylating and antimetabolite properties, can induce
hypokalemia (severe hypokalemia in around 5%) through a
distal tubulopathy (acquired Gitelman syndrome) and a mild
diuretic effect (62, 63). Special attention should be given to
patients with pre-existing hypokalemia and if the cumulative
dose of bendamustine exceeds 1,080 mg/m2 in the chemotherapy
scheme (63).

Target Therapies
Electrolyte disorders reported in target therapies-treated patients
are described in Tables 3–5 part I, II, III. Hyponatremia
is one of the most frequent derangement. According to
a recent meta-analysis, the highest incidence (63.4%) of
all-grade hyponatremia was observed in patients treated
with Brivanib, a selective type 1 fibroblast growth factor
receptor/vascular endothelial growth factor receptor-2 (VEGFR-
2) antagonist combined with Cetuximab, a recombinant chimeric
monoclonal antibody anti-EGFR (Her1). Hyponatremia was
also frequent (31.7%) after monotherapy with Pazopanib, a
multikinase inhibitor of VEGFR-2/platelet-derived growth
factory receptor (PDGFR) (6). Lower incidence was seen
with Afatinib, a protein kinase inhibitor inhibiting EGFR 2
(Her2) (1.7%) (6). Cediranib, a pan-VEGFR tyrosine-kinase
inhibitor showed a 65% incidence of overall hyponatremia
(72). The highest incidence of severe hyponatraemia (<
120 mmol/l) was reported with cetuximab (34.8%), while
the lowest incidence with gefitinib, an EGFR inhibitor
(1.0%) (6).

Cixutumumab, an anti-insulin-like growth factor receptor
1 antibody, induced hyponatremia in 25% of patients in
a phase II safety evaluation study (71); the mechanism
involves an increase of fractional sodium excretion (73).

In patients treated with Icrucumab and Bevacizumab,
recombinant human MoAbs against vascular endothelial
growth factor receptor-1 and VEGF-A, hyponatremia emerged
as a dose-limiting toxicity factor (126). Since Bevacizumab
increases the risk of severe proteinuria (127), hypervolemic
hyponatremia has also been proposed as a consequence of
nephrotic syndrome. Trastuzumab Emtasine, inhibitor of
EGFR 2 (Her2) signaling, at a dose of 3.6 mg/kg every 3
weeks, can induce true hyponatremia by a Cerebral Salt
Wasting Syndrome as reported in a patient with breast cancer
and brain metastasis who needed repeated hospitalizations
because of severe hyponatraemia (74). Both Etaracizumab,
a humanized monoclonal antibody against αvβ3 integrin
receptor, and Volociximab, a chimeric monoclonal antibody
directed against human α5β1 integrin, were also associated
with severe hyponatremia (79, 80). Ipilimumab, a monoclonal
antibody against cytotoxic T lymphocyte antigen-4, may
induce hypophysitis leading to hypopituitarism, adrenocortical
insufficiency and hyponatremia (75). Loss of the regulatory
effects of cortisol on ADH release may induce SIADH.
Hyponatremia was also observed after Nivolumab and
Pembrolizumab administration, two programmed-death-1
pathway inhibitors. Nivolumab-related hyponatremia can
also involve SIADH-independent mechanisms, causing a true
Na depletion such as in autoimmune hypophysitis with an
isolated ACTH deficiency and secondary adrenal insufficiency
(76), or a tubulointerstitial nephritis (77), or an adrenalitis
with primary adrenal insufficiency (78). The first case of
nivolumab-induced adrenalitis resulting in primary adrenal
failure with hyponatraemia was described in a 43-year-old
man that started nivolumab (3 mg/kg) at two weekly intervals,
whose serum sodium dropped to 127 mmol/L after four
cycles (78).

Tyrosine Kinase Inhibitors (TKI) treatment has been
associated with SIADH. Hyponatremia-related SIADH was
reported in patients affected by Bcr-Abl acute lymphoblastic
leukemia treated by Imatinib at a dose of 400 mg/day, and was
observed after 11 months of therapy (81), in those affected by
refractory chronic myelogenous leukemia treated with Dasatinib
(100 mg/day), Nilotinib (400mg twice/day) and Bosutinib
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TABLE 3 | Target therapies (part I).

Electrolyte disorder Drug Incidence (%)

Type of study

Mechanism(s)

Hyponatremia Cixutumumab

Bevacizumab

Ado-trastuzumab

Ipilimumab, Nivolumab

Nivolumab

Icrucumab, Etaracizumab

Volociximab

Brivanib, Imatinib, Dasatinib,Cediranib

Nilotinib,Sorafenib,

Sunitinib, Gefinitib, Pazopanib,

Afatinib, Bosutinib

Temsirolimus, Everolimus

Interferon-alpha,

Levamisole, Pentostatine

Interferon-alpha

Elacytarabine,

Interleukin-2,

Eribulin mesylate

Bortezomib

25 (D) (71)

n.a. (A)

Brivanib and Cetuximab 63.4 (D);

Pazopanib 31.7 (D); Gefitinib 1

(D) (6); Cediranib 65 (D);

35(<120 mmol/L) (72)

Blockade of IGF-1 receptor (71, 73)

SIADH; Nephrotic Syndrome (69, 70)

CSWS (74)

Adrenal insufficiency due to autoimmune hypophysitis (75, 76)

Interstitial nephritis, autoimmune adrenalitis (77, 78)

SIADH (?) (79, 80)

SIADH (34, 81–83)

Aldosterone resistance (84, 85)

SIADH (86–89)

Hyperglicemia (90)

Unclear (91–93)

SIADH (?) (94, 95)

TLS (96)

Incidence and type of study column: the letter after the percentage indicates the type of evidence available: A isolated case; B case series; C pharmacovigilance notifications or registry; D

observational study, clinical trial, metanalysis of clinical trials. n.a. not available. References in bracket square. CSWS Cerebral Sal wasting Syndrome; IGF-1, Insulin-like growth factor-1;

SIADH, Syndrome of inappropriate antidiuretic hormone secretion; TLS, Tumor Lysis Syndrome.

(500 mg/day) (82), as well as in patients with renal carcinoma
or with metastatic head and neck cancer treated with Sorafenib
(400mg twice/day for a median duration of therapy of 3.4
months) (83).

Mammalian targets of rapamycin (mTOR) inhibitors.
Different grades of hyponatremia have been reported with
Temsirolimus and Everolimus, either in monotherapy or in
combination, with aldosterone resistance being suggested as the
main pathogenetic mechanism (84, 85).

Immunomodulators. Serum Na derangements have been
reported with Interferon therapy in the past 2–3 decades (86).
Hyponatremia was described after 7 days of Interferon treatment
in a patient in therapy with carbamazepine, supporting an
additive effect of both drugs on SIADH development (87).
A case of translocational hyponatremia due to hyperglycemia
was reported in a patient with Interferon-induced diabetes
mellitus (90). Levamisole and Pentostatin also appear to be
associated with hyponatremia, presumably via SIADH (88, 89).
Different degrees of hyponatremia were also observed in patients
treated with Eribulin mesilate, Elacytarabine and recombinant
Interleukin-2 (91–93), although themechanisms are not clarified.

Proteasome inhibitor. Hyponatremia secondary to SIADH
is not frequent in multiple myeloma even though bortezomib
treatment, alone or associated with dexamethasone, was reported
to increase ADH secretion and effect (94). In a case report,
the finding of the ADH-positivity of monoclonal plasma
cells at immunohistochemical analysis, suggested TLS as the
pathogenetic mechanism (96). In another case report, a
patient treated for multiple myeloma developed SIADH-related
hyponatremia 3 cycles after starting 1.3 mg/m2 bortezomib (95).

Treatment with MoAbs and Target Therapies can affect
potassium metabolism (Table 4, part II). Cetuximab and

other anti-EGFR agents decrease potassium levels through
an impairment in magnesium balance (99). Combined grade
3 and 4 hypokalemia (serum K between 2.5–3.0 mmol/L,
and <2.5 mmol/L, respectively) had an incidence of 6.2%,
and all-grade hypokalemia of 8.0%, in cetuximab-treated
patients (97). The anti-HER3 and anti-HER2 antibodies
lumretuzumab and pertuzumab combined with paclitaxel
induced grade 3 hypokalemia in 40% of patients with breast
cancer (98). Bevacizumab can induce hypokalemia due to
proximal tubular damage (100). Hypokalemia is also reported
with Tremelimumab, Blinatumomab and Eribulin mesylate
through an unclear mechanism, possibly via drug-induced
diarrhea (102–104). Novel TKI as Volasertib (105) and
mTOR inhibitors, particularly Everolimus (101), were associated
with hypokalemia.

Conversely, hyperkalemia has been observed in cancer
patients as a consequence of TLS, sepsis, and adrenal insufficiency
due to metastatic disease (Table 4, part II). Other mechanisms
include the suppression of insulin release, reducing potassium
intracellular uptake, in Octreotide-treated patients, as well as
transcellular potassium shift or TLS in Thalidomide-treated
patients (at doses ranging between 100 and 400mg/die) (36). TKI
Axitinib induces hyperkalemia through TLS development and
distal tubular dysfunction such as in hyperkalemic type 4 renal
tubular acidosis (128).

Electrolyte imbalances increased considerably after the
introduction of anti-EGFR MoAbs into therapy (129) (Table 4,
part II). A recent meta-analysis of 25 randomized controlled
trials reported an incidence of hypomagnesemia of 34%,
whereas those of hypokalemia and hypocalcemia were 14
and 17%, respectively. Cetuximab increased 6 times the
risk of grade 3/4 hypomagnesemia (Mg serum between
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TABLE 4 | Target therapies (part II).

Electrolyte disorder Drug Incidence (%)

Type of study

Mechanism(s)

Hypokalemia

Hyperkalemia

Cetuximab, Panitumumab

Lumretuzumab, Pertuzumab

(combined with paclitaxel)

Bevacizumab

Temsirolimus, Everolimus

Tremelimumab, Blinatumomab,

Volasertib, Eribulin Mesilate

DRUG-INDUCING-TLS

(MoAbs, TKI, PI, CAR-T)

IMMUNOMODULATORS

(Thalidomide, Lenaldomide)

6 (<3 mmol/L) (D) (97)

8 (all grade) (D) (97)

57 (all grade) (D);

40 (< 3.0 mmol/L) (D) (98)

n.a.

n.a.

Renal potassium wasting due to hypomagnesemia (97, 99)

Drug-induced secretory diarrhea (98)

Proximal tubular damage (100)

Acquired FS (101)

Unclear;

Possible drug-induced diarrhea

(102–105)

TLS (34, 101)

Hypomagnesemia Cetuximab,

Panitumumab

Zalutumumab, Nimotuzumab

Cetuximab

(combined with irinotecan)

Lumretuzumab,Pertuzumab

(combined with paclitaxel)

2-6 (<0.9 mg/dl) (D)

(99, 106)

5.9 (<0.9 mg/dl) [D]

(107)

34; 3% (<0.9 mg/dl)

(D) (98, 99, 106)

Renal magnesium wasting due to TRPM6/EGF/EGFR blockade

(99, 108)

Drug-induced secretory diarrhea (98)

Incidence and type of study column: the letter after the percentage indicates the type of evidence available: A isolated case; B case series; C pharmacovigilance notifications or registry;

D observational study, clinical trial, metanalysis of clinical trials. n.a. not available. References in bracket square. CAR-T, Chimeric Antigen Receptor-T; FS= Fanconi Syndrome; MoAbs,

Monoclonal Antibodies; PI, Proteasome Inhibitors; TKI, Tyrosine Kinase Inhibitors; TLS, Tumor Lysis Syndrome; TRPM6, Transient Receptor Potential Cation Channel, subfamily M,

member 6/EGF, Epidermal Growth Factor.

0.7-0.9 or <0.7mg/dl, respectively) and grade 3/4 hypokalemia
(17, 99, 130). The longer half-life and higher affinity of
panitumumab for EGFR, as well as the overexpression of
EGFR, are responsible for a high incidence of grade 3/4
hypomagnesemia and hypokalemia in colorectal cancer patients
(99). Patients treated with cetuximab 400 mg/m2 at first
dose and 250 mg/m2 weekly (or 500 mg/m2 every 2 weeks)
or panitumumab 6 mg/kg (or 9 mg/kg according to the
tumor types) developed hypomagnesemia and hypokalemia
(99). Compared to cetuximab and panitumumab, zalutumumab
is associated with less hypomagnesemia and hypokalemia
(108). A recent phase 2 trial showed 5.9% incidence of
hypomagnesemia when Cetuximab and Irinotecan were co-
administrered (107) (Table 4, part II). Hypomagnesemia, by
upregulating ROMK activity with ensuing potassium loss, is
involved also in anti-EGFR MoAbs-induced hypokalemia (36).
Magnesium supplementation should be considered in patients
undergoing treatment with Anti-EGFR MoAbs. Some authors
suggest empirically prophylactic administration of Mg at the
beginning of treatment (1) and oral preparations are preferred
in mild hypomagnesemia, while intravenous administration for
severe depletion.

Cetuximab and Panitumumab can also induce hypocalcemia
related to the underlying hypomagnesemia (99). TKI Imatinib
can cause hypocalcemia and muscle cramps in up to 40% of
patients. In a young woman with abdominal gastrointestinal
stromal tumor, Imatinib (400 mg/day) led to hypocalcemia
after 5 months of treatment (109) (Table 5, part III). A direct
effect on c-Kit tyrosine kinase receptors of renal tubular cells
with ensuing hypocalcemia represents the possible mechanism

(110). Osteoclast inhibition and osteoblast activation with bone
sequestration of Ca and phosphate and ensuing hypocalcemia
may also be involved (111). Sorafenib (112), as well as Axitinib
(114) and combined therapy with Erlotinib and Sunitinib
(115), can cause hypocalcemia. A case of severe symptomatic
hypocalcemia related to Nilotinib was also reported, with an
immune-mediated destruction of the parathyroid glands or
a drug interference with calcium sensing receptors (CaSRs)
and ensuing insufficient PTH secretion being the suggested
pathogenic mechanisms (113).

TKIs (Imatinib, Sunitinib, Ceritinib) affect also phosphate
balance via inhibition of bone turnover (Table 5, part III)
(119, 131). TKI may affect bone turnover by inhibiting PDGFR
in proximal tubular cells and induce, as in the case of
imatinib, an acquired FS (120). Hypophosphatemia can be
worsened by concomitant conditions, as in the case of sorafenib-
induced diarrhea with consequent vitamin D malabsorption
(121). Novel target therapies may also induce different grades
of hypophosphatemia. Vemurafenib and rarely, Dabrafenib,
both competitive inhibitors of mutated BRAF kinase, may
cause acute (1–2 weeks) or subacute (1–2 months) tubular
toxicity. Acute toxicity is associated with acquired FS while
subacute toxicity to an immuno-allergic interstitial nephritis
(122). Diarrhea-induced vitamin D malabsorption can be also
responsible for hypophosphatemia in 25% of patients treated
with Mirvetuximab Soravtansine, a folate receptor α-targeting
antibody-drug conjugate (118). Finally, acquired FS was also
reported in patients treated with Perifosine, a protein kinase B
inhibitor (132), Lenalidomide (after three weeks at a dose of 15
mg/day) (124), proteasome inhibitors (123), mTOR inhibitors
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TABLE 5 | Target therapies (part III).

Electrolyte disorder Drug Incidence (%)

Type of study

Mechanism(s)

Hypocalcemia Cetuximab,

Panitumumab

Lumretuzumab, Pertuzumab

(combined with paclitaxel)

Imatinib

Sorafenib

Nilotinib

Erlotinib, Axitinib, Sunitinib

17 (D) (99)

14 (D) (98)

40 (A,B) (109)

Hypomagnesemia-related hypoparathyroidism (99)

Direct effect on tyrosine kinase c-Kit of tubular cells (109);

low-voltage-activated T channels blockade (110, 111)

Endoplasmic reticulum stress with calcium mobilization (112)

Immune-mediated parathyroid glands destruction; interference

with CaSRs (113)

Unclear (114, 115)

Hypophosphatemia TKI

Sorafenib Combined with

Capecitabine

Vemurafenib, Dabrafenib

Proteasome Inhibitors (Bortezomib,

Oprozomib

Carfilzomib)

Lenalidomide

mTOR inhibitors (temsirolimus)

MoAbs (Nivolumab, Bevacizumab,

Etaricizumab)

Lumretuzumab, Pertuzumab

(combined with paclitaxel)

Mirvetuximab Soravtansine

23 (<2.0 mg/dl) (D) (116)

40 (A, B) (109)

2.3 (<2.0 mg/dl) (D) (117)

17(D) (98)

25 (<2.0 mg/dl) (D) (118)

Bone Turnover inhibited; proximal tubule damage by PDGFR

blockade (119, 120)

Vitamin D malabsorption due to drug-induced secretory diarrhea

(121)

Acquired FS (120, 122)

Acquired FS (123)

Acquired FS (?) (124)

Phosphate wasting due to acute tubular necrosis (34)

Acquired FS (?) (79, 100, 117)

Vitamin D malabsorption due to drug-induced secretory diarrhea

(98)

Vitamin D malabsorption due to drug-induced secretory

diarrhea (118)

Hyperphosphatemia MoABS (Brentuximab,

Obinutuzumab,Otlertuzumab,

Ibritumomab,Ofatumomab)

TKI

Proteasome Inhibitors

Lenalidomide and CAR-T cell

n.a. Tumor Lysis Syndrome (28, 125)

Incidence and type of study column: the letter after the percentage indicates the type of evidence available: A isolated case; B case series; C pharmacovigilance notifications or registry;

D observational study, clinical trial, metanalysis of clinical trials. n.a. not available. References in bracket square. CAR-T, Chimeric Antigen Receptor-T; CaSR=calcium sensing receptor;

c-Kit, type III receptor tyrosine kinase; FS= Fanconi Syndrome; MoAbs, Monoclonal Antibodies; mTOR= mammalian target of Rapamycin; PDGFR, Platelet Derived Growth Factor

Receptor; PTH, Parathyroid hormone; TKI, Tyrosine Kinase Inhibitors.

(34), and MoAbs (Nivolumab, Etaracizumab, Bevacizumab, with
nivolumab showing a 2.3% incidence of grade 3 [<2.0 mg/dl]
hypopophatemia) (79, 100, 117) (Table 5, part III). Among
proteasome inhibitors, hypophosphatemia development was
related to subcutaneous administration of 1.3 mg/m2 bortezomib
during a 21-day cycle for 16 cycles, combined with thalidomide,
dexamethasone, and panobinostat (133).

Finally, a special emphasis must be given to various target
therapy drugs (Table 4, part II and Table 5, part III) causing
diarrhea, a mechanism leading to a combination of electrolyte
derangements including hypokalemia, hypomagnesemia,
hypocalcemia, hypophosphatemia, normal anion gap
(hyperchloremic) metabolic acidosis due to bicarbonate loss,
and severe hypovolemia (102–104, 118, 121). Target therapy,
and in general chemotherapy, can cause nausea and vomiting.
Excessive vomiting, especially over a prolonged period of time,
leads to hypovolemia and hypochloremic metabolic alkalosis due
to loss of chloride and hydrogen ions that can be associated with
hypokalemia and hypomagnesemia (134).

VINCA ALKALOIDS

Vinca Alkaloids, including vincristine, vinblastin, and vindesine,

may induce hyponatremia via SIADH, that commonly occurs
1–3 weeks after drug administration (range 2–21 days). The
incidence of moderate-severe hyponatremia is around 11% (135)

with vincristine, but a higher incidence was reported with
vinblastine after 7 days of treatment (136) or even earlier (after
36 hours) after a variable vinblastine dose between 0.2 and 6
mg/m2/day (137).

SIADH can result from a direct neurotoxic effect on
the hypothalamus with altered control of ADH secretion
(138). Interestingly, antifungal azole therapy, that inhibits
Vinca Alkaloids metabolism, leads to severe neurotoxicity and
SIADH-related hyponatremia (139). Hypocalcemia has also been
reported in Vinka alkaloyds-treated patients but its incidence
is not known; the involved mechanism is the impairment of
microtubule polymerization (140). Table 6 reports the electrolyte
disorders associated with Vinka alkaloid agents.
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TABLE 6 | Miscellaneous.

Electrolyte disorder Drug Incidence (%)

Type of study

Mechanism(s)

Hyponatremia VINCA ALKALOIDS (Vincristine,

Vinblastin)

ANTIMETABOLITES

Methotrexate

TOPOISOMERASE I inhibitor

Irinotecan

11-90 (D) (135–137)

6.6 (120-130 mEq/L)

(D)(141)

SIADH (direct hypothalamic toxicity; potentiated by antifungal

azoles) (138, 139)

SIADH, CNS-derived natriuretic peptide secretion (142, 143)

SIADH (32, 141)

Hypokalemia ANTIMETABOLITES

Methotrexate

Pemetrexed

Azacytidine

Impairment of ion channels of skeletal muscle myocytes; renal

tubular acidosis (144)

Acute tubular necrosis; tubular acidosis or acquired FS (145, 146)

ANTIANDROGENS (Abiraterone)

Octreotide

16.6-18 (D) (all grade)

2.6-4.4 (<3.0

mEq/L) (66, 147, 148).

17α-hydroxylase inhibition and accumulation of mineralocorticoids

(149)

Decreased cellular potassium uptake due to insulin

suppression (34)

Hypocalcemia VINCA ALKALOIDS (Vinblastine)

ESTROGENIC AGENTS

Estramustine

ANTIBIOTICS

Mithramycine, Actinomycin D,

Actinomycin-F

Altered intracellular calcium homeostasis due to cell microtubular

damage (118)

Inhibition of PTH action on bone turnover (67, 150)

Blockade of osteoclast function; resistance to PTH on bone

turnover (151)

ANTIMETABOLITES

5-Fluorouracil (combined with

leucovorin)

TRPV6 INHIBITOR (Soricidin 13)

65 (D) (152)

13 (D) (153)

Low vitamin D3 due to reduced 1-alpha-and 25-hydroxylase

activities (152)

Altered Calcium absorption (153)

Hypophosphatemia ESTROGENIC AGENTS

(Estramustine)

NITROSUREAS

(Streptozocin,Semustin,Carmustine,

Lomustine)

ANTIMETABOLITES

Azacytidine

High phosphaturia due to down-regulation of NaPi-IIa, NaPi-IIc

cotransporter in proximal tubule (150)

Phosphate wasting due to -interstitial nephritis and tubular

atrophy; FS (154)

Proximal Tubule Damage (145, 146)

HALICONDRIN ANALOGUE (Eribuline

Mesylate)

ANTIBIOTICS (Anthracyclines:

amrubicin, doxorubicin)

8.6 (D) (155, 156)

<2.0mg (A) (157)

Unclear (155, 156)

Proximal Tubule Damage (157)

Incidence and type of study column: the letter after the percentage indicates the type of evidence available: A isolated case; B case series; C pharmacovigilance notifications or

registry; D observational study, clinical trial, metanalysis of clinical trials. n.a. not available. References in bracket square. CNS, Central Nervous System; FS= Fanconi Syndrome; NaPi,

Sodium-Phosphate cotransporters; SIADH, Syndrome of inappropriate antidiuretic hormone secretion; TRPV6, inhibition of member six of Transient Receptor Potential Vanilloid family

of calcium channel.

ANTIMETABOLITES

Both increased secretion of ADH (142) or a central nervous

system-derived natriuretic peptide (143) are described as
potential mechanisms of Methotrexate-induced hyponatremia
(Table 6). Methotrexate (at a dose of 12 g/m2) can induce

severe hypokalemia, as observed in a patient with transient
hypokalemic tetraparesis occurring after intravenous high-

dose administration (144). Azacytidine (75 mg/m2/day
administered subcutaneously or intravenously, days 1–7 of
each 28-day cycle for 6 cycles) may also induce hypokalemia and

hypophosphatemia; potassium depletion can persist for weeks
after stopping the drug, and necessitates prolonged parenteral
supplementation (145, 146). The combination of 5-Fluorouracil
(at a dose of 425–600 mg/m2/day for 5 consecutive days) with
5-formyl tetrahydrofolic acid (leucovorin, 20 mg/m2/day)
can induce hypocalcemia due to inhibition of vitamin D

1- and 25-hydroxylation, leading to low levels of calcitriol
(Table 6) (152).

MISCELLANEOUS

Antiandrogens. Abiraterone inhibits both testicular and extra-

testicular androgen synthesis by inhibiting 17α- hydroxylase
and 17–20 liase resulting in decreased testosterone levels.
The inhibition of 17α-hydroxylase leads to the accumulation
of upstream mineralocorticoids that increase epithelial Na
channel and the voltage-dependent ROMK activities in the
distal nephron, resulting in increased cortical collecting duct
potassium secretion and ensuing hypokalemia (149). The
incidence of all-grade hypokalemia related to abiraterone (at
a standard dose of 1,000 mg/day) ranges between 16.6 and
18% and between 2.6 and 4.4% when grade 3/4 hypokalemia
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(less than 3.0 mmol/L) is considered, and occurs after
2–4 weeks from the beginning of therapy (Table 6) (66,
149). Symptoms associated with mineralocorticoid excess and
hypokalemia are managed by co-administration of low-dose
prednisone, potassium chloride supplementation and/or a
mineralcorticoid antagonist.

Estrogenic agents. Oral and intravenous administration of

Estramustine (two 2,000 mg/m2 doses administered weekly)
is associated with hypocalcemia and vitamin D3 deficiency
after 4–5 weeks (67) (Table 6). Hypocalcemia may be due to
inhibition of PTH action and impaired calcium mobilization
from bone (67). Several studies reported phosphate wasting
during high-dose estrogen treatments, hypothesizing a down-
regulation of sodium phosphate co-transporters (NaPi-IIa and
NaPi-IIc) in the proximal convoluted tubule through the
activation of estrogen receptor-alpha, independently from the
Klotho/FGF- 23 and PTH pathways (150) (Table 6).

Antibiotics. Mithramycin associates with hypocalcemia by
blocking osteoclast function and PTH action on gut and bone
directly, or by causing vitamin D resistance. Actinomicyn-D
and Actinomycin-F also induce hypocalcemia by interfering with
bone mineralization (151) (Table 6).

Nitrosureas. Streptozocin has a greater nephrotoxicity profile
than other molecules, such as carmustine and lomustine. These
drugs may induce renal toxicity through interstitial nephritis and
tubular atrophy, resulting in FS (154).

Halichondrin B Analogue. Eribuline mesylate, a nontaxane

inhibitor of microtubule dynamics has been associated with
hypophosphatemia (around 8.6% in a phase I trial, at doses of
2.0 mg/m2/week, and with the liposomal formulation of the drug
at doses between 1.0 and 3.5 mg/m2/week) (155, 156), but also
with hyponatremia, hypomagnesemia, and hypokalemia (3–10%)
(Table 6); the exact mechanisms of ion derangements have not
yet been clarified.

TRPV6 Inhibitor. SOR-C13 reduces calcium intestinal
absorption by the inhibition of member six of Transient
Receptor Potential Vanilloid family of calcium channel (153).

TUMOR LYSIS SYNDROME

Tumor Lysis Syndrome often occurs as a consequence of
cytotoxic therapies, mostly in patients affected by hematological
malignancies, leading to rapid release of cell constituents. It can
be complicated by life-threatening conditions such as cardiac
arrhythmias, acute kidney injury and neurologic impairment
(158). The electrolyte derangements observed in TLS include
hyperphosphatemia, hyperkalemia, and hypocalcemia, with the
latter being the result of calcium precipitation in soft tissues
secondary to acute hyperphosphatemia. The highest incidence
of TLS is observed after Dinaciclib and Alvocidib treatment
(between 15 and 53 % in acute leukemia trials) whereas the
incidence is 8–10% for Venetoclax, CAR-T cell, Obinutuzumab,
and <5% with Brentuximab, Carfilzomib, Lenalidomide,
Dasatinib and Oprozomib. Idelalisib, and Ofatumumab have no
reported cases of TLS (125).

FIRST-LINE CANCER THERAPIES AND ION
DERANGEMENTS

First-line therapy represents the regimen(s) that is(are) generally
accepted for the initial treatment of a specific type and stage
of cancer, and is intended to cure the tumor when possible.
The strategy of treatment should consider several factors, such
as histology and molecular pathology of cancer, and age and
comorbidities of the patient in order to set adequate therapeutic
decisions (159).

In 2018, according to World Cancer Research Fund
International, breast, colorectal, lung, and cervical cancers are
the most common cancers in the female population whereas
lung, prostate, and colorectal cancers are the most common
malignancies in the male population (160). Chemotherapy with
platinum-based drugs (preferably cisplatin) is recommended in
the majority of lung cancers, as a first-line treatment for locally
advanced non-small cell lung cancer (NSCLC), small-cell lung
cancer (SCLC), unresectable malignant pleural mesothelioma
and in association with immunotherapy (checkpoint inhibitors
such as Pembrolizumab, an inhibitor of programmed cell
death protein 1 pathway) in metastatic NSCLC and in those
positive for programmed cell death protein 1. In patients
with NSCLC and with a sensitizing EGFR mutation, first-
line therapy considers TKI (erlotinib, afatinib). The most
frequent electrolyte disorders in patients treated with platinum-
derived drugs are mainly hypomagnesemia and hyponatremia,
with the latter being related to cisplatin, pembrolizumab
or TKI combined effect. Less frequently patients can also
show hypophosphatemia, hypocalcemia, and hypokalemia
(161–165) (Tables 1, 3–5). Androgen deprivation therapy
(Goserelin, a luteinizing hormone releasing hormone agonist)
and Docetaxel, a semisynthetic taxane, are used as first-
line treatments for advanced metastatic prostate cancer; in
castration-resistant prostate cancer patients the treatment
includes abiraterone, which can lead to resistant hypokalemia
(Table 6) (166). Early colon cancer first-line treatment includes
adjuvant therapy based on several regimens responsible
for electrolyte derangements. Leucovorin in combination
with 5-Fluorouracil can often induce hypocalcemia; the
FOLFOX (Leucovorin, 5-Fluorouracil, Oxaliplatin) or CAPOX
(Capecitabin, the prodrug of 5-FU + Oxaliplatin) regimens
can induce hypomagnesemia, hyponatremia and hypocalcemia,
but with lower frequency compared to Cisplatin (34, 167).
First-line therapy in metastatic colorectal cancer consists in
chemotherapy doublet by combining the above regimens
with the anti-EGFR antibodies (in patients with wild-type
RAS), or bevacizumab (in the case of mutated RAS), or in
chemotherapy triplet (FOLFOXIRI: 5-Fluorouracil, leucovorin,
irinotecan, and oxaliplatin) plus bevacizumab in case of BRAF
mutation: hyponatremia, hypomagnesemia, hypocalcemia,
hypokalemia, and hypophosphatemia are the ion disorders
that these patients can experience (Tables 1, 6) (168). The
most frequently chemotherapeutic regimens used in early
estrogen receptor-negative breast cancer are represented by
anthracyclines and/or taxanes, although in selected patients
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a CYC/Methotrexate/5-Fluorouracil combination can also be
used. In Her2-positive patients, first-line therapy includes
chemotherapy combined with anti-Her2 drugs as trastuzumab
and pertuzumab. Triple-negative breast cancer are treated
with chemotherapy alone. In early estrogen receptor-positive
breast cancer, endocrine therapy should be added to the
above-mentioned treatments (169). In advanced breast cancer
anthracycline or taxane-based regimens, preferably as single
agents, would usually be considered as first-line treatment for
Her2-negative tumors. Capecitabine can also be a valuable
option. In patients affected by Her2-positive advanced breast
cancer first-line regimens include trastuzumab combined
with vinorelbine or a taxane (170). Patients treated with a
CYC/Methotrexate/5-Fluorouracil regimen can often experience
hyponatremia because of the combined effects of Methotrexate
and CYC, particularly when CYC is administered at higher doses.
This disorder can be further amplified by combination with
trastuzumab. The treatment with pertuzumab is complicated
by secretory diarrhea leading to hypokalemia, hypomagnesemia
and, due to vitamin D malabsorption, to hypocalcemia and
hypophosphatemia. Hypocalcemia can also occur because of
decreased calcitriol generation induced by 5-Fluorouracil or its
prodrug Capecitabine; hypophosphatemia may develop, due to
proximal tubule damage caused by anthracyclines (Tables 2–6)
(152). Special attention should also be given to the presence
of a concurrent hypokalemia and hypomagnesemia in patients
following an anthracycline-based regimen; the cardiotoxic
effects of these drugs can be amplified by the presence of
these ion disturbances and be a harbinger of threatening
arrhythmic events.

TREATMENTS OF ION DERANGEMENTS

Sodium: dysnatremias (both hypo- and hypernatremia), should
be carefully evaluated for the cause (or causes) and treated
with special attention to the timing of disturbance onset
and the rate of correction. It is mandatory to know if the
disturbance is acute (<48 h) or chronic (>48 h); in the case
of acute hyponatremia with neurologic alterations, a rapid
infusion of hypertonic saline is required to increase serum Na
concentration by 1–2mmol/L per hour. In chronic hyponatremia
the correction rate should be 4–8 mmol/L per day, or even
less (4–6-mmol/L per day) if there is a particularly high
risk of osmotic demyelination syndrome. While the Adrogue-
Madias equation can be used, when starting the infusion
of a hypertonic solution, to predict serum Na concentration
with therapy, several limitations have been described using
this formula, and a close monitoring of the serum Na
concentration is mandatory during treatment of patients with
severe hyponatremia (171). In patients affected by SIADH and
mild to moderate hyponatremia, fluid restriction is traditionally
the first-line therapy; if fluid restriction is unsuccessful,
pharmacological treatment with loop diuretics, urea, or vaptans
should be considered.

In case of hypernatremia, sodium alterations should be
corrected based on water deficit equation bearing in mind

the importance of cause and the time of development of
the electrolyte derangement and the rate of correction (13).
Moreover, ongoing losses due to perspiration and urine output
should be taken into account. The objective in patients with
chronic hypernatremia is to lower sodium levels by a maximum
of 10 mEq/L per day (less than 0.5 mEq/L/h is considered safe),
whereas in those with acute hypernatremia the objective is to
lower sodium levels by 1–2 mEq/L/h to restore normal levels in
less than 24 h (172).

Other electrolyte disorders (K, Ca, Mg, P): the electrolytes
depletions should be corrected with oral or intravenous
supplementation. Treatment of K disorders in patients affected
by malignancies is similar to that in the normal population.
In case of hypokalemia and hypocalcemia secondary to
hypomagnesemia, magnesium depletion should be primarily
corrected (21). In case of acute hypercalcemia, in order to
reduce calcium serum levels, an intravenous 0.9% saline infusion
should be initially administered (usually 200 to 500 mL/h)
since most patients are volume depleted. In the absence
of renal or heart failure, loop diuretic therapy to increase
urinary calcium excretion is not recommended; only if an
impairment in the excretion of the fluid load is anticipated a
loop diuretic should be considered. Bone calcium mobilization
blockade with intravenous bisphophonates as zoledronic acid
(a dose-adjustment in presence of renal failure is required)
are frequently used in the treatment of acute hypercalcemia.
Recently, treatment with denosumab, another antiresorptive
drug with a long term effect, is increasingly being used.
Patients affected by hypophosphatemia should receive medical
treatment with vitamin D (calcitriol is preferred) and phosphate
supplementation (1 to 3 g/day) (173).

CONCLUSIONS

A vast array of traditional and novel antineoplastic drugs,
currently available for cancer treatments, may induce
serious and potentially life-threatening derangements in
serum electrolyte concentrations, via mechanisms such as
nephrotoxic tubular damage, diarrhea induction, and/or TLS.
Oncologists and clinicians should be aware of these crucial
side effects of antineoplastic therapies, in order to set out
preventive measures and start promptly appropriate treatments
when needed.
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