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Abstract

Turnip (Brassica rapa spp. rapa) is an important vegetable species, with a unique physiology.

Several plant parts, including both the turnip tubers and leaves, are important for human con-

sumption. During the development of turnip plants, the leaves function as metabolic source tis-

sues, while the tuber first functions as a sink, while later the tuber turns into a source for

development of flowers and seeds. In the present study, chemical changes were determined

for two genotypes with different genetic background, and included seedling, young leaves,

mature leaves, tuber surface, tuber core, stalk, flower and seed tissues, at seven different time

points during plant development. As a basis for understanding changes in glucosinolates during

plant development, the profile of glucosinolates was analysed using liquid chromatography

(LC) coupled to mass spectrometry (MS). This analysis was complemented by a gene expres-

sion analysis, focussed on GLS biosynthesis, which could explain part of the observed varia-

tion, pointing to important roles of specific gene orthologues for defining the chemical

differences. Substantial differences in glucosinolate profiles were observed between above-

ground tissues and turnip tuber, reflecting the differences in physiological role. In addition, differ-

ences between the two genotypes and between tissues that were harvested early or late during

the plant lifecycle. The importance of the observed differences in glucosinolate profile for the

ecophysiology of the turnip and for breeding turnips with optimal chemical profiles is discussed.

Introduction

Turnip (Brassica rapa subsp. rapa) forms a large and edible tuber, that is composed of both

hypocotyl and root tissue [1]. From turnips, both the tubers and green parts are consumed, in

particular in temperate regions in Asia, Europe and North America. In addition to its role in

human nutrition it is also important as a fodder crop. Turnips are a source of vitamins and

nutrients, but also contain significant amounts of glucosinolates (GLS), a group of secondary

plant metabolites almost exclusively found in the order Brassicales [2,3,4]. GLS are water-solu-

ble compounds that derive from glucose and amino-acids such as methionine, tryptophan or

phenylalanine. The core structure of all GLS consists of thioglucose and sulphate groups,
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which are conjugated to an amino-acid derived side chain. Side chains can be aliphatic or

indolic or aromatic, vary in chain length and can undergo several modifications (Fig 1) [5]. In

plants, GLS have a role to protect the plant from insect damage, both in leaves and in under-

ground tissues [6,7,8,9]. In vegetables, GLS provide a variety of tastes like bitterness and pun-

gency. Upon damage to plants, e.g. by chewing, GLS are enzymatically converted into a range

of volatile compounds, like nitriles and isothiocyanates (ITCs). In addition to taste formation

GLS have been reported to be implicated in both antinutritional and health-promoting effects

[10]. Progoitrin, a GLS known from several brassica species, has anti-thyroid activity and pro-

motes goitre disease [11]. On the other hand, a high consumption of Brassica vegetables corre-

lates negatively with the incidence of degenerative diseases in numerous epidemiological

studies [11]. Protective effects are often accredited to GLS breakdown products such as ITCs,

nitriles and indoles [12,13]. There is increasing evidence that ITCs are involved in cancer pre-

vention and have anti-inflammatory effects (reviewed in [14]).

Previous work has shown that turnip varieties differ widely in their GLS content and com-

position [4]. Generally GLS composition is measured in either the green parts of turnips

[3,15,16], or in the tubers [4,17,18], and these data suggest that the GLS composition of tubers

differs strongly from that of leaf tissue. This is likely the result of tissue-specific regulation of

GLS biosynthesis, transport and/or storage, which is affected by both the genotype of the plant

and the environment [19,20,21,22]. Only recently a single study compared GLS composition

in both leaves and tubers of several turnip accessions [23]. In addition, global GLS composition

has recently been analyzed in leaves and roots in ecological studies [24].

Breeding towards new turnip varieties with specific GLS composition may be in the interest

of consumers in view of their contribution to the nutritional quality of this vegetable. For such

breeding activities, it is important to identify genetic loci controlling GLS biosynthesis and

storage. In Arabidopsis thaliana, discovery of such loci has been strongly facilitated by a com-

pact genome, a large set of well-characterized ecotypes and the availability of a large set of

molecular biology tools[25,26,27]. These genes include biosynthetic enzymes, regulatory tran-

scription factors and transporters [19,20,28] (Fig 1). For example, the locus GS-ELONG con-

trols variation in the side-chain length of aliphatic glucosinolates, and maps to the MAM
genes, encoding enzymes involved in chain elongation [29]. The GS-OX locus controls the

ratio between methylthioalkyl to methylsulfinylalkyl GLS [30], comprising five monooxygen-

ase isogenes which mediate conversion of methylthioalkyl GLS. Two loci control the presence

of hydroxylated aliphatic GLS. The AOP locus encodes dioxygenases which convert methylthi-

oalkyl GLS to either hydroxyalkyl GLS (AOP3), or alkenyl GLS (AOP2) [31]. The GS-OH locus

encodes another dioxygenase, which converts alkenyl GLS to 2-hydroxyalkenyl GLS [32]. In

addition, several studies describe transcription factors that regulate GLS biosynthesis in Arabi-

dopsis [5]. For instance, MYB28, MYB29 and MYB76 were all identified as positive regulators

for the production of aliphatic GLS of different chain lengths, which reciprocally trans activate

each other, while MYB29 also plays a role in jasmonic acid-induced aliphatic GLS biosynthesis

[33,34,35]. MYB51 and MYB34 were identified in A. thaliana as regulators of indolic GLS [36].

Recently, GLS transporters have been identified, that import GLS from the apoplastic space to

the symplast [27,37]. More loci controlling GLS variation, GLS storage and GLS breakdown in

Arabidopsis have been reviewed [38].

Genetic research of non-model species such as turnip benefits from the pioneering work in

Arabidopsis, since biochemical pathways in B. rapa are not fundamentally different from

those in Arabidopsis [39]. However, the tuber tissue from turnips is absent from the architec-

ture of Arabidopsis, and acts both as a sink during vegetative development, and as a source

during generative development of the plant. In view of this important physiological role, the

identification of genetic loci determining the specific GLS composition in turnip tuber tissue is
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relevant. While the Arabidopsis genome is compact, the B rapa genome is the result of a

genome triplication from a common ancestor of B. oleracea and B. rapa [40]. Gene loss, due to

genome fractionation after the triplication event, has led to the disappearance of gene paralogs

[41,42]. Gene loss is not a random process, as some gene classes are more strongly retained

compared to others [41,43]. In two genome wide studies orthologues of A. thaliana GLS genes

and their genetic positions in B. rapa were identified showing that many paralogues had been

retained [42,44]. Different paralogues likely have different roles depending on plant genotype,

age and organs, yet this has barely been studied. For example, [45] showed that the three

MYB28 paralogues in B. rapa, each of them encoding a functional protein, have clearly distinct

expression patterns, with one copy expressed in none of the tissues tested.

In the present work, the accumulation of 11 GLS forms in different tissues and develop-

mental stages of two turnip accessions has been investigated, revealing the dynamics of GLS

accumulation during the lifecycle of B. rapa. This information was complemented by a gene

expression analysis, probing expression of a range of B. rapa paralogues of genes that have

been identified as relevant for GLS biosynthesis, regulation and transport in Arabidopsis. Sub-

sequently it is discussed in how far this information can be deployed to preselect genetic loci

and markers for breeding for specific GLS content and composition in turnip.

Material & methods

Plant material

Both FT-004 (Lange Gele Dortfelder, CGN06678, originating from Denmark) and FT-086

(CGN0722, originating from Pakistan) were kindly provided by The Centre for Genetic

Fig 1. Proposed metabolic pathway from methionine to aliphatic GLS in turnip. GLS compounds are indicated in

solid squares and structures of their side-chains are shown; genes are indicated in dashed squares. ERU: glucoerucin

(also denoted as 4MTB); BER: glucoberteroin (5MTP); NAP: gluconapin (3-butenyl); CAN: glucobrassicanapin

(4-pentenyl); PRO: progoitrin (C42OH); NAPOL: gluconapoleiferin (C52OH).

https://doi.org/10.1371/journal.pone.0217862.g001
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Resources, the Netherlands (http://www.cgn.wur.nl/UK/). These accessions had previously

been shown to have contrasting GLS profiles in both tuber and leaf tissues [4,17] while devel-

oping synchronously. The growth experiment was organized as a completely randomized

block design with three blocks in a single greenhouse compartment at Unifarm (Wageningen

University and Research), to minimise environmental differences (for day and night tempera-

ture profile, see S1 Table). The seeds were sown on the 7th of July 2010 and immediately after

emergence transplanted to Jiffy pots (July the 12th). Three weeks after sowing, 90 plantlets of

each accession were transplanted to larger pots (diameter 15 cm) and 30 plants of each acces-

sion were randomly distributed over each block. During winter the compartment was kept

frost free, so that the low temperatures induced flowering. Both accessions started flowering

April 2011.

Four crosses were made between FT-004 (mother) and FT-086 (father). About 10 seeds

from each cross were germinated (March 1st 2019) and for each cross 3 representative turnip

tubers were harvested in April 10th 2019.

Collection of tissues for glucosinolate profiling and gene expression

analysis

At seven time points during the plant life cycle, different tissues were harvested (Table 1).

After tissue collection plants were removed, so each plant was only harvested once. For each

harvest, tissue samples were taken from three plants per block, and pooled per accession per

block into a corning tube, and then immediately frozen in liquid nitrogen and stored at minus

80˚C. So from each tissue, three biological replicates (blocks) were analysed separately. From

the turnip tuber we collected two tissues, the outer tissue and the inner core. For the outer tur-

nip tissue we basically took slices from the peel, for the inner turnip tuber tissue, a 1 cm diame-

ter cork borer was used to collect a horizontal cross section through the entire tuber for each

plant. Each sample was immediately frozen in liquid nitrogen.

The harvest dates and the tissues collected are displayed in Table 1. At the latest develop-

mental stage, most tissues had senesced and we only harvested the turnip tuber tissues and

seeds.

Glucosinolate profiling

Samples were ground in liquid nitrogen and freeze-dried. As the current study is predomi-

nantly a comparative analysis, and the analysis of intact GLS has previously been shown to be

Table 1. Harvesting time, properties and analyses of materials from FT-004 and FT-086.

Time point Date Tissue harvested

seedling young leaves mature leaves tuber core tuber surface stem flower seed diam turnip (cm) rosette leaf size (cm)

T1 26-7-2010 g,e 5–10

T2 16-8-2010 g,e g g,e g 1–2 40

T3 30-8-2010 g g g,e g 3–4 60

T4 16-9-2010 g g,e g g 5–7 60

T5 29-9-2010 g g g g 8–10 60

T6 5-4-2011 g,e g,e g,e g g,e g,e 12–15 bolting

T7 21-6-2011 g,e hollow senescent

g: glucosinolate profile generated; e: gene expression profiled

FT-086, FT-004 and F1 seeds were planted on March 1st 2019 and turnip material was harvested on April 10th 2019 for GLS analysis.

https://doi.org/10.1371/journal.pone.0217862.t001
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well correlated to desulpho GLS but much less prone to enzyme batch variations, the method

described before [4,46]. Intact GLS were determined using HPLC coupled to both UV/Vis and

accurate mass detection (LC-PDA-QTOF MS; in short: LC-MS). Samples were extracted from

50 mg freeze-dried powder with 2 mL of 75% methanol and 0.1% formic acid for 15 min by

sonication, and then centrifuged for 15 min at 4˚C at 1000g. After centrifugation of the crude

extracts, the supernatants were filtered using Minisart SRP4 filters (Sartorius, Goettingen) for

LC-MS analysis. Each extract was injected (5 μL) into an Alliance 2795 HT instrument

(Waters) and separated on a C18 column (Phenomenex Luna, 2.0 mm × 150 mm, 3 μm parti-

cle size). Eluents used were water and 0.1% formic acid (A) and acetonitrile and 0.1% formic

acid (B). Compounds were separated using a gradient from 5% B to 35% B in 45 min and then

detected firstly by a PDA detector (wavelength 220−600 nm, Waters Co.) and secondly by a

QTOF Ultima mass spectrometer (Waters Co.) with negative electrospray ionization (m/z 80

−1500). Eleven different GLS peaks were identified based on their specific accurate masses and

retention times [4] (S2 Table). The relative levels of GLS were determined by integrating the

chromatographic peak areas of their molecular ions (within 5 ppm mass deviation) using the

QuanLynx module of MassLynx LC-MS software (Waters Co.).

Anova analysis of GLS data

Effects of tissue, genotype, time and all interactions were analysed by linear modelling /

ANOVA in R, version 3.4.0 (https://www.R-project.org/).

Gene expression profiling

We profiled a subset of genes involved in GLS biosynthesis, regulation of biosynthesis and

GLS transport, over a subset of the samples of both turnip genotypes. Selection of samples was

based on assessment of GLS profiles, with selection of samples (tissues and developmental

stages) when GLS profiles displayed major changes (see S4 Table). In S3 Table the selected B.

rapa gene orthologues and primers used for their amplification in the qrtPCR analysis are

listed.

Total RNA was extracted from the stored frozen tissues using the TRIZOL reagent (Invitro-

gen). Genomic DNA contaminations were effectively removed using RNase-free DNase I

treatment (Invitrogen, Carlsbad, CA, USA) according to manufacturer’s instructions. cDNA

synthesis was performed with the iScriptTM kit (BIO-RAD) according to supplier’s instruc-

tions. A final cDNA concentration of 40ng/ul sample was obtained by dilution of the cDNA

with RNA free MQ water, which was used for real-time RT-PCR. qRT–PCR reactions were

performed in a 96 position carousel (Light Cycler) with the Light Cycler-RNA amplification

kit SYBR Green I (Roche, Mannheim, Germany). A final volume of 10ul per reaction con-

tained 1 μL of cDNA; 5ul of SYBR Green Supermix; 3.4 μL of RNA free MQ water; 0.3 μL of

Forward Primer at 10uM and 0.3 μL Reverse Primer at 10uM. The thermal cycling consisted

of 95˚C for 2 min and 40 cycles of 95˚C for 20s, 55˚C for 20s and 72˚C for 20s. All the cycle

threshold (Ct) values from one gene were determined at the same threshold fluorescence value

of 0.2. Three technical replications were used for each time point in the experiment. ACTIN

(ACT) was used as reference gene in all expression studies. It displayed the most constant

expression level relative to total RNA content among three tested genes, including tubulin and

elongation factor (not shown). For seed samples, high variability was observed for all tested

reference genes. Analysis of the expression data was performed using the Rotor-gene 6 ver. 6.1

software (Applied Biosystems). Quantitative PCR data above Ct value 32 were considered as

absence of expression.
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Multivariate analysis

After range-scaling transformation [47], both relative levels of GLS and gene expression were

imported into GeneMaths XT version 2.12, build 2 (Applied Maths, Sint-Martens-Latem, Bel-

gium) for Principal Components Analysis (PCA) in order to get insight into differences in

GLS levels and gene expression between the tissues and developmental stages of the two con-

trasting accessions. The PCA’s were based upon accession-tissue-time point combinations of

the samples. For the PCA on the GLS data, the average of the three biological replicates were

taken. In the case of gene expression data the means of the relative gene expression (−ΔCt) of

two biological replicates were used.

Results

GLS analysis

Two accessions of turnip, FT-004 from Denmark and FT-086 from Pakistan, were selected

from a previous analysis [4], since their development proceeded synchronously, with regard to

turnip tuber formation and flowering. On the other hand, GLS content of their tubers and

leaves differed strongly. Plants of both accessions were raised in a large number of replicates in

a complete block design under identical conditions, and material from seedlings, juvenile and

adult plants was collected including young leaves, mature leaves, tuber core, tuber surface,

stem, flowers and seeds at different time points (Table 1). Intact GLS were extracted from

these materials and analysed by LC-MS. Eleven different GLS were identified [4], and their rel-

ative levels in the different samples were compared. A list of GLS and the specific masses used

for quantification are presented in S2 Table while the relative levels of the GLS are presented

in S4 Table.

Global variation in GLS content

Principle component analysis (PCA) of GLS data was performed to visualize the observed dif-

ferences in samples based on their differential GLS profiles (Fig 2A). The first principal compo-

nent (PC), explaining 44% of the total variation, mostly corresponds to the different tissues. In

particular, the tuber samples, from both skin and core, separated from all the above-ground tis-

sues, including seedlings, leaves, flowers, seeds and stems. The second PC, which explained 25%

of the total variation, clearly separates the two turnip accessions. These differences between tis-

sues and accessions are due to differences in specific GLS, as is clear from the PCA-loading

plots visualizing the distribution of GLS species across the various turnip samples (S1A Fig). We

tested whether there were significant effects of genotype, tissue and time-point and their inter-

actions on the content of individual GLS (S5 Table). For both time and tissue-type, significant

(p<0.05) effects were observed for all GLS. There was also a significant genotype effect for all

GLS, except for BRAS and NAS. Most interactions were also significant, however for several

GLS there was no interaction between time and genotype. GLS were addressed in more detail to

reveal which GLS are at the basis of the global differences observed in the PCA (Fig 2).

Genotype specificity for GLS

Accessions FT-004 and FT-086 differed in many GLS from each other (Fig 3). Glucoberteroin

(BER; Fig 3B) was detected at much higher levels in tubers of FT-004 than of FT-086. FT-004

had also a much higher content of gluconapoliferin (NAPOL; Fig 3F), both in tubers and in

young leaves. Similarly, the amount of 4-hydroxybrassicin (4-HBR; Fig 3H) was generally

much higher in FT-004 tissues than in FT-086. On the other hand, glucoerucin (ERU; Fig 3A)

levels were higher in FT-086; also gluconapin (NAP; Fig 3C) was higher in FT-086, although in
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Fig 2. Principle component analysis of GLS data (A) and gene expression data (B) of investigated turnip tissues from

two accessions at different timepoints. Average values of three biological replicates were used for each datapoint.

Accessions: black squares: FT-086; red stars: FT-004. Tissues: FL: flower; ML: mature leaves; SD: seed; SL: seedling; ST:

stem; TC: tuber core; TS: tuber surface; YL: young leaves. Timepoints: T1: 20 days after germinating; T2: 40 days; T3:

54 days; T4: 71 days; T5: 84 days; T6: 272 days; T7: 349 days.

https://doi.org/10.1371/journal.pone.0217862.g002
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young leaf material this was much less pronounced than in tuber material and in mature leaf

material.

Tissue specificity for GLS

Turnip tubers display a more diverse GLS complement than turnip leaves. For example, ERU

and BER occurred in well-detectable levels in tubers, but were hardly detectable in leaves,

stem, flower or seed (Fig 3A and 3B, S4 Table). Also NAS was highest in tubers, compared to

the other tissues. Gluconeobrassicin (NeoBr; Fig 3G), on the other hand, was more abundant

in leaves. It may be of interest to note that tissues like flowers, stems and seeds, which only

occurred after winter had passed, generally compare well to leaf material, and do not contain

exceptionally high levels of GLS (S4 Table).

GLS during development of the plant

Few GLS decreased during plant development. The relative content of BER and ERU in turnip

tubers each were reduced during turnip maturation (T2-T5) in either genotype (Fig 3D, 3C

Fig 3. Relative quantity of individual GLS (A-J) in turnip tissues in FT-004 and FT-086 accessions. The Y-axis

shows the peak surface area measured in LC-MS for the indicated compound. For timepoints see legend Fig 2. Error

bars indicate standard deviation (n = 3).

https://doi.org/10.1371/journal.pone.0217862.g003
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and 3H). Interestingly, concentrations of the indole GLS such as NeoBr and 4HBr (Fig 3G and

3H) in leaf material dropped strongly in the transition from vegetative stages (T1-T5) to flow-

ering stage (T6). For other GLS, such as CAN (Fig 3F) no such trends can be observed and lev-

els seem to be rather constant during plant development. Interestingly, PRO did gradually

decrease during plant development in leaves of FT086 and did not in FT004 (Fig 3E).

Aliphatic GLS side chain modification in turnip

With regard to specific modifications on side-chains of aliphatic GLS, we observed that ali-

phatic GLS with a C5 side chain (BER, CAN, NAPOL) were generally more predominant in

FT-004, while aliphatic GLS with a C4 side chain (ERU, NAP) were more dominant in FT-

086. Also, the C5 aliphatic GLS with a 2-hydroxy group on the side chain (NAPOL) was exclu-

sively detectable in FT-004, while its C4 counterpart (PRO) was present in comparable

amounts in both genotypes. GLS with a methylthio- group terminating the aliphatic side chain

(BER, ERU) occurred almost exclusively in turnip tubers, and hardly in above-ground tissues.

GLS in F1 from a cross between FT-004 and FT-086

GLS were profiled in tubers of the two parental genotypes and their F1 plants at 40 days after

sowing (S4 Table). The F1 resembled the FT-004 parent for the aliphatic GLS, as the relative

abundancies of the C5 GLS (BER, CAN and NAPOL) are much higher than those in FT-086.

Their abundancies are however somewhat lower than in FT004 tubers, especially for BER and

NAPOL (S2 Table).

Gene expression analysis

Genes (S3 Table) involved in aliphatic, indole and aromatic GLS pathways were selected from

a collection of GLS genes identified in the B. rapa genome [42]. Expression of these genes was

tested in a limited number of samples (Fig 4), including seedlings, young leaves, old leaves, tur-

nip core, turnip surface, bolt, flower and seed by quantitative RT-PCR, using paralog-specific

primer pairs and actin as a reference gene (S6 Table; S6 Fig).

Principle component analysis (PCA) of gene expression data was performed to visualize the

observed differences in gene expression profiles (Fig 2B). The first component, explaining 40%

of variation, separates different tissues. In particular, turnip tuber samples were separated

from leaf tissue. Samples of seedlings were found amidst the leaf samples. The second compo-

nent, which explains 15% of the total variation, seems to separate different harvest dates, as in

the top quadrants predominantly T6 samples are positioned, while in the lower quadrants,

leaves and turnip tubers from T2 and seedlings and seeds are found (S1B and S5 Figs). Clearly,

global gene expression did not explain the observed differences in GLS profile. Therefore, a

few individual genes were addressed in more detail to possibly explain observed differences in

GLS profiles in turnip samples.

GSOH Bra022920 is co-regulated with NAPOL. The relative abundance of the 2-hydrox-

ylated GLS NAPOL in accession FT-004 could relate to a difference in expression of a paralog

of Arabidopsis GS-OH. In Arabidopsis this enzyme catalyses the 2-hydroxylation of alkenyl-

GLS [32]. In the B. rapa genome, three paralogs of GS-OH have been identified: Bra212670,

Bra021671 and Bra022920 [42]. These three paralogs displayed completely different behaviour

(Fig 4B, 4D and 4F). Only Bra022920 is highly expressed in both leaf and turnip of accession

FT-004, while its expression is hardly detectable in FT-086, consistently with the NAPOL

concentration.

AOP2 paralogs are oppositely regulated with BER and ERU. The absence of the

methylthio GLS BER and ERU in above-ground tissues, and their presence in tuber tissue
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could relate to a difference in AOP2 expression. AOP2 in Arabidopsis is known to mediate the

conversion of methylthio GLS into alkenyl GLS [31]. All three paralogs of AOP2 (Bra000848,

Bra018521 and Bra034180 [42]) were hardly expressed in tuber tissue, while much higher

expressed in leaf tissue (Fig 4A, 4C and 4E). We hypothesize that AOP2 in leaves metabolizes

BER and ERU, resulting in their very low levels in leaf tissue.

Differences in GLS chain length and the expression of MAM genes. One of the striking

differences between accessions FT-004 and FT-086 is the chain-length of their aliphatic GLS.

In Arabidopsis, chain-length of GLS is known to be controlled by the GS-ELONG locus, where

MAM1, MAM2 and MAM3 control chain length. In the B. rapa genome, three MAM1 genes

(Bra013007, Bra029355 and Bra018524) and four MAM3 genes (Bra013009, Bra13011,

Bra029356 and Bra021947) have been identified[42]. Only the MAM3 paralogue Bra013009 is

higher expressed in early stages of FT-004 than in FT-086 and could be responsible for chain

elongation from C4 to C5 (S3 Fig).

Gene expression suggests that the major sites of biosynthesis of aliphatic GLS are

above-ground. A correlation analysis of expressed genes in the B. rapa genotypes across all

Fig 4. Gene expression analysis of AOP2 and GS-OH paralogues in selected turnip tissues and timepoints in

accessions FT-004 and FT-086. Indicated are the expression levels relative to the reference gene (actin) on a

logarithmic scale. Error bars indicate standard deviations (n = 3). YL: young leaf; OL: old leaf. For timepoints see

legend Fig 2.

https://doi.org/10.1371/journal.pone.0217862.g004
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tested tissues of both accessions (S4 Fig) revealed strong correlations between MYB28 (both

Bra012961 and Bra035929) and most of the tested aliphatic biosynthetic genes which was not

the case for MYB29 (Bra005949). Remarkably, both MYB28 genes display a pattern where they

are well expressed in the leaf materials, but poorly detectable in the tuber tissues.

Discussion

During the life cycle of a plant, metabolites are needed at different times and for different pur-

poses. For example, the tuber tissue of a turnip plant initially functions as a sink to store nutri-

ents for the plant, while it will function as a source to supply these nutrients when the plant

goes into the reproductive stage and starts bolting, flowering and setting seed. Leaves provide

photosynthetic capacity, and are replaced continuously by young fresh leaves during the life

cycle of the plant; therefore they likely have different requirements for their functioning than

turnip tubers. These requirements are at least partly met by their chemical composition. In

recent years, changes in chemistry and nutritional status during sink-source transitions have

been addressed on the level of sucrose transport (e.g. [48]), but much less on the level of sec-

ondary metabolites. However, in addition to differences in physiological roles of leaves and

tubers, their chemistry is also under selection pressure to defend the plant to different biotic

stresses, such as insects, snails, vertebrate herbivores, fungi and bacteria. Hence, differences in

secondary metabolites such as GLS can be expected between the different tissues of turnip

plants. Two recent reviews address these issues. Jørgensen et al. [20] present what is known

about transport of defence compounds from source to sink, and use GLS as a case study. They

discuss especially the roles of GLS transporters in establishing dynamic GLS patterns in Arabi-

dopsis source and sink tissues. Burow and Halkier [19] also use GLS as case study and discuss

how Arabidopsis orchestrates synthesis, storage and mobilization to target tissues.

In this work, we studied the composition of GLS of different tissues of B. rapa ssp. rapa
(turnip), during the life cycle from seedling to seed. While in Arabidopsis and Brassica species

like oil seed crops, the sink is the inflorescence with developing seeds, and no intermittent

tuber storage organ is present, turnip is a crop which forms a tuber, which is initially acting as

a sink, and later as a source for the developing seeds. Therefore we reasoned that turnip would

present an interesting case for studying GLS content in different stages of its lifecycle. Since we

have noticed before that GLS composition can differ significantly between turnip genotypes, it

is of interest to compare several accessions [4]. Initially, more turnip accessions were grown

for this comparison, but were omitted since they appeared to flower at different times, varying

between 3 and 14 months after germination. The current analysis was restricted to two specific

genotypes with highly synchronous life cycles, but pronounced differences in GLS profiles and

geographic origin.

A first conclusion from this work is that GLS profiles are very different between leaf and

tuber material. Some GLS were relatively abundant in tubers, and undetectable in turnip

leaves. This was particularly true for methylthio group GLS, such as ERU and BER. This differ-

ence in GLS likely translates in differences in taste and mouthfeel, but also in resistance to

pathogens. Breakdown products of these ERU and BER (the isothiocyanates erucin and berter-

oin) have a penetrating radish like aroma [49]. Also NAS is much higher in tuber tissue than

in leaf tissue. The breakdown product of NAS (benzylisothiocyanate) provides a watercress fla-

vour, and a tingling sensation on the tongue. Interestingly, in a recent study GLS profiles of

both leaf and turnip tissue of 16 turnip accessions were analyzed [23]. In this study, GLS pro-

files between leaves and tubers also differed, with turnip tubers generally having higher

amounts of GLSs than leaves, and also different GLS composition. Tubers were particularly

rich in the phenylethyl GLS NAS, like in our study, and in progoitrin. However the GLS BER
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and ERU were not described for turnip tissues, possibly since different genotypes were

analyzed.

Interestingly, both erucin and benzylisothiocyanate, have a high nematicidal activity on

pathogens such as Meloidogyne. Nematodes are particularly a pest for underground tissues

[50], which could explain why the turnip specifically produces these nematicidal compounds

in the roots. This is exploited by breeding turnips for cover crops that are incorporated as

green manures prior to transplanting of vegetables [51].

A second observation that can be made is that a number of GLS in turnip tuber tissues

(ERU, BER, NAS) decline during the life cycle. For leaf tissues such decline cannot be

observed, and a constant or an increasing GLS content of both aliphatic and indolic GLS is

observed (Fig 3). These trends seem to be opposite of those observed in Arabidopsis, where ali-

phatic GLS in rosette leaves decline during aging of the plant, but indolic GLS increase [52].

Interestingly, at timepoint T6, where the plant is flowering after winter rest, the indolic GLS

(BRA, NEO, 4HBRA and 4MBRA) are strongly reduced, in particular in leaf tissue (Fig 3, S4

Table).

Genotype-dependent differences in GLS content can be clearly observed. It is not clear yet

what the consequence of these differences between FT-004 and FT-086 (FT-004 tissues high

NAPOL and C5 compounds, FT-086 high in NAP and C4 compounds) will be with respect to

taste and/or insect resistance. The breakdown products of NAP and NAPOL are both associ-

ated with cabbage-like, aromatic pungency, and sulphur-like impressions, which are character-

istic for leaves, but very little is known about subtle differences in taste or bio-activity of these

compounds.

Gene expression data

Clearly, there are no global changes in gene expression that are responsible for the differences

in GLS. This can be seen when the PCA analyses of GLS compounds and biosynthetic genes

are compared (Fig 2). Both PCAs separate the tissues differently. This is especially the case for

seeds, that group with leaves for the GLS and with tubers for the biosynthesis genes. One rea-

son why it may be complicated to find direct relations between GLS biosynthesis gene expres-

sion profiles and GLS is the role of transport of GLS between the different tissues. Expression

profiles of three paralogues of transporter gene GTR1 and four of GTR2 were tested, but no

clear differences between tissues and genotypes could be observed, so that it is difficult to draw

conclusions about the role of the individual transporter paralogues (S6 Table). Latest research

revealed that the transporters GTR1 and GTR2 import GLS from the apoplastic space to the

symplast [27,37], however their role in long distance transport is not yet clear.

For some of the tested biosynthetic genes, indications for the roles of different paralogues

could be obtained. For example, GS-OH Bra022920 is a potential locus for determining the

presence or absence of NAPOL in the two genotypes. From three candidate GS-OH paralo-

gues, only Bra22920 showed a strong differential expression between the two genotypes, and is

also expressed at significant levels in tissues where NAPOL is present.

Metabolite data suggest that AOP2 is also a major determinant of GLS composition. AOP2
paralogues are not expressed in turnip tuber, where, consistently, the AOP2 substrates ERU

and BER accumulate. All three AOP2 loci tested follow this behaviour, and therefore, in spite

of differences in expression levels which possibly could point to Bra000848 as the major

important AOP2 paralogue, the gene expression data do not allow to differentiate the role of

different paralogues.

Finally the metabolite data point to a role for the MAM locus. C5 NAPOL and BER are

hardly present in FT-086. This could point to a difference in MAM3 activity between the two
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genotypes. Only one (Bra013009) of the seven MAM paralogues observed in the B. rapa
genome follows this behaviour. When inspecting the protein encoded by Bra013009 in the B.

rapa genome, a truncated polypeptide is observed, which lacks a large part of the N-terminus

(S5 Fig). Differences in elongation capacities, which do exist for Arabidopsis MAM genes, are

very difficult to infer from the MAM protein primary structures. In fact, MAM1 and MAM2,

which differ in the chain length of the aliphatic GLS they produce, have >95% identity in

amino acids [53]. The MAM-containing loci in Arabidopsis display more of such truncated

proteins, and the MAM locus is prone to gene rearrangements, as has been observed in Arabi-

dopsis [53]. The organization of the MAM locus and MAM paralogues is not known in the two

accessions used for this study, however from resequencing studies it became clear that struc-

tural variations are common when comparing three B. rapa genotypes [46]. In a recent paper

genome sequences of ten B. oleracea varieties representing the different morphotypes were

used to construct a so called Pan genome [54], which illustrated that nearly 20% of genes are

affected by presence/absence variation. From the genes displaying presence/absence variation

several were annotated with functions related to major agronomic traits, among others GLS

metabolism and vitamin biosynthesis. As B. oleracea and B. rapa have similar ancestry and

domestication histories, very likely presence absence variation is also a major factor in B. rapa
[55]. To identify the genetic regulation of chain length variation in aliphatic GLS, a genetic

analysis of a progeny from a cross between FT-086 (C4) and FT-004 (C5) with similar develop-

mental timing could identify Quantitative Trait Loci involved in chain length differences.

Their synchronized developmental timing of the two parents allows to focus on genetic differ-

ences, rather than on differences depending on environmental and/or developmental changes.

Turnips of F1 plants from crosses between FT-086 and FT-004 showed aliphatic GLS profiles

that implied co-dominant inheritance, as the relative abundance was intermediate between

that of FT-004 and FT-086. Subsequent genomic DNA sequence analysis of the identified loci

in both B. rapa turnip genotypes would be needed to unravel the genetic base of chain length

differences in Turnip GLS. Until this has been done, it will remain unclear which MAM para-

log or paralogs are responsible for the observed differences in chain length between the two

accessions.

Conclusion

In this paper, a GLS analysis is presented which aims to provide insight in the chemical changes

which accompany development of turnip tissues that function as sinks and sources for the plant.

It differs from earlier studies, which focus on single tissues (either leaves or turnip tubers) and

or single timepoints. It becomes clear that there are large chemical differences between tissues,

between developmental-stages and between genotypes. Clearly these differences will play a role

in the eco-physiology of the turnip, given the reported involvement of GLS in plant defence.

To provide mechanistic explanations for the observed changes, more profound analyses are

needed, both providing high quality genomic information for the studied accessions, and

more comprehensive gene expression analyses using RNA sequencing. The RT-PCR-based

gene-expression analysis as presented here already provides putative explanations for the

observed differences in profiles. For a true understanding, the role of transport of GLS needs

to be further elucidated, which will require more fundamental knowledge. Lastly, to under-

stand the genetic control of GLS profiles of turnip materials for human consumption, such as

leaves and tubers, tissue-focussed screening methods should be defined. To develop molecular

markers associated with specific GLS profiles for breeding turnips with tailored GLS content

will require genomics analyses and analysis of progeny. The results presented here should pro-

vide a solid basis for this.
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