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Understanding the rationale for the generation of a pool of highly differentiated effector 
memory CD8+ T cells displaying a weakened capacity to scrutinize for peptides com-
plexed with major histocompatibility class I molecules via their T cell receptor, lacking the 
“signal 2” CD28 receptor, and yet expressing a highly diverse array of innate receptors, 
from natural killer receptors, interleukin receptors, and damage-associated molecular 
pattern receptors, among others, is one of the most challenging issues in contemporary 
human immunology. The prevalence of these differentiated CD8+ T cells, also known as 
CD8+CD28−, CD8+KIR+, NK-like CD8+ T cells, or innate CD8+ T cells, in non-lymphoid  
organs and tissues, in peripheral blood of healthy elderly, namely centenarians, but 
also in stressful and chronic inflammatory conditions suggests that they are not merely 
end-of-the-line dysfunctional cells. These experienced CD8+ T cells are highly diverse 
and capable of sensing a variety of TCR-independent signals, which enables them to 
respond and fine-tune tissue homeostasis.

Keywords: effector memory cD8+ t cells, NK-like t cells, natural killer receptors, innate receptors, open MHc-i 
conformers, iL-15, iFN-γ, tissue repair

PreFAce

Thanks to their T cell antigen receptor (TCR), thymus-derived CD8+ T cells have the unique ability 
to scrutinize any cell of our body displaying at the cell surface peptides bound to major histo-
compatibility class I (MHC-I) molecules and respond by means of cell activation and proliferation 
whenever the MHC-I molecule looks different than usual. In this regard, the quote “Divide and 
Conquer” (from the Latin saying Divide et Impera, credited to Julius Caesar) is the name of an 
algorithm that solves a problem by breaking it sequentially into two or more sub-problems until 
these become simple enough to be solved (1). Paraphrasing the quote and the algorithm, it can be 
anticipated that the tendency of a thymus-derived CD8+ T cell to divide and generate a progeny of 
cells is meant to solve a problem, keep body homeostasis, by making conquerors that travel to distant 
injured/inflamed tissues (effector CD8+ T cells), some of which may mutiny and become a problem 
(inflammatory CD8+ T cells) and have to be restrained by peacekeepers (suppressor/regulator CD8+ 
T cells). At the end of the process, a mixture of the different subsets survives as sensors of any 
further change that may occur within the environment they visited and conquered (memory CD8+ 
T cells). Human CD8+ T cell differentiation is a complex process enfolded in contrasting views on 
the functional role of the memory CD8+ T cells under normal and diseased conditions. Hereby, we 
present a perspective on the function of these CD8+ T cells that focus on the relationship with their 
internal environment.
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cD8+ t ceLL DiFFereNtiAtiON:  
ONe-WAY ticKet tO PLeiOtrOPY

Before leaving the thymus to enter the circulation, CD8+ T cells 
survive two critical events that determine their fate in the periph-
ery. First, they learn to trans-interact via their TCR clonotypic 
receptor with composites of a MHC-I heavy chain, a light chain 
(β2m), and a short peptide (2). These antigen-presenting MHC-I 
structures are also designated “closed conformers” to distinguish 
them from the “open conformers” that are constituted only by the 
MHC-I heavy chain after dissociation from the light chain and/
or the peptide and that can exist at the cell surface in an ordered 
non-denatured form (3). Open conformers can interact in trans 
and cis with a variety of receptors, namely members of the natural 
killer receptor (NKR) family, with important functional impli-
cations, as discussed below. The recognition of closed MHC-I 
conformers gives naïve CD8+ T cells the capacity to survive in 
the periphery and eventually recognize and be activated by closed 
MHC-I conformers presenting an excess of unusual antigens 
(4). After activation, naïve CD8+ T cells enter differentiation 
programs that result in the generation of effector CD8+ T cells 
displaying different bioactivities (5). After the excess of antigen 
is neutralized and removed, homeostatic mechanisms are turned 
on to cease the effector function while keeping a small pool that 
remains in circulation as memory CD8+ T cells (6). Second, CD8+ 
T cells are genetically programed to express an array of receptors 
during the differentiation process, which allows them to receive 
activation and survival signals from receptors and ligands other 
than MHC class I closed conformers (3, 7–10).

As a result of the huge effort done during the last decades and 
based on the expression of CCR7, CD27, CD28, CD45RA, and 
others, we have now a close picture of the main differentiation 
stages of human CD8+ T cells (Figure 1). Thus, the recirculating 
peripheral CD8+ T cell compartment is a mixture of lympho-
cytes distributed among five major pools: naïve (Tn), stem-cell 
memory (Tscm), central memory (Tcm), effector memory (Tem), 
and effector memory CD45RA+ (Temra) (11–13). An additional 
pool of non-recirculating tissue-resident memory cells (Trm) 
has also been described (14). Despite certain phenotypic and 
functional overlap among these CD8+ T cell pools, this classifica-
tion has been most useful to describe the level of differentiation 
that the CD8+ T cell compartment has endured under different 
inflammatory settings, such as autoimmunity, cancer, and acute 
and chronic viral responses (15–17). Yet, perhaps the most 
significant achievement has been the identification of genes dif-
ferently expressed by these pools, allowing to envision novel roles 
for CD8+ T cells (7, 18–20).

The CD8+ Tn pool comprises polyclonal T cells recently emi-
grated from the thymus that express CD28, CCR7, and CD62L, 
the two latter allowing them to recirculate between blood and 
secondary lymphoid organs (21). The CD8+ Tem and CD8+ 
Temra pools (for easiness, both termed as Tem thereafter) are 
highly differentiated CD8+ T cells that differ in the expression of 
the tyrosine phosphatase isoform CD45RA. They were formerly 
described as lymphocytes lacking CD28, responding poorly to 
TCR-stimulation, displaying redirected cytotoxicity, containing 
oligoclonal T cells, and being able to migrate to non-lymphoid 

organs and tissues (21–23). CD8+ T cells with the Tem phenotype 
were reported to express receptors thought to be solely expressed 
by NK cells, including CD56, CD94/NKG2A, killer Ig-like recep-
tors (KIR), and leukocyte Ig-like receptors (LIR), among others 
(24–26). CD8+ T cells with the Tem phenotype also express 
NKp46 (27), a member of the natural cytotoxicity receptor, akin 
to several inhibitory receptors, such as CTLA-4, PD1, TIM3, and 
LAG3 (28). Due to these distinguishing features, they have also 
been designated CD8+CD28–, CD8+KIR+, CD8+NKR+, NK-like 
CD8+ T cells, and more recently innate CD8+ T cells (29–32). The 
evidence gathered during recent years suggests that the human 
CD8+ Tem pool is very diverse and polyfunctional and contains 
cells endowed with suppressor, inflammatory, and cytotoxic 
features (25–35). Whether these polyfunctional CD8+ Tem cells 
reflect the existence of distinctive subsets or a pleiotropic CD8+ 
T  cell population that displays its activities depending on the 
signals that receive in the different tissue environments, remains 
to be elucidated.

ON tHe OriGiN OF NK-LiKe cD8+ 
t ceLLs: AGiNG, virUses, cYtOKiNes, 
AND MOre

Following the initial description of CD8+CD28− T cells in the late 
1980s and early 1990s, high levels of these cells were described 
in peripheral blood of healthy elderly people, during viral infec-
tions (e.g., CMV, HIV, and EBV), cancer, and autoimmunity (8). 
Nowadays, alterations in CD8+CD28− T cells have been reported 
in almost every chronic inflammatory disease. Studies performed 
on CMV-seropositive elderly showed that a sizable fraction of 
CD8+CD28− T cells contains CMV-specific CD8+ T cells (17). 
The description in the elderly of an association between the accu-
mulation of CD8+CD28− T cells, a phenomenon called memory 
CD8+ T cell inflation (36), CMV seropositivity, a decrease in 
survival rate and faulty in vivo humoral and cellular responses 
to vaccination, brought about the view that CD8+ Tem cells were 
terminally differentiated dysfunctional cells that contributed to 
immunosenescence and susceptibility to develop chronic inflam-
matory diseases (35–40). Recent studies are revealing that CMV-
specific CD8+ Tem are not dysfunctional cells. Rather, they are 
polyfunctional in terms of cytokine secretion and proliferation 
(41–44), capable of surviving for longer periods of time (45, 46), 
and are only functionally restricted by the set of inhibitory 
receptors they express (28, 41). On the other hand, longitudinal 
studies comparing IgG titers and DNA viral load with CMV-
specific CD8+ T cell frequencies suggest that CMV serology may 
not be a reliable indicator to study associations between chronic 
CVM infection and CD8+ Tem cell expansions (47). Thus, the 
association between CD8+ T cell expansions, CMV seropositivity, 
immunosenescence, and predisposition to disease remains an 
open question (48).

Besides chronic activation by viral antigens, there is solid 
evidence that cytokines such as IL-15, TNF-α, and TGF-β, as well 
as several cell types, regulate CD8+ T cell homeostasis. IL-15 dis-
plays multiple bioactivities, namely induction and maintenance 
of CD8+ Tem cells in vitro and in vivo (49–54), suggesting that 
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FiGUre 1 | simplified model for the role of NK-like cD8+ tem cells in tissue integrity. Of the five major circulating CD8+ T cell pools, naive (Tn), stem-cell 
memory (Tscm), and central memory (Tcm) preferentially migrate to secondary lymphoid organs, where they can be activated by processed antigens presented by 
closed major histocompatibility class I (MHC-I) conformers expressed by dendritic cells (DC) recently arrived from peripheral tissues and differentiate into effector 
memory (Tem) and effector memory CD45RA+ (Temra). On the other hand, CD8+ Tem and Temra have preferential, but not exclusive, access to peripheral tissues under 
homeostatic (healthy) conditions where they can stay as CD8+ Trm. Under tissue stress and/or injury, a sudden increase in antigens (Ags) and/or inflammatory 
cytokines (TNF-α) results in the release of endogenous products [damage-associated molecular patterns (DAMP), IL-33, ATP, etc.] and expression of open MHC-I 
conformers by immune and non-immune cells. While tissue DCs could migrate to secondary lymphoid organs and induce more cycles of CD8+ T cell activation and 
differentiation, Tem, Temra, and Trm (denoted as Tm for simplicity) could directly sense these changes in loco; thanks to the expression of killer Ig-like receptor, 
leukocyte Ig-like receptor, NKG2A, DAMP receptors, IL-18/IL-33 receptors, purinergic receptors, and others. Thus, the presence of CD8+ Tm cells in peripheral 
tissues allows a faster response to harmful situations by secreting cytokines (IFN-γ, IL-10, TGF-β) and factors [amphiregulin (AREG)] that activate pathways leading 
to tissue repair and regeneration, and, therefore, to the homeostatic (healthy) state. Any imbalance in this equilibrium (e.g., overt tissue injury and necrosis, hypoxia, 
excess of antigen, high CD4/CD8 T cell ratios, low numbers or absence of CD8+ Tem, Temra, Trm cells, etc.) will result in a failure to resolve inflammation and chronic 
inflammation will ensue.
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memory CD8+ T cell inflation may also result from encounters 
with cytokines, thus increasing virtual memory CD8+ T cells 
(55). IL-15 is also involved in liver homeostasis and regeneration 
after hepatectomy (56). Whether this bioactivity is linked to the 

pro-survival activities of hepatocytes on CD8+ T cells and the 
presence of large amounts of CD8+ Tem cells in the liver, remains 
to be elucidated (27, 57). On the other hand, reconstitution 
studies in mice have shown that accumulation of CD8+ Tem cells 
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depends on the presence of IL-15 and CD4+ T cells (9). Finally, 
intestinal epithelial cells and 4-1BBL+ B cells have also been 
shown to drive expansion and accumulation of CD8+ T cells with 
the Tem phenotype in vitro (58, 59) and in vivo (60), respectively, 
expanding the universe of factors that drive NK-like CD8+ T cell 
generation.

While unnoticed, expansions of CD8+ T cells with a Tem 
phenotype were described in conditions where oxidative stress is 
high, including HFE hemochromatosis, heavy alcohol consump-
tion, hemodialysis, β-thalassemia, and during acute exercise 
(61–65). Although the molecular cues underlying CD8+CD28− 
Tem generation under stressful conditions are uncertain, PGE2, 
a byproduct of arachidonic acid catabolism produced under 
pro-oxidant and inflammatory conditions, induces expression of 
NKG2A and downregulates CD28 on CD8+ T cells, two features 
associated with the acquisition of the Tem phenotype (66–68). 
Oxidative stress has also been shown to regulate expression of 
Bach2, a transcription factor involved in the formation of CD8+ 
Tem cells through downregulation of genes associated with 
effector function, such as Blimp1 (69, 70). On the other hand, 
expression of the transcription factor HIF-1 by CD8+ T cells 
in vitro under low oxygen conditions, mimicking acute exercise, 
correlates with accumulation of CD8+ Tem cells (71), which is 
in agreement with the reported role of HFI-1 in modulating the 
balance between effector and memory CD8+ T cells in models of 
chronic activation (72). These data suggest that oxidative stress 
may play an important role in modulating the formation of CD8+ 
Tem cells.

Finally, the CD4/CD8 T cell ratio is a factor that appears 
to influence the extent of the CD8+CD28− T cell expansions. 
Early studies in HFE hemochromatosis and heavy alcohol 
drinkers reported a positive correlation between the size of 
the CD8+CD28− T cell expansions and the size of the CD8+ 
T  cell pool, regardless of age (61, 62). Importantly, the regres-
sion curve had a much higher slope and correlation coefficient 
in the patients than in the control group, implying that under 
stressful/adverse conditions there is a hastened formation of 
CD8+CD28− T cells (8, 61, 62). Similar results were observed 
when the percentage of CD8+CD56+ T cells, which is increased 
in the elderly, was analyzed (73), strongly suggesting that the 
expansions of CD8+CD28− T cells are constrained by the size of 
the CD8+ T cell pool in relation to the CD4+, which are both 
under the control of major autosomal recessive genes (74). The 
importance of this influence is illustrated by two sets of studies. 
First, studies in infants with overt CD4+ T cell lymphopenia and 
reversed CD4/CD8 T cell ratios, due to deficiency in the tyrosine 
kinase p56lck, showed that the peripheral CD8+ T cell pool was 
made up almost entirely of CD8+ T cells with the Tem phenotype 
(75–77). Second, a recent cross-sectional study in elderly people, 
including centenarians, showed that the heterogeneity found in 
the CD8+ Tem pool could be explained by variations in the size 
of the CD8+ T cell compartment (78). Although it is difficult to 
discern what is cause and what is effect, we favor the view that the 
CD4/CD8 T cell ratio influences the extent of the CD8+CD28− 
T cell expansions. In this context, it is worth mentioning that the 
expansions CD8+CD28− T cells reported in HFE hemochromato-
sis patients were paralleled by a defective CD8-associated p56lck 

(61, 79). In view of these data and studies in mice showing that 
CD8-associated Lck is dispensable for maintenance of memory 
CD8+ T cells (80), it is tempting to speculate that in humans a 
deficient CD8-p56lck signaling and expansion of CD8+CD28− 
T cells could be intertwined processes.

ON tHe FUNctiON OF NK-LiKe cD8+ 
t ceLLs: tHere is LiFe BeYOND 
cLOseD MHc-i cONFOrMers

The accumulated evidence indicates that loss of CD28, shrinkage 
of the TCR repertoire, gain of a variety of NKR, and expression 
of tissue homing receptors are interdependent events that end up 
in the formation of polyfunctional human CD8+ Tem cells that 
migrate to peripheral tissues where a fraction stays as a pool of 
non-recirculating CD8+ Trm cells upon expression of CD69 and 
CD103 (14). A series of recent studies using tissue samples from 
otherwise healthy infant and adult organ donors have shown that 
CD8+ Tem cells are predominant within non-lymphoid tissues 
and organs, including the brain, and this prevalence increases 
from childhood to adultness (81–84). CD8+ Tem predominance 
also occurs in the healthy bone marrow, stomach, and gingiva 
(85–87). Interestingly, lower CD4/CD8 T cell ratios within these 
tissues are associated with a larger CD8+ Tem pool (81), pointing 
again to the importance of the molecular cues that regulate this 
setting. Although recirculating and non-recirculating CD8+ Tem 
present in non-lymphoid tissues confer local immune protection 
against infections (88–90), it is also true that CD8+ Tem cells 
adapt to the new environment and may participate in the resolu-
tion of inflammation followed by tissue regeneration and repair 
after injury through complex networks involving cross-talk with 
other tissue environmental cells (91–99).

The picture emerges where CD28 loss and expression KIR, 
LIR and other NKR allows CD8+ Tem cells to engage in a cross-
talk with other cells in their environment (8, 100, 101). But 
how this acquired skill is conveyed in terms of control of tissue 
integrity and organ function? As already mentioned, cell surface 
MHC-I molecules can exist in equilibrium between closed and 
open conformers, a process that is regulated by endocytosis 
and phosphorylation of a conserved tyrosine residue in the 
cytoplasmic tail of MHC-I heavy chains, and that allows the 
open conformers to self-associate and form novel structures 
called class I homodimers (3, 102–104). In this context, a series 
of recent reports are unveiling the many lives of MHC class I 
molecules (105), by showing that besides interacting with closed 
conformers in a peptide-independent manner (106, 107), KIR 
and LIR also interact with open conformers and homodimers 
(108–114). These results are of upmost importance if we con-
sider that open conformers are expressed and/or released by 
metabolically active and stressed immune and non-immune 
cells, including neurons (103, 115–119). Thus, expression of 
NKR by CD8+ Tem cells allows them to sense changes in the 
level of closed and open MHC-I conformers, i.e., in the stressful/
inflammatory state of the environment. The impact that KIR/
LIR/NKG2A engagement has on CD8+ T cell survival and 
cytokine secretion (29, 52, 120), is of the foremost importance 
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for tissue homeostasis under normal or pathological conditions. 
Thus, IFN-γ and other cytokines released by CD8+ Tem upon 
NKR triggering could mediate resolution of inflammation and 
subsequent tissue healing by modulating growth and prolifera-
tion of epithelial and other tissue cells (121, 122). Importantly, 
by inducing upregulation of classical and non-classical MHC-I 
molecules on epithelial/endothelial cells, IFN-γ may further 
promote survival and proliferation signals upon MHC-I reverse 
signaling by their cognate NKR expressed by CD8+ Tem cells 
(123), thus harnessing the healing process.

Although expression of NKR allows CD8+ Tem cells located in 
peripheral tissues to sense changes in the closed ↔ open MHC-I 
equilibrium, this is likely not enough to cope with the fluctua-
tions that occur within an ever changing internal environment 
(Figure 1). In this respect, there is evidence that CD8+ Tem cells 
also express receptors for damage-associated molecular patterns 
(DAMP), which are specialized in recognizing endogenous prod-
ucts released by cell stress, injury, or dead (124). DAMP receptors 
include toll-like receptors (TLR), advance glycosylation end 
products receptors (RAGE), receptors for IL-1 family members 
(e.g., IL-18 and IL-33), purinergic receptors (P2YR), and β2-
adrenergic receptors (19, 125–129), to cite some. Although most 
of the studies on these receptors have focused on innate cells, 
there is growing evidence that DAMP receptor expression by 
CD8+ Tem cells could broaden their capacity to sense the disrup-
tion of tissue homeostasis and respond by secreting regulatory 
cytokines and healing factors. Thus, ligation of TLR on CD8+ Tem 
cells is known to augment IFN-γ in in vitro and in vivo settings 
(130, 131), which in barrier tissues such as the lung, where a large 
fraction of CD8+ T cells are Temra (81) may exacerbate tissue 
pathology (132). RAGE encompasses multiple ligands, including 
glycated proteins, nuclear high-mobility group box 1 (HMGB1), 
S100 proteins, and β-amyloid, among others, which transmit 
intracellular signals associated with tissue repair and regenera-
tion (133, 134). RAGE+CD8+ T cells were described more than 
two decades ago and proposed to participate in the regulation 
of tissue homeostasis through secretion of IFN-γ (135). HMGB1 
can also bind to TIM3, an inhibitory receptor expressed on CD8+ 
Temra cells, whose inhibitory function depends on the co-
expression of CEACAM-1 (28, 136). Although expression of the 
IL-18 and IL-33 receptors by CD8+ T cells is known for some time 
(127), their importance in the regulation of tissue repair by T cells 
has only recently emerged (137–139). Thus, binding of IL-18 and 
IL-33 to regulatory T cells triggers the secretion of amphiregulin 
(AREG), a ligand for the EGF receptor involved in suppression 
of inflammation and tissue repair (140, 141). Although formal 
proof for the secretion of AREG by CD8+ Tem cells is lacking, 

there is evidence that CD8+ T cells express this tissue repair fac-
tor (141, 142). Finally, CD8+ Tem cells also express purinergic 
receptors (19), as well as the β2-adrenergic receptor (129). While 
the former can sense environmental nucleotides released under 
adverse conditions and induce suppressive signals on T cells, 
thus downplaying inflammation (128, 143), the latter allows the 
sympathetic nervous system to communicate under stressful 
conditions with CD8+ T cells (144, 145).

cONcLUDiNG reMArKs

Although one important facet of CD8+ T cells has to do with 
tissue damage and injury resulting from coping with infec-
tions, this should not overshadow other facets of CD8+ T cells 
related with the maintenance of tissue integrity and homeostasis 
(Figure  1). Since the description of CD8+CD28− T cells about 
25 years ago, a huge amount of information has been obtained 
on the functional phenotype and localization of these lympho-
cytes. Their capacity to migrate and reside in peripheral tissues 
in parallel with the expression of receptors for unconventional 
MHC-I molecules and endogenous products released by injured, 
inflamed, and necrotic cells may endow these cells with the capac-
ity to fine-tune tissue repair, regeneration, and homeostasis by a 
number of ways, namely by inducing epithelial, endothelial, and 
mesenchymal cells to grow and proliferate and inhibiting inflam-
matory responses. All these bioactivities will likely involve active 
crosstalk with environmental cells and complex loops between 
secreted cytokines.
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