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Abstract: Starch is a naturally occurring material showing high potential for use in food packaging
because of its low cost, natural abundance and high biodegradability. Over the years, different starch-
based packaging films have been developed, but the impact of botanical sources on film performance
has rarely been exploited. Efforts devoted to exploiting the role played by the clusteroluminescence
of starch in food packaging are also lacking. This study fills these gaps by comparing the properties
of edible starch films generated from different botanical sources (including water chestnuts, maize
and potatoes) in food packaging. Such films are produced by solution casting. They are highly
homogeneous, with a thickness of 55–65 µm. Variations in the botanical sources of starch have no
significant impact on the color parameters (including L*, a* and b*) and morphological features of
the films but affect the water vapor permeability, maximum tensile strength and elongation at break.
Starch films from water chestnut show the highest percentage of transmittance, whereas those from
potatoes are the opaquest. No observable change in the intensity of clusteroluminescence occurs
when a packaging bag generated from starch is used to package fresh or frozen chicken breast meat;
however, a remarkable decline in the intensity of luminescence is noted when the frozen meat is
thawed inside the bag. Our results reveal the impact of starch sources on the performance of starch
films in food packaging and demonstrate the possibility of using the clusteroluminescence of starch
as an indicator to reveal the state of packaged frozen food.

Keywords: clusteroluminescence; food packaging; starch; films; quality management

1. Introduction

Starch is a naturally occurring material that is cheap and highly biodegradable [1–3].
Over the years, extensive efforts have been adopted to explore the use of starch in food
packaging [4–8]. For example, corn starch films incorporated with diverse additives (viz.,
glycerol and sodium montmorillonite) have been exploited as food packaging films, with
the hydrophilicity and tensile strength of the films being able to be tuned by changing the
contents of the additives [9]. Biodegradable food packaging films have also been obtained
by first blending rice starch extracted from broken grains with fish protein recovered
from Micropogonias furnieri, followed by the incorporation of oregano essential oil. Such
films have been found to inhibit peroxidase activity and have demonstrated the potential
to be used for anti-browning packaging in fruits and vegetables [10]. Recently, cassava
starch films incorporated with polyphenol-rich rosemary extracts have been adopted to
generate active food packaging films with antioxidant properties. The films display UV-
blocking capacity, which is positively related to the amount of extracts incorporated into
the films [11]. The above examples, along with the long history of use of starch in cooking
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and food product development [12–14], demonstrate the practical potential of starch in
food packaging.

Despite this, starch is a complex material that presents several levels of organiza-
tion [15,16]. It consists of different amounts of amylose and amylopectin [17–22], with the
molecular weights of these components varying greatly in starch extracted from different
botanical sources [23]. It is, therefore, expected that the properties and performance of
starch films obtained from different botanical sources are different. However, to date, the
impact of botanical sources on the performance of films in food packaging has rarely been
seriously exploited. Meanwhile, due to its properties of clusteroluminescence (in which
light at long wavelengths is emitted upon the aggregation of non-conjugated electron-rich
units in molecules [24–28]), starch is expected to exhibit changes in the intensity of lumines-
cence upon changes in intermolecular distances, which can be affected by changes in the
state of the films. Therefore, it is expected that starch films can serve as more than simply
plain food packaging films but can be used for quality management of the food product
during food packaging. However, until now the role played by the clusteroluminescence
of starch in food packaging has not been investigated. The objective of this study is to
fill these gaps by first generating edible starch films using starch obtained from water
chestnuts, maize and potatoes, followed by detailed characterization and comparison of
different properties of the films. In addition, the clusteroluminescence of the generated
films is exploited as an indicator to reveal the status of the packaged frozen food. To the
best of our knowledge, this is one of the first studies to report starch films as intrinsically
luminescent films for intelligent food packaging. Our work revisits conventional and edible
starch films with a new perspective, extending the potential use of such films in food
packaging applications.

2. Materials and Methods
2.1. Materials

Maize starch (MS) and water chestnut starch (WS) were purchased from Laoyao Co.,
Ltd. (Nanchang, China) and Yuhua Co., Ltd. (Henan, China), respectively. Potato starch
(PS) was purchased from Yuhua Co., Ltd. (Henan, China).

2.2. Preparation of Starch Films

A suspension was made by dispersing 0.8 g of starch in 5 mL of distilled water. The
suspension was poured, under magnetic stirring, into 15 mL of distilled water, which was
preheated to 80 ◦C. The resulting suspension was heated additionally at 80 ◦C for 3 min
before it was drop-casted onto the surface of a cleaned glass slide. The glass slide was then
kept in vacuum at 40 ◦C for 10 h until complete evaporation of the solvent. Films generated
from MS, WS and PS were designated as FMS, FWS and FPS, respectively.

2.3. Determination of Film Thickness

A handheld digital micrometer (Mitutoyo, Mitutoyo Corporation, Tokyo, Japan) with
an accuracy of 0.001 mm was used to measure the thickness of a film at 20 randomly
selected locations. An average of the 20 measurements was taken as the thickness of the
film sample.

2.4. Fourier-Transform Infrared (FT-IR) Spectroscopy

The structures of MS, WS, and PS were characterized using FT-IR spectroscopy (Nico-
let5700; Thermo Nicolet Company, Waltham, MA, USA) under ambient conditions. Spectra
were collected in the range of 700–3900 cm−1 with a resolution of 4 cm−1 and reported as
an average of 16 scans.

2.5. Nuclear Magnetic Resonance (NMR)
1H-NMR spectra of starch were recorded with a 400 MHz NMR spectrophotometer

(JEOL, Tokyo, Japan). DMSO-d6 was used as a solvent.
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2.6. Molecular Weight Determination

Molecular weight determination was performed using a high-performance size ex-
clusion chromatography (HPSEC) system (Waters 1525; Milford, MA, USA) equipped
with a PLGel 5 µm Mixed-C column (Agilent Technologies, Palo Alto, CA, USA). During
analysis, 0.1 g of starch was dissolved in 10 mL of DMSO. Upon filtration through a 0.45 µm
polyvinylidene fluoride (PVDF) membrane (Millipore, Bedford, MA, USA), the sample
was injected and eluted with DMSO at a flow rate of 1 mL min−1 for 25 min. The column
temperature was maintained at 35 ◦C. The eluent was monitored using a refractive index
detector (Waters 2414; Milford, MA, USA).

2.7. Amylose Content Determination

The amylose content of starch was determined as previously described [29]. The
experiments were performed in triplicate.

2.8. Thermogravimetric Analysis (TGA) and Derivative Thermogravimetry (DTG)

TGA and DTG of starch were performed using a Q50 TGA (TA Instruments, New Cas-
tle, DE, USA) equipped with platinum pans. The study was conducted in an inert atmo-
sphere of nitrogen in a temperature range from 40 ◦C to 400 ◦C. The heating rate was set at
10 ◦C min−1.

2.9. Determination of the Tensile Strength

The tensile strength of films with a rectangular shape (width = 1.5 cm, length = 5 cm)
was examined using a tensile tester (M350-10CT; Testometric Co., Ltd., Rochdale, Lan-
cashire, UK). During analysis, the films were subjected to a strain rate of 30 mm min−1

until breakage occurred.

2.10. Scanning Electron Microscopy (SEM) Analysis

Films were sputter-coated with gold. Their morphological features were observed
using a JEOL JSM-6380 (JEOL, Tokyo, Japan) microscope operated at an accelerating voltage
of 10 kV.

2.11. Characterization of Optical Properties of the Films

Transmittance spectra of FWS, FMS and FPS were obtained in the range of 200–800 nm
under ambient conditions using an ultraviolet-visible (UV-Vis) spectrophotometer (Jasco
V-560; Jasco Co., Ltd., Tokyo, Japan) equipped with a quartz window plate. A holder in
the vertical position was used during measurement. Photoluminescence (PL) spectra of
the films in both dry and hydrated states were recorded using an FLS920P fluorescence
spectrometer (Edinburgh Instruments Ltd., Livingston, UK). PL spectra were recorded
at an excitation wavelength of 365 nm. The color and haze of FWS, FMS and FPS were
studied using a chroma and haze meter (CS-700; Hangzhou CHN Spec Technology Co.,
Ltd., Hangzhou, China). Film color was determined based on the CIELAB color system.
The haze, lightness (L*), redness (a*) and yellowness (b*) values of the films were obtained.
The experiments were performed in triplicate.

2.12. Toxicity Assessment

3T3 fibroblasts and HEK293 were cultured in DMEM supplemented with 10% fetal
bovine serum. Cells were seeded in a 96-well plate 24 h before the assay at an initial density
of 10,000 cells per well and incubated under a humidified atmosphere of 5% CO2 at 37 ◦C.
An appropriate amount of the film was ground using a mortar and pestle and resuspended
in the fresh cell culture medium to obtain a suspension with the desired concentration. The
suspension was filtered using a 0.45-µm polytetrafluoroethylene (PTFE) filter (Advantec
Co., Ltd., Tokyo, Japan). The cell culture medium in each well was replaced with 100 µL
of the filtrate. After incubation at 37 ◦C for 5 h, the filtrate in each well was replaced with
the fresh cell culture medium. The CellTiter 96 AQueous non-radioactive cell proliferation
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assay (MTS assay; Promega Corp., Madison, WI, USA) was performed according to the
manufacturer’s instructions to determine cell viability (%) in each well, either immediately
or after 24 h of post-treatment incubation. The experiments were performed in triplicate.

2.13. Contact Angle Measurement

Sessile drop contact angle analysis of FWS, FMS and FPS was conducted using a
video-based contact angle measurement system (OCA20; DataPhysics Instruments GmbH,
Filderstadt, Germany) incorporated with a software-controlled dosing-volume weight drop.
All measurements were performed using water.

2.14. Determination of Water Vapor Permeability and Erosion Susceptibility

The water vapor permeability of FWS, FMS and FPS was determined as previously
reported [30]. To determine the resistance of a film to dissolution, a known mass of a dry
film was immersed in distilled water and incubated under ambient conditions. Changes
in the mass of the film were determined at regular time intervals. The experiments were
performed in triplicate.

2.15. Evaluation of Film Performance in Food Packaging

Mature Gala apples and boneless, skinless chicken breasts were obtained from local
stores (Renrenle, Shenzhen, China). Apples showing no wound signals were used. Each
apple was cut into 12 pieces, with the weight of each piece being around 8.5 ± 0.5 g. One
apple slice was put into a 50 mL centrifuge tube. A hole with a diameter of 1.5 cm was
made on the cap of the tube. The hole was covered with a film affixed to the cap. One tube
in which the hole was uncovered was adopted as the control. The tubes were incubated
at 4 ± 1 ◦C. Changes in the weight of the tubes were determined at regular time intervals.
The experiments were performed in triplicate.

Boneless, skinless chicken breasts were cut into rectangular pieces, with the surface
area of each piece being around 20 cm2. A meat cube was either placed directly under
ambient conditions or put inside a packaging bag generated from FMS before being placed
under ambient conditions. Changes in the weight of the meat cube were determined at
regular time intervals. The luminescence of the bags in which meat cubes in different states
(viz., fresh meat, frozen meat, and thawed frozen meat) were placed was recorded using
a digital camera under UV light irradiation at 365 nm. The experiments were performed
in triplicate.

2.16. Statistical Analysis

All data were expressed as the means ± standard deviation. Student’s t-test was per-
formed to assess statistical significance. Differences with a p-value < 0.05 were considered
to be statistically significant.

3. Results and Discussion
3.1. Structural and Thermal Characterization of Starch of Different Botanical Sources

Starch is a naturally occurring polymer that exhibits blue luminescence upon exci-
tation at 365 nm (Figure 1A). The mechanism of luminescence is partially attributed to
clusterization-triggered emission (CTE) [24,25], during which through-space nonbond-
ing interactions among electron-rich heteroatoms narrow down the energy gap between
the HOMO and LUMO to render starch luminescent despite the absence of a conjugated
structure. Similar observations on CTE have been reported in other non-conjugated polysac-
charides such as cellulose [30,31]. Due to the variations in botanical sources, the content of
amylose in WS, MS and PS is different, with the percentage of amylose in PS appearing to
be significantly less than that in WS and MS (Figure 1B).
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The thermal properties of starch samples and the corresponding films were deter-
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samples. Another weight-loss step is also observed between 267 and 336 °C. This is caused 

Figure 1. (A) Images of (a,b) water chestnut starch (WS), (c,d) maize starch (MS) and (e,f) potato
starch (PS) under (a,c,e) white light and (b,d,f) UV light. The wavelength of UV light is at 365 nm.
(B) Amylose content of starch obtained from different botanical sources. * p < 0.05. (C) 1H-NMR
spectra (400 MHz) of WS, MS and PS. The solvent used is DMSO-d6, and the spectra are recorded at
80 ◦C. (D) Fourier-transform infrared (FTIR) spectra, (E) thermogravimetric analysis (TGA) curves
and (F) derivative thermogravimetry (DTG) curves of WS, MS and PS.

Despite variations in the amylose content, the NMR spectra of WS, MS and PS show the
same pattern (Figure 1C), with chemical shifts assigned to the methylidyne and methylene
protons in the glucose unit found between 3.0 and 4.0 ppm. This suggests that starch
extracted from the four plant sources is of the same chemical structure. This observation is
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consistent with the results of FT-IR spectroscopy (Figure 1D), in which the spectra of all
starch samples show a signal at 3300 cm−1. This signal is attributed to stretching vibrations
of the hydroxyl groups of starch and water, as previously described [32]. The peak at
2918 cm−1 is attributed to C-H stretching vibrations. The bands at 1147 and 1046 cm−1 are
assigned to C-O stretching vibrations of the glucose ring. The peak at 991 cm−1 is due to
C-O stretching vibrations of the C-O-C bond in the α-1,6-linkage.

The thermal properties of starch samples and the corresponding films were determined
using TGA and DTG (Figure 1E,F). The TGA curves of all samples showed a significant
weight loss from 40 to 100 ◦C, owing to the evaporation of moisture from the samples.
Another weight-loss step is also observed between 267 and 336 ◦C. This is caused by
the degradation of starch molecules [33]. The DTG curves of the samples suggest that
the maximum decomposition temperature is around 311 ◦C. The molecular weights and
polydispersity indices (PDIs) of MS, WS and PS are shown in Table 1. There is no significant
difference in the molecular weight distribution profiles of the three starch samples adopted.
However, the amylose content of starch extracted from different sources is found to be
remarkably different, ranging from 64.5 % for WS to 58.0 % for PS.

Table 1. Molecular weights and polydispersity indices (PDIs) of different starch samples.

Sample Mn (Da) Mw (Da) Mp
(Da)

Mz
(Da)

Mz + 1
(Da) PDI Mz/Mw Mz + 1/Mw

WS 61,534 120,120 92,946 218,567 355,251 1.952097 1.819572 2.957467
MS 77,835 141,681 119,804 223,719 311,611 1.820281 1.579039 2.199390
PS 72,787 144,307 106,446 267,456 430,320 1.982601 1.853384 2.981977

3.2. Characterization of Physical Properties of the Generated Films

Solution casting was adopted to generate edible films from WS, MS and PS. The gener-
ated films are highly homogeneous, with thickness ranging from 55 to 65 µm (Figure 2A,B).
The maximum tensile strength and elongation at break of the generated films are influ-
enced largely by botanical sources of starch, with FWS showing the highest mechanical
strength and FPS being the weakest mechanically (Figure 2C). The positive relationship
between the amylose content of starch used for film generation and the maximum tensile
strength (and elongation at break) of the generated films can be explained by the fact
that an increase in the amylose content leads to an increase in the mechanical properties
of the gels formed [34–36]. This was revealed in an earlier study in which the authors
found that the rigidity of a gel formed from starch increases as the amylose: amylopectin
ratio increases [34]. The increase in gel strength leads to the formation of a mechanically
stronger film, which is generated upon dehydration of the gel. In addition, the intensity of
clusteroluminescence varies significantly among FWS, FMS and FPS (Figure 2D,E). This is
because starch of different botanical sources varies in the molecular weight and amylose
content. This causes variations in the process of through-space non-bonding interactions
among electron-rich heteroatoms during aggregation, leading to changes in the intensity
of luminescence. In addition, upon hydration, the intensity of luminescence exhibited by
all films remarkably drops. This is attributed to the swelling of the films. The process of
swelling increases the intermolecular distance of starch molecules, reducing the extent of
aggregation of non-conjugated, electron-rich units and leading to a decline in the intensity
of CTE. A similar observation has been made in other clusteroluminogenic films [30,31],
with the intensity of luminescence of which having been reported to be reduced upon
film swelling.
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Figure 2. (A) Photos of the films generated from (a) WS, (b) MS and (c) PS. (B) Thickness and
(C) tensile strength of the water chestnut starch film (FWS), maize starch film (FMS) and potato starch
film (FPS). (D) Photoluminescence (PL) spectra of dry and swollen films. (E) Images of (a,b,g,h) FWS,
(c,d,i,j) FMS and (e,f,k,l) FPS under (a,c,e,g,i,k) white light and (b,d,f,h,j,l) UV light. The wavelength
of UV light is at 365 nm. Scale bar = 1 cm.

Opacity is an important property of food packaging films because it, on one hand,
affects the degree of consumer acceptance and, on the other hand, may contribute to
protection of sensitive food components from degradation by absorbing or reflecting a
fraction of the incident light to slow down degradation reactions [37]. Although opacity
varies among films generated from starch of different botanical sources (Figure 3A), all of
the generated films are optically transparent in the visible range (400–700 nm), with the
percentage of transmittance ranging from 50% to 80% (Figure 3B). FWS is found to show
the highest percentage of transmittance, whereas FPS is the opaquest one. This trend is
consistent with the trend in haze (Figure 3C), which is estimated to be around 26% for
FWS, 58% for FMS and 65% for FPS. The general appearance and consumer acceptance
of packaged food products can be affected not only by the opacity of the films but also
by the packaging film color. The lightness values (L*), redness/greenness values (a*) and
yellowness/blueness values (b*) are tested and found to have no significant difference
among the three generated films (Figure 3C). This suggests that variations in the botanical
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source of starch does not have a significant impact on the lightness and color of the
generated film.
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Figure 3. (A) Optical images showing the transparency of (a) FWS, (b) FMS and (c) FPS. (B) UV-
Vis transmittance spectra of different films. (C) (a) Haze values, (b) lightness values (L*), (c) red-
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(D) Viability of (a,b) HEK293 and (c,d) 3T3 fibroblasts after 5 h of treatment with different samples
(viz., WS, MS, PS, FWS, FMS, and FPS) (a,c) before and (b,d) after 24 h of post-treatment incubation.
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For a film to be used as a direct food contact material during food packaging, it must
demonstrate a lack of toxicity [38]. The toxicity of WS, MS, PS and the generated films
(viz., FWS, FMS and FPS) is examined in 3T3 and HEK293 cells. The loss of cell viability
after 5 h of treatment with the films is negligible at all concentrations tested (Figure 3D). To
determine the possible occurrence of chronic toxicity after treatment, the viability of the
treated cells is evaluated after 24 h of post-treatment incubation [39–43]. Our results show
that WS, MS, PS and the generated films are lack of both acute and chronic cytotoxicity.
This finding suggests that variations in botanical sources have no significant impact on the
cytotoxicity of starch and that no change in the toxicity of starch occurs during the process
of film fabrication.

3.3. Performance as Edible and Indicating Films in Food Packaging

The generated starch films are used to produce packaging bags, which exhibit blue
luminescence upon excitation at 365 nm due to the process of CTE, for food packaging
(Figure 4A). Variations in the botanical origins of starch have no significant impact on the
morphology and erosion rate of the generated films (Figure 4B,C); however, starch films
generated from different botanical sources differ in their water vapor permeability, which
increases in the following order: FPS < FMS < FWS (Figure 4D). The latter may be par-
tially explained by the observed trend in hydrophobicity of the films (FPS > FCS > FMS) as
demonstrated by contact angle measurements (Figure 4E). However, this trend is contradic-
tory to what is expected simply based on the amylose content of the starch samples. This is
because amylose is less soluble than amylopectin in cold water. Films with a higher amylose
content are expected to be more hydrophobic and show lower water vapor permeability.
Such a discrepancy is possibly due to, in addition to the amylose content, other structural
features (including the molecular weight and degree of polydispersity of amylose and
amylopectin, the degree of branching of amylopectin, and the roughness of the film surface)
that contribute to determining film properties [3,32,37]. Therefore, simply using the mass
percentage of amylose fails to predict the hydrophobicity and water vapor permeability of
the generated films.

To demonstrate the performance of the films in protecting packaged food from mois-
ture loss, apple pieces are adopted as a food model (Figure 5A,B). The apple piece in the
control group shows the highest level of moisture loss. Compared to the apple pieces
protected by FWS and FMS, the one protected by FPS shows the lowest degree of dehydra-
tion. This is attributed partly to the low water vapor permeability of FPS, leading to high
efficiency in serving as a barrier towards the permeation of water molecules. To exploit
the use of CTE of the generated films in food packaging and considering the fact that FMS
shows a balance between water vapor permeability and luminescence intensity, we use the
FMS-generated packaging bag to package frozen chicken breasts, whose eating quality is
susceptible to repeated freeze–thaw cycles during transportation and processing [44,45].
No observable change in the intensity of CTE is noted when the packaging bag is used to
package fresh or frozen chicken breast meat (Figure 5C). However, when the frozen meat is
thawed inside the bag, the exudate released from the meat leads to hydration (and hence
swelling) of the bag. This causes a remarkable decline in the intensity of luminescence.
This result reveals the potential of CTE from our starch-based packaging bag to serve as
an indicator to reveal the state of the frozen food packaged inside. Apart from this, loss of
moisture from the meat is greatly reduced when the meat is put inside the packaging bag
(Figure 5D). Along with the edibility of starch, our packaging bag shows high potential
to serve as an intelligent and edible device to package food products (e.g., ready-to-bake
frozen chapaties [46], frozen fish fillets [47] and frozen beef [48]) whose sensory properties
are affected by freeze–thaw cycles.
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Figure 4. (A) Photos of packaging bags generated from (a,d) FWS, (b,e) FMS and (c,f) FPS under
(a–c) white light and (d–f) UV light. The wavelength of UV light is at 365 nm. Scale bar = 1 cm.
(B) Scanning electron microscopy (SEM) images of the morphology of (a) FWS, (b) FMS and (c) FPS.
Scale bar = 10 µm. (C) Erosion susceptibility and (D) water vapor permeability of different films.
* p < 0.05. (E) Measurement of the static contact angle of a water droplet on (a) FWS, (b) FMS and
(c) FPS.
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Figure 5. (A) Photos of an apple piece stored in a tube with the hole either (a–c) uncovered or
(d–l) protected by different films ((d–f) FWS, (g–i) FMS and (j–l) FPS) at 4 ◦C for (a,d,g,j) 0 days,
(b,e,h,k) 3 days and (c,f,i,l) 6 days. (B) Changes in the weight of an apple piece stored in a tube
with the hole either uncovered (control) or protected by different films. (C) Photos of a starch-based
packaging bag containing (a,b) fresh chicken meat, (c,d) frozen chicken meat and (e,f) thawed frozen
chicken meat under (a,c,e) white light and (b,d,f) UV light. (D) Time-dependent changes in the water
content of the meat stored inside an FMS-generated packaging bag. Meat stored in open air is used
as a control.

4. Conclusions

Starch exhibits high biodegradability and natural abundance, showing the potential to
overcome some of the problems (including non-degradability and health hazards) caused
by synthetic plastics in food packaging. In this study, we compare the properties of ed-
ible starch films generated from different botanical sources (including water chestnuts,
maize and potatoes) in food packaging. All tested films are optically transparent in the
visible range (400–700 nm), with the percentage of transmittance ranging from 50% to
80%. Variations in the botanical sources of starch lead to changes in diverse film properties
(including mechanical strength, transparency, swelling capacity and water vapor perme-
ability), although the impact on color parameters and morphological features of the films
is not apparent. The ability of our films to reduce moisture loss of packaged food was
confirmed by using apple slices and chicken breast meat as food models. In addition, by
taking advantage of the moisture-mediated change in the intensity of clusteroluminescence
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exhibited by the generated films, we demonstrated the potential of the edible starch film to
reveal whether packaged frozen meat has undergone freeze–thaw cycles during storage
and transportation. Not only do our results reveal the impact of starch sources on the
performance of starch films in food packaging; they also provide a new perspective on the
use of starch films in food packaging, extending the application potential of such films from
mere food protection as demonstrated in conventional studies [49–53] to multifunctional
edible food packaging with indicating properties for quality management of packaged
frozen food.
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