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Glioma are the most common malignant central nervous system tumor and are characterized by uncontrolled proliferation and
resistance to therapy. Dysregulation of S100 proteins may augment tumor initiation, proliferation, and metastasis by modulating
immune response. However, the comprehensive function and prognostic value of S100 proteins in glioma remain unclear. Here,
we explored the expression profiles of 17 S100 family genes and constructed a high-efficient prediction model for glioma based on
CGGA and TCGA datasets. Immune landscape analysis displayed that the distribution of immune scores, ESTIMATE scores, and
stromal scores, as well as infiltrating immune cells (macrophages MO/M1/M2, T cell CD4+ naive, Tregs, monocyte, neutrophil,
and NK activated), were significant different between risk-score subgroups. Overall, we demonstrated the value of S100
protein-related signature in the prediction of glioma patients’ prognosis and determined its relationship with the tumor

microenvironment (TME) in glioma.

1. Introduction

Glioma are the most common primary brain tumors,
accounting for about 70% of primary intracranial tumors.
Grade II/III gliomas are mainly astrocytomas and oligoden-
drogliomas derived from astrocytes and oligodendrocytes
and are defined as lower-grade gliomas (LGG) according to
their malignancies. Grade IV gliomas (glioblastoma, GBM)
are highly malignant and usually recur within one year after
resection, and patients usually survive no more than 15
months after diagnosis [1-3]. The tumor microenvironment
(TME), composed of a variety of different numbers of non-
tumor cells, such as mesenchymal cells, endothelial cells,
stromal cells, and most importantly immune cells, plays an
extremely important role in progression, recurrence, and
treatment resistance [4-6]. Uncovering the key molecular
mechanisms of the complex and unique microenvironment

will contribute to the development of new therapeutics for
glioma patients.

The S100 protein (S100s) family is composed of 25 cal-
cium (Ca **)-binding protein members with high structural
and sequence similarity. All S100s can be divided into three
subgroups according to their functions, which mainly play
an intracellular regulatory role, only play an extracellular
regulatory role, and have both extracellular and intracellular
roles [7]. S100s are involved in a variety of cellular processes
such as cell proliferation, cell migration, apoptosis, inflam-
matory response, and calcium homeostasis [8-10] and are
related to various human immune diseases such as rheuma-
toid arthritis and pathogenic infectious [11]. For example,
S100A8 and S100A9 were found to be associated with
pathogen-related tissue damage and severe cytokine storm
in patients with COVID-19 [12]. In addition, a number of
studies have revealed that several S100s can promote tumor
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progression by regulating tumor immune response [13, 14].
Of note, uncontrolled activities of some members of S100
proteins have been detected in gliomas [15-17], but it is
unclear whether S100 proteins are involved in shaping the
tumor microenvironment to promote glioma tumorigenesis
and progression.

Here, we explored the expression profiles of 17 S100
genes in glioma and found that twelve genes (S100A1-6,
S100A8-11, S100A13, S100A16, and S100Z) were aber-
rantly expressed in GBM relative to LGG both in the
CGGA and TCGA datasets. Through univariate Cox
regression analysis, the S100 family genes closely related
to overall survival (OS) were identified in glioma. Signifi-
cantly positive genes (P < 0.001) were extracted for analy-
sis by the least absolute shrinkage and selection operator
(LASSO) multivariate Cox regression algorithm. Finally,
eight genes (S100A2-4, S100A8, S100A10, S100A11,
S100A16, and S100Z) were screened out to establish an
efficient prognostic model. According to the median risk
score, patients were distributed into the low- and high-
risk subgroups. Immune landscape analysis indicated that
immune scores, ESTIMATE scores, and stromal scores,
as well as the infiltrating immune cells (macrophages
MO/M1/M2, T cell CD4+ naive, Tregs, monocyte, neutro-
phil, and NK activated), were significantly different
between the high- and low-risk subgroups. Moreover, the
risk score and its related prognostic S100s were distinctly
correlated with the immunophenotype in glioma. In sum-
mary, we identified the relationship between S100 family
genes and tumor microenvironment and demonstrated
the value of S100-related signature in predicting glioma
prognosis.

2. Methods and Materials

2.1. Datasets. The clinical data and RNA-seq data of the Chi-
nese Glioma Genome Atlas (CGGA) were obtained from the
CGGA data portal (http://www.cgga.org.cn/) [18]. The
merged GBMLGG data of The Cancer Genome Atlas
(TCGA) was obtained from the University of California
Santa Cruz (UCSC) Xena Browser (https://xenabrowser
.net/datapages/) [19]. In addition, the data of GSE59612
were obtained from the GEO database (https://www.ncbi
.nlm.nih.gov/geo/) [20]. All datasets were analyzed accord-
ing to the flowchart (Figure 1).

2.2. Construction of the Risk Model. The S100 family genes
that were significantly correlated with prognosis were con-
firmed by performing univariate cox analysis. After that,
eight S100 family genes were screened out using the
“glmnet” R package through LASSO method. The risk signa-
ture was constructed based on the results of LASSO, and the
risk scores were calculated as follows:

n

Risk score = Z(Coefl. * Exp,). (1)

i=1

Disease Markers

Glioma datasets from CGGA and TCGA CGGA
cohort (samples: 309)
TCGA-GBMLGG (samples: 674)

A 4

’ $100 family genes ‘

Uni/Mutil-variate
analysis survival
i analysis LASSO analysis |

Signature bult | Validation TCGA- |
on CGGA [ GBMLGGCGGA :
#693 cohort

______________________

Tumor
microenvironment analysis

A

Molecular and biological function

FiGURE 1: Flow chart of this study.

2.3. Immune Landscape Analysis. The tumor microenviron-
ment (immune, ESTIMATE, and stromal scores) of glio-
mas were analyzed by the “estimate” package in R
software. The abundance of tumor-infiltrating immune
cells were evaluated on the TIMER2 platform (http://
timer.cistrome.org/) [21].

2.4. Transfection with siRNA. The siRNAs were synthesized
by the Shanghai GenePharma Co. (Supplementary Table 1).
LN229 cells were transfected with negative control siRNA
and S100A4 siRNA according to the manufacturer’s
instructions of Lipofectamine RNAIMAX (Invitrogen). 48
hours after transfection, LN229 cells were harvested for
subsequent qRT-PCR and western blot analysis, respectively.

2.5. RNA Extraction and gqRT-PCR. Total RNA was extracted
using TRIzol reagent (Invitrogen) according to the manufac-
turer’s instructions. cDNA was reverse transcribed from
total RNA using the NovoScript® Plus All-in-one 1st Strand
c¢DNA Synthesis SuperMix (gDNA Purge) kit (Novoprotein
Scientific Inc.). QRT-PCR was performed on the QuantStu-
dio™ 6 Pro Real-Time PCR System (Applied Biosystems)
using the NovoStart® SYBR qPCR SuperMix Plus kit (Novo-
protein Scientific Inc.). Relative gene expression was evalu-
ated using the 274““T method.

2.6. Western Blot. Cells were lysed with RIPA lysis buffer sup-
plemented with protease inhibitors. After quantification using
BCA kit, protein samples were separated by SDS-PAGE and
transferred to PVDF membranes (Merck Millipore) The
membranes were blocking in 5% skimmed milk for 1 hour
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FiGure 2: Continued.
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F1GURE 2: The expression profiles of 17 S100 family genes in glioma. Heatmap depicting the expression profiles of 17 S100 family genes in
the (a) TCGA cohort and (b) CGGA cohort. The differential expression of 17 S100 protein family genes between LGG and GBM was
explored in the (c) TCGA cohort and (d) CGGA cohort, respectively. P < 0.05; # %P < 0.01; ##** %P < 0.0001.

and then incubated with anti-S100A4 (ab124805; Abcam) or
anti-a-Tubulin (1224-1-AP; Proteintech) overnight at 4°C.
After washing, the membranes were incubated with HRP-
conjugated AffiniPure Goat Anti-Rabbit IgG (SA00001-2;
Proteintech). Finally, the labeled proteins were detected
using ECL reagent.

2.7. Cell Proliferation and Migration. Cell proliferation was
analyzed by BeyoClick™ EdU Cell Proliferation Kit with
Alexa Fluor 594. Briefly, cells were seed into glass bottom
dishes and incubated with EdU for two hours at 37°C.
After that, cells were incubated in Click Additive Solution
for 30 minutes at room temperature in the dark. Nuclei
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FiGure 3: Continued.
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FIGURE 3: Identification of S100 family genes related to overall survival of glioma. (a) In the CGGA cohort, 17 S100 protein family genes
were analyzed by univariate cox analysis. (b) LASSO coefficient profiles of 9 S100 family genes. (c) Partial likelihood deviance of different
variables revealed by the LASSO regression model. (d) Bar plot displaying the coeflicients constructed using the LASSO method. K-M
OS curves of 8 S100 family genes were drawn in the (e) CGGA cohort and (f) TCGA cohort, respectively.

were then stained with Hoechst 33342. Fluorescence was
subsequently detected using confocal laser microscopy.

For migration assays, cells were seed into 6-well plates.
After the cells were confluent, scratch the plate using
pipette tips. Then, the plates were washed with PBS and
incubated with serum free medium. The original images
and migrated images were obtained using the inversion
microscope system. The migrated area was analyzed by
Image J software.

2.8. Statistical Analysis. The differences in infiltrating
immune cells and gene expression of gliomas in different

risk subgroups were analyzed by one-way ANOVA and Wil-
coxon test. All statistical analyses were performed using
SPSS, R, and GraphPad, and P < 0.05 was considered statis-
tically significant.

3. Results

3.1. Expression Profiles of S100s in Glioma. S100 protein
family consists of 25 calcium (Ca **)-binding protein
members. Among them, 17 genes were detected to be
expressed in glioma (Figure 2). We analyzed the RNA-
seq data obtained from the CGGA and TCGA datasets
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FIGURE 4: Construction of the risk-score signature using 8 S100 family genes. (a) The expression of 8 signature S100 family genes, survival
status, and risk score of each patient in the CGGA cohort. (b) K-M OS curves of different risk subgroups in the CGGA cohort. (¢) ROC
curves showing the sensitivity and specificity of risk score in predicting the OS of glioma patients at 1-, 3- and 5-year in CGGA cohort.
(d) The expression of 8 signature S100 family genes, survival status, and risk score of each patient in the TCGA cohort. (e) K-M analysis
of different risk subgroups in the TCGA cohort. (f) ROC curves showing the sensitivity and specificity of risk score in predicting the OS

of glioma patients at 1-, 3-, and 5-year in TCGA cohort.

to characterize the expression pattern of 17 S100 family
genes in glioma. In the TCGA dataset, except for
S100A14, all genes were differentially expressed between
GBM and LGG. Compared with LGG, the expression
levels of S100A2-4, S100A6, S100A8-13, S100A16, S100B,
S100P, and S100Z were distinctly upregulated in GBM;
meanwhile, the expression levels of SI00A1 and S100A18
(HRNR) were significantly downregulated in GBM
(Figures 2(a) and 2(c)). In the CGGA dataset, except that
S100A12, S100A18, S100B, and S100Z were not differen-
tially expressed between GBM and LGG, the expression
of other genes was similar to that of TCGA dataset
(Figures 2(b) and 2(d)).

3.2. Construction of Risk-Score Model. The S100 protein
family genes that were significantly correlated with
patient’s prognosis were determined by performing univar-
iate Cox regression analysis in the CGGA dataset. Nine
S100 family genes (P < 0.001) were significantly related to
prognosis and identified as risk factors for glioma
(HR > 1) (Figure 3(a)). The LASSO Cox regression algo-

rithm was subsequently used to analyze nine prognosis-
related S100 protein family genes, and finally eight genes
were screened out based on the minimum criteria
(Figures 3(b)-3(d)). In addition, Kaplan-Meier (K-M)
analysis confirmed that all eight S100 protein family genes
were significantly related to patients’ OS in the CGGA and
TCGA datasets (Figures 3(e) and 3(f)).

The risk-score signature was constructed according to
the eight S100 protein genes and coeflicients screened by
LASSO (Figure 4(a)). Additionally, the risk model was val-
idated in the TCGA GBMLGG and CGGA #693 cohorts
(Figure 4(d) and Supplementary Figure 1A). According
to the median risk score, glioma patients were divided
into the low-risk subgroup and high-risk subgroup.
Kaplan-Meier analysis was then performed to determine
the difference in OS between different risk subgroups.
The glioma patients” OS in high-risk subgroup was worse
and much shorter than that in the low-risk subgroup
(Figures 4(b) and 4(e), and Supplementary Figure 1C).
Thereafter, we assessed the sensitivity and specificity of
risk score in prediction of the overall survival of glioma
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F1GURE 5: The prognostic analysis of the risk score in different subtypes. (a) Analysis of the risk scores in different IDH status, grade, gender,
age, MGMT status, and 1p/19q status subtypes. (b) K-M OS curves of different risk subgroups in different subtypes compartmentalized by

grade, gender, age, IDH status, 1p/19q status, and MGMT status. *P < 0.05; #*P < 0.01; %% P < 0.001.

patients at 1-, 3-, and 5-year. The ROC curves indicated
that the risk-score signature was accurate in the
prediction of glioma patients’ OS in the CGGA cohort
and TCGA cohort (Figures 4(c) and 4(f), and
Supplementary Figure 1B).

The clinicopathological characteristics of glioma corre-
late with prognosis, so we analyzed the risk scores of gliomas
in different subtypes compartmentalized by different grade,
gender, age, MGMT status, 1p/19q status, and IDH status.
The risk scores of gliomas in GBM, age > 40, IDH wild-type,
and 1p/19q noncodel and MGMT promoter unmethylated
subtypes were significantly higher than those of the corre-
sponding subtypes (Figure 5(a)). In addition, the risk-score

signature also exhibited high prognostic value in different
separated subtypes (Figure 5(b)).

3.3. Immune Landscape of Glioma. S100 protein family par-
ticipates in multiple pathological and physiological pro-
cesses, such as immunity and inflammatory response.
Therefore, the risk-score signature might be correlated
with the TME in glioma. To test the hypothesis, we ana-
lyzed the distribution of stromal, immune, and ESTI-
MATE scores of glioma patients in different subgroups.
Compared with patients in the low-risk subgroup, stromal,
immune, and ESTIMATE scores of the high-risk subgroup
were significantly increased (Figures 6(a) and 6(b)).
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FIGURE 8: Analysis of 22 infiltrating immune cells in different subgroups divided according to risk score. (a, b) The average frequencies of 22
immune cells of glioma patients in different subgroups were analyzed by TIMER2. Correlation analysis of 8 S100 family genes with the
infiltrating immune cells in the (c) CGGA cohort and (d) TCGA cohort, respectively. Correlation analysis of the risk scores with 8
infiltrating immune cells in (e) the CGGA cohort and (f) the TCGA cohort, respectively. Boxplot displaying the infiltration levels of T
cell CD4+ naive, macrophages M0/M/M2, Tregs, monocyte, and neutrophil and NK activated between the different risk subgroups in the
(g) CGGA cohort and (h) TCGA cohort, respectively. *P < 0.05; *#*P < 0.01; # % P <0.001; ##* %P <0.0001.

Correlation analysis suggested that the risk scores were
significantly associated with the stromal scores, immune
scores, and ESTIMATE scores in the CGGA and TCGA
datasets (Figures 6(c) and 6(d)). In addition, the expres-
sion levels of the eight prognostic S100 protein family
genes were also significantly correlated with the stromal
scores, immune scores, and ESTIMATE scores (Figures 6
(e) and 6(f)). To characterize whether the risk scores were
associated with the suppressive immunophenotype, we
explored the expression of 39 immunosuppressive genes
in the CGGA and TCGA datasets. Almost all immunosup-
pressive genes were upregulated in the high-risk subgroup,
including the checkpoint genes PDCD1 (PD-1), CTLA-4,
and CD274 (PD-L1) (Figures 7(a) and 7(b)), which sug-
gested the correlation between S100 protein-related signa-
ture and immunosuppressive microenvironment.
Thereafter, we analyzed twenty-two types of immune
cells in gliomas using the CIBERSORT algorithm in the
online tool TIMER2 (Figure 8). We found that tumor-
infiltrating leukocytes, including macrophages MO0/M1/
M2, T cell CD4+ naive, Tregs, monocyte, neutrophil,

and NK activated, differed significantly between the dif-
ferent risk subgroups. In detail, Tregs, macrophages M0/
M1/M2, and neutrophil infiltration were increased in
the high-risk subgroup, while T cell CD4+ naive, mono-
cyte, and NK activated were decreased (Figures 8(a)-8
(d)). Through correlation analysis, we found that the
infiltration levels of these eight types of immune cells
were significantly associated with risk scores (Figures 8
(e) and 8(f)). Moreover, the immune cell infiltration was
also significant related to the expression of eight prognos-
tic S100 protein family genes (Figures 8(g) and 8(h)).

3.4. S100-Related Signature Is an Independent Risk Factor for
Glioma. We performed univariate Cox regression analysis to
investigate the independent prognostic factors for glioma.
The results showed that grade, risk score, age, IDH status,
and 1p/19q status were significantly correlated with OS of
glioma patients (Figure 9(a)). In addition, multivariate anal-
ysis showed that the risk score, grade, and 1p/19q status
were still closely related to OS (Figure 9(b)). A survival
nomogram prediction model was established based on these
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FIGURE 9: Risk score is an independent prognostic factor for glioma. (a) The clinical features in the CGGA cohort were analyzed by
univariate cox regression analysis. (b) The positive clinical features and risk signature in the CGGA cohort were then analyzed by
multivariate cox analysis. (c) The nomogram was used to predict the prognosis of patients in the CGGA cohort at 1-, 3-, and 5-year. (d)
The calibration curve was drawn to displaying the effect of nomogram in predicting the OS of glioma patients in the CGGA cohort.

positively independent prognostic parameters of glioma in
CGGA cohort (Figure 9(c)), and the calibration curve dis-
played excellent agreement between observation and predic-
tion (Figure 9(d)). Taken together, these results suggested
the risk-score signature was a reliable prognostic marker
for gliomas.

3.5. Verify the Expression of the Prognostic S100 Genes. We
analyzed the expression of prognostic S100s in paracancer-
ous tissues, tumor marginal tissues, and tumor core tissues
and found that the expression levels of SI00A2-4, S100A8,
S100A10-11, and S100A16 were significantly increased
from paracancerous tissue, tumor marginal tissues to
tumor core tissues (Figure 10(a)). Although the expression
of S100Z was not significantly different between tumor
marginal tissues and tumor core tissues, the expression
level was significantly increased in tumor core tissues
and tumor marginal tissues relative to paracancerous tis-
sues (Figure 10(a)). To further validate the expression
levels of prognostic S100 protein family genes in glioma,
we downloaded and analyzed the immunohistochemistry
pathological specimen data from the Human Protein Atlas.
The results showed that the expression levels of S100A2,
S100A4, and S100A10-11 were increased in GBM relative
to LGG (Figure 10(b)).

3.6. SI00A4 Affects Migration and Proliferation of Glioma
Cells. To fully determine the effect of SI00A4 on glioma
cells, we knocked down S100A4 in LN229 cells by transfect-
ing specific siRNA (Figures 11(a) and 11(b)). CCK8 and

EdU assays showed that S100A4 could significantly affect
the proliferation of LN229 cells (Figure 11(c)-11(e)). In
addition, knockdown S100A4 significantly inhibited the
migration of LN229 cells (Figures 11(f) and 11(g)).

4. Discussion

Gliomas are the most common malignant central nervous
system tumors. Conventional therapies such as surgery,
chemotherapy, and radiotherapy cannot effectively improve
prognosis of glioma patients [22]. Chimeric antigen recep-
tor T-cell immunotherapy (CAR-T) is considered a great
potential therapeutic method [23]. Moreover, immune
checkpoint inhibitors such as anti-PD1 antibody, anti-
PDLI1 antibody, and anti-CTLA4 antibody have made great
progress in the clinical treatment of some solid tumors
[24-26]. However, highly immunosuppressive TME and
immune evasion are still the huge challenges for immuno-
therapy of glioma patients. Therefore, additional research
is needed to uncover the mechanism of suppressive TME
in glioma and find new prognostic biomarkers and thera-
peutic strategies.

S100 protein family participates in multiple pathological
and physiological processes, including apoptosis, inflamma-
tory reaction, and cancer progression [27]. Previous studies
have reported the potential prognostic role of the SI00A
genes and the S100 family genes [28, 29]. In current study,
we constructed a novel prognostic model based on eight
S100 family genes (S100A2-4, S100A8, S100A10-11,
S100A16, and S100Z) and demonstrated its effectiveness in
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FIGURrE 10: Validation the expression profiles of the prognostic S100 protein family genes. (a) Boxplot showing the expression profiles of

eight prognostic S100 family genes between paracancerous tissue,

tumor marginal tissues, and tumor core tissue in the GSE59612

dataset. (b) Immunohistochemical staining analysis of the protein levels of SI00A2, S100A4, S100A10, and S100A11 between LGG and

GBM. %P <0.05; **P <0.01; **% P<0.001; **x% «P <0.0001.

predicting the prognosis of gliomas (Figure 4 and Supple-
mentary Figure 1).

S100A4 is involved in the process of chemokine and
cytokine-like activities after being secreted to the extracellu-
lar space [30, 31]. The serum level of SI00A8/A9 complex
is significantly elevated during wound healing process,
tumorigenesis, and autoimmune diseases [32] and is used
as an extremely sensitive biomarker for the early stage of
local inflammatory activity [33]. The released extracellular
S100A8/A9 stimulates monocytes and macrophages, lead-
ing to increased production of proinflammatory cytokines
[34]. S100A11 induces chemokine response and regulates
monocyte recruitment in vivo [35]. Therefore, S100 family
proteins may be involved in increased inflammatory cell
infiltration and remodeling of the TME in gliomas.

We analyzed the relationship between the risk signa-
ture and the landscape of immune microenvironment in
gliomas and found that the risk scores were significantly
positively correlated with the immune scores, ESTIMATE
scores, and stromal scores (Figure 6). Almost all immuno-
suppressive genes, including the checkpoint genes such as
PD1, PDL1, and CTLA4, were upregulated in the high-
risk subgroup (Figure 7), indicating that the risk signature
was related to the suppressive immunophenotype. In addi-
tion, the high-risk subgroup had increased levels of Tregs,
macrophages M0/M1/M2, and neutrophil infiltration and
decreased T cell CD4+ naive, NK activated, and monocyte
infiltration (Figure 8), reflecting the local immunosuppres-
sive microenvironment of gliomas. Dysregulation of S100
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FIGURE 11: S100A4 affects proliferation and migration of glioma cells. (a) qRT-PCR and (b) western blot analysis of S100A4 knockdown
efficiency in LN229 cells. (c) Analysis of proliferation of control and S100A4-deficient LN229 cells by CCK8 assay. (d) Representative
images and (e) statistical analysis of EAU assay in control and S100A4-deficient LN229 cells. (f) Representative images and (g) statistical
analysis of cell migration assay in control and S100A4-deficient endothelial cells at the indicated times. *P < 0.05; **P < 0.01; ##** P <
0.001; #*% %P < 0.0001.

family proteins may contribute to the inflammatory status,  ings provide a novel insight into the relationship between
while chronic inflammation promotes tumor progression,  S100 family proteins and immunosuppressive microenvi-
metastasis, and drug resistance by reorganizing the tumor  ronment and provide potential targets for treatment of
immune microenvironment [36]. In summary, our find-  gliomas.
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Supplementary Figure 1: validation of the risk-score signa-
ture on CGGA #693 cohort. (A) The expression of 8 signa-
ture S100 family genes, survival status, and risk score of
each patient in the CGGA #693 cohort. (B) ROC curves
showing the sensitivity and specificity of risk score in pre-
dicting the OS of glioma patients at 1-, 3- and 5-year in
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