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Abstract: Air quality levels do not just affect climate change; rather, it leaves a significant impact
on public health and wellbeing. Indoor air pollution is the major contributor to increased mortality
and morbidity rates. This paper is focused on the assessment of indoor air quality based on several
important pollutants (PM10, PM2.5, CO2, CO, tVOC, and NO2). These pollutants are responsible for
potential health issues, including respiratory disease, central nervous system dysfunction, cardio-
vascular disease, and cancer. The pollutant concentrations were measured from a rural site in India
using an Internet of Things-based sensor system. An Adaptive Dynamic Fuzzy Inference System Tree
was implemented to process the field variables. The knowledge base for the proposed model was
designed using a global optimization algorithm. However, the model was tuned using a local search
algorithm to achieve enhanced prediction performance. The proposed model gives normalized root
mean square error of 0.6679, 0.6218, 0.1077, 0.2585, 0.0667 and 0.0635 for PM10, PM2.5, CO2, CO, tVOC,
and NO2, respectively. This approach was compared with the existing studies in the literature, and
the approach was also validated against the online benchmark dataset.

Keywords: indoor air quality; fuzzy inference system; pollution; optimization; public health

1. Introduction

The Environmental Protection Agency (EPA) defines indoor air quality (IAQ) as the
quality of air within building premises or closed rooms that can leave a significant impact
on occupant health, comfort, and productivity levels [1]. It is already proven that human
activities, industrial operations, and increasing traffic on roads are the major factors behind
the deterioration in the environment [2]. Along with several outdoor sources, IAQ is
affected by inadequate thermal comfort levels due to high humidity and temperature in the
closed structures, inadequate ventilation management, hazardous building materials, and
day-to-day human activities [3]. The rising concentrations of harmful pollutants within
indoor environments is further linked to the deteriorating health of building occupants,
especially elderly, infants, persons with disabilities, and household women, as they spend
most of their time indoors [4–6]. Therefore, it is crucial to understand all aspects of indoor
air pollution (IAP) and its impact on public health, while identifying potential solutions for
IAQ management in the closed structures.

As per a survey representing almost 30,000 institutions from the United States, it was
observed that environmental air quality control is the prime requirement of the country as
it is causing major damage to the health and wellbeing of the people [7]. IAP is directly
associated with rising cases of morbidity and mortality in both developed and developing
countries, as it is directly linked to several acute and chronic diseases [4,8]. The short-
term and long-term health effects are reported depending upon the level and duration of
exposure to harmful pollutants. The symptoms linked to short-term health effects include
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wheezing, eye/skin irritation, and nasal congestion; however, they are preventable [9].
On the other side, long-term health effects are respiratory infections [10], pulmonary
tuberculosis [11], adverse pregnancy outcomes [12], asthma [13], chronic bronchitis [14],
cancer [15], and heart disease [16]; the patients may report them after repeated and long
periods of exposure.

There are a variety of pollutants that affect the health of building occupants inside
homes, offices, cafes, schools, hospitals, and shopping malls. Due to the increasing trans-
portation activities, industrial activities, and infrastructure, the ambient air pollution levels
are increasing with a sharp curve, which ultimately accounts for the decaying IAQ levels
as well [17]. Other than this, there are several potential sources of pollutants in the indoor
environment at rural and urban buildings. Rural homes experience decay in air quality
levels due to repeated use of coal, cow dung, wood, and kerosene for heating and cooking
purposes [5]. Unventilated homes in urban areas reduce the circulation of healthy air for
breathing [18]. The list of harmful pollutants that affect the building environment includes
particulate matter (PM), carbon dioxide (CO2), carbon monoxide (CO), sulphur dioxide
(SO2), nitrogen oxides (NOx), volatile organic compounds (VOCs), ozone, radon, heavy
metals, bioaerosols, and antioxidants [3].

IAQ management is critical for better public health outcomes. Therefore, field experts
and researchers from the past several years are working in this direction to identify reliable
solutions. Numerous researchers are using the Internet of Things (IoT) and Wireless Sensor
Network (WSN) based technologies to design IAQ monitoring solutions to assess air quality
in the building premises. Xie et al. [19] designed an artificial neural network (ANN) based
IAQ prediction system while focusing on six IAQ variables and three thermal comfort
parameters. They used occupant symptom metric to measure IAQ levels. Backpropagation
based feed-forward network with variable learning rate and momentum term was used for
ANN modelling. Tagliabue et al. [20] designed an IoT based system to gather IAQ data
from educational building at University of Brescia. The main goal of this work was to
regulate the HVAC system along with the opening and closing patterns of lab windows to
enhance IAQ levels in the premises that could further enhance the learning performance
of occupants. The proposed methodology suggests efficient use of ANN for triggering
enhanced ventilation rate control via IoT communication protocol. Ahn et al. [21] used deep
learning based models with IAQ sensor data for estimating atmospheric changes. They
used two deep learning methods: gated recurrent unit (GRU) and long-short term memory
(LSTM) network for time series data analysis. The optimal time step search approach
proposed by authors in this study presented best learning performance in comparison to
conventional models.

The authors have already published comprehensive [22] and systematic reviews [23,24]
focusing on existing advancements in the field of IAQ monitoring and assessment while
highlighting the need, challenges, and future scopes in this important field of research
to provide insights to the related work in this field. Other than this, several studies have
also been published on the development of prediction systems based on neural networks,
machine learning, and deep learning approaches to assist building occupants with a prior
indication of harmful pollutant concentrations. Furthermore, the authors have published a
systematic review to highlight the contribution of existing researchers in the field along
with the gaps in literature [25].

The main objective of this paper is to present an Adaptive Dynamic Fuzzy Inference
System Tree (ADFIST) based approach to predict potential indoor air pollutants from the
target sites. The authors have collected real-time data from four different rural and urban
sites on six important IAQ parameters, including PM10, PM25, CO2, CO, NO2, tVOCs, along
with two crucial thermal comfort parameters—temperature and humidity. An approach
consisting of aggregating multiple fuzzy inference systems (FIS) with a specific set of inputs
considering their correlation with the response variable was used, and the rule learning
process was further optimized using particle swarm optimization (PSO). Ultimately, the
model was tuned using a pattern search algorithm to achieve enhanced prediction accuracy
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so that the proposed system can be implemented in real-time scenarios to avoid critical
consequences associated with poor IAQ levels. The proposed model is called dynamic
because it uses a dynamic combination of input features as per the selected response
variable for prediction. The adaptive nature of the model corresponds to its rule learning
behaviour which is optimized by PSO and Pattern Search to ensure a unique set of rules at
every stage for different input–output combinations.

The performance of the proposed method was analysed through normalized root-
mean-square error (NRMSE), normalized mean square error (NMSE), coefficient of determi-
nation (R2), and mean absolute percentage error (MAPE). In this paper, Section 2 provides
details about the experimental design of an IoT-based monitoring system, real-time pa-
rameter collection from the field, and data pre-processing; Section 3 includes detailed
information about methodology and methods. Furthermore, Section 4 presents the results
and discussion about model performance in terms of the above-mentioned performance
indicators, and finally, the conclusion is presented in Section 5.

2. Materials and Methods

Several primary and secondary pollutants affect IAQ levels. However, their concen-
tration varies depending upon the geographical area under consideration. The authors
focused on collecting real-time data on potential pollutants from a rural site in India. The
preferred IAQ parameters for this study were PM10, PM2.5, CO2, CO, NO2, tVOCs, and
along with these, two major thermal comfort parameters were also monitored: temperature
and humidity. These eight parameters were selected out of many other crucial IAQ and
thermal comfort parameters only after studying the environmental conditions of the target
geographical area. Recommendations from air pollution experts in the area were also taken
regarding the selection of parameters to address the field IAQ concerns. The hardware
monitoring system was installed in the kitchen area of a home located in a rural village of
Himachal Pradesh, where traditional heating and cooking practices are followed. The map
of the selected monitoring site is provided in Figure 1. The major sources of pollution at
this site are the fireplace that involves the burning of wood, cow dung, kerosene, dry grass,
and traditional cooking practices. The detailed information on monitoring system design
and parameter collection is provided in the subsections below.
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Figure 1. Monitoring site location displayed using Google Maps.

2.1. Monitoring System Design

The design of the proposed IAQ monitoring system was based on IoT technologies.
The authors used four different IAQ sensor modules along with an Arduino Uno microcon-
troller and ESP8266 communication module to collect information on concentration, eight
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different focus IAQ, and thermal comfort parameters. CCS811 sensor was preferred for
measuring CO2 and tVOC concentration, SDS011 sensor provided field data on PM10 and
PM2.5 parameters; whereas Grove—Air quality sensor v1.3—MP503 module was used to
measure the concentration of NO2 and CO from target sites. Other than this, the DHT11
sensor module was used for measuring thermal comfort parameters (temperature and
humidity). Table 1 provides manufacturer specifications for all these sensor modules. The
above-mentioned sensors were connected to the Arduino Uno microcontroller for collecting
real-time data from the target field environment. Furthermore, the ESP8266 module was
used as a gateway to transfer field data to the centralized online platform. ThingSpeak
open-source platform was used for collecting real-time data from the target rural site.
Numerous competitive sensor modules in the market can be used to create IoT-based
IAQ monitoring systems. The main focus of the authors was to design a cost-effective
system while ensuring calibrated data collection. The overall cost of a complete hardware
monitoring system in this study turned out to be USD 81.60, including the estimated cost
of Arduino Uno (USD 6.73), ESP8266 gateway unit (USD 1.35), and miscellaneous items
such as wires and breadboards (USD 3.37).

Table 1. Manufacturer specifications for sensors used to design IoT based hardware module.

Sensor Name Manufacturer Type of Sensor Measurement Parameter Typical Range Cost of Sensor/Unit
(US Dollars)

CCS811 SparkFun Digital Sensor CO2, tVOC 0–1187 ppb (tVOC);
400–8192 ppm (CO2) $24.28

SDS011 Nova Fitness Laser Sensor PM10, PM2.5 0.0–999.9 µg/m3 $31.70

Grove—Air quality
sensor v1.3—MP503 Seed Studio Digital Sensor CO, NO2 NA $12.82

DHT11 Aosong MPN Negative Temperature
Coefficient (NTC) Temperature, Humidity 0 ◦C to 50 ◦C;

20% to 90% $1.35

The authors used factory-calibrated sensor units to ensure reliable real-time data
collection from the field environment. However, the authors also preferred conducting field
reliability tests before deploying sensors in the field. For the DHT11 sensor, the reliability
was tested in the laboratory against a standard instrument (Honeywell TM00X), whereas
for the remaining three sensors, the manufacturer specified procedures were conducted to
ensure stable performance. The hardware monitoring system was set to provide readings
on-field pollutant concentrations after every 5 min, and the total duration of measurements
was six months from 1 January 2021 to 30 June 2021. The general architecture of IoT based
IAQ monitoring system is given in Figure 2.
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2.2. Data Pre-Processing

The real-time data stored on the ThingSpeak channel was exported in the form of
an excel file. It was expected to receive 51,840 samples from the field within the given
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duration of 6 months. However, due to system failures, maintenance issues, and other
field-associated errors, a total of 42,051 samples were recorded with an 18.8% error rate.
The dataset containing eight different IAQ and thermal comfort parameters was first
analyzed using boxplots Figure S1 (Supplementary Materials), and considerable amounts
of samples were found outside the lower and upper quartile ranges. The samples beyond
the outer fence of the boxplot are called extreme outliers, and they are required to be
removed to increase statistical power and to reduce variability in data. Considering the
recommendations provided by existing researchers in the literature, authors preferred
using the Interquartile range method for outlier removal [26,27]. In this method, Q1 (first
quartile) represents the 25 percentiles, cutting off the lowest 25% of data, and Q3 (third
quartile) cuts off the highest 25% of the data while giving the intermediate values of the
data distribution at the output. The formula for extracting the middle half of data while
removing outliers above and below the quartile range is given by Equation (1) [28].

IQR = Q3 – Q1 (1)

After outlier removal, the data containing 30436 samples was processed further to test
the presence of missing values. The dataset had 22.3% missing values. As field data does
not contain nominal attributes, the authors decided to use the mean imputation method
for missing value imputation [29,30]. In this method, the missing data cells are filled with
the mean value of the respective attribute. As the data samples from the field are collected
every 5 min, it is necessary to use a standard averaging method to summarise data readings.
Therefore, the next step in the data pre-processing was to apply mean-hour reduction,
which provided 3695 samples at the output. The statistical information in terms of mean,
std, min, max, and quartile ranges of the dataset is presented in Table 2. These samples
were further utilized for prediction model design.

Table 2. Statistical information about measured and pre-processed field parameters.

Temp Hum PM25 PM10 CO NO2 CO2 tVOC

Count 3695.00 3695.00 3695.00 3695.00 3695.00 3695.00 3695.00 3695.00
Mean 29.900 53.921 124.117 144.724 67.477 67.088 745.133 52.780

Std 1.915 9.841 200.603 229.093 8.103 8.156 249.922 39.707
Min 22.100 23.750 1.736 2.337 38.000 36.000 400.000 0.000
25% 29.690 48.916 8.608 13.051 62.833 62.333 566.090 24.784
50% 29.900 53.921 20.381 30.541 67.477 67.088 735.166 50.416
75% 31.250 60.818 124.117 144.724 72.916 72.727 770.606 55.958
Max 33.218 79.000 999.90 1378.90 93.500 93.714 1544.00 203.00

Variance 3.668 96.825 40,230.93 52,469.67 65.644 66.503 62,444.47 1576.28

The literature states that environmental data are random in nature due to cyclic
variations, seasonal variations, and irregular movements [31–33]. Other than this, due
to the use of low-cost sensors, a considerable amount of measurement uncertainty and
variability is also introduced to the field data [34]. Therefore, the authors decided to
use a FIS to process the field data that is fuzzy in nature. The data was analysed on
the basis of correlation between features. Figure 3 shows a correlation plot based on the
Pearson Correlation method to describe the general distribution of data. The information
obtained from correlation analysis will be further utilized in designing DFIST for IAQ
prediction. After analysing the correlation response of variables, the authors used the k-
fold cross-validation approach for data splitting, as suggested by [35,36]. The Naïve-Bayes
based cross-validation was used to split data with 20% holdout on a total of 3695 samples;
as a result, 2956 samples were left for training data and 739 for validation data [37–39].
The available dataset was further utilized for prediction model training and validation
performance assessment.
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2.3. Parameter Classifications

The Environment Pollution Agency (EPA) has already defined air quality levels based
on their negative impact on public health. We followed EPA guidelines to identify and
evaluate the IAQ parameters according to their safe and unsafe limits. Based on the
available information in the literature. Consequently, the IAQ parameter ranges were
defined using five different categories as follows:

a. Good: This is considered appropriate to perform normal day-to-day activities.
b. Moderate: Indoor activities can be performed; however, children and elderly people

may be affected.
c. Unhealthy: Indoor activities must be avoided; especially for children and adults with

respiratory health issues.
d. Poor: Sensitive groups may experience serious discomfort. In this situation, it is

necessary to implement pollution emission controlling measures on a priority basis.
e. Hazardous: Recommendations for following serious measures to protect the health

of the building occupants by using adequate ventilation and air quality purification
measures.

These threshold levels are further used in model training to help to make decisions
about the forecasting values for the respective response variables.

3. Methods

Decaying IAQ levels in the residential and commercial buildings is a matter of concern
for occupant health and wellbeing. Adequate technological interventions can ensure
promising solutions for IAP management and control. In Section 2, details about the
development of IoT based monitoring system has been discussed. It is further possible to
integrate the potential of Artificial Intelligence (AI) to perform real-time assessment and
control of environmental factors. As data collected from the field environment has higher
variability and is fuzzy in nature, authors preferred using the potential of fuzzy systems to
design a prediction system to address the concerns. The concept of fuzzy logic was first
proposed by Lotfy A. Zadeh in the mid-1960s [40]. A fuzzy set is defined as the class of
objects having different degrees of membership, and each set in fuzzy logic systems is
characterized by a unique set of membership functions. The degree of membership for
each object in fuzzy systems can range between 0 and 1. The main advantage of fuzzy logic
is that the concept is influenced by human reasoning and the degree of belongingness of
object to the class is measured in proportions. There are four main elements of a fuzzy logic
architecture: fuzzification, inference engine, rule base, and defuzzification:
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• The Fuzzification step converts crisp inputs into fuzzy systems. These crisp inputs
are generally the data measured by sensors that are required to be passed to a fuzzy
control system for further processing.

• Rule base plays an important role in fuzzy decision-making. Rule base or knowledge
base is basically a set of in-then conditions developed from expert knowledge or field
conditions.

• The inference engine defines the degree of match between fuzzy input and knowledge
base. It decides which rules must be implemented to achieve the desired output as per
the given input.

• Defuzzification is the process of converting fuzzy sets back into crisp values that can
be further used in real-life environments.

A simple fuzzy logic system is required to have mn number of rules; where m = the
number of membership functions assigned per input variable and n = the total number
of inputs [41,42]. The available field IAQ data have seven input variables and one output
variable. For instance, on assigning five membership functions per input variable to depict
EPA-based pollutant concentration levels, the system may need to have 5(7) = 78,125 number
of rules. It is quite difficult to design such a huge number of fuzzy rules manually and the
process is prone to errors. Furthermore, a system with such a large number of rules is likely
to have high computational complexity. Moreover, the practical realization of such a system
is challenging. Therefore, the authors decided to use the hierarchical structure for fuzzy
system design to forecast IAQ response variables [43,44]. FIS can provide good reasoning
for the pollutant concentrations while processing field variables with their unique scales.
The hierarchical structure of FIS makes use of kmn number of rules; where k = number of
FIS used in the system design, m = number of membership functions per input variable, and
n = number of input variables [41,42]. In this tree form, every FIS module takes two inputs
only, and numbers of FIS modules are arranged in a cascaded manner to accommodate
all input variables for obtaining final forecasting outcomes. Therefore, the total number
of rules required for designing a hierarchal FIS structure with seven input variables, five
membership functions per input, and six FIS modules to accommodate 7 inputs at different
levels will be 6× 5(2) = 150 only. Therefore, the computational complexity and design issues
for FIS based forecasting system can be resolved with ease. Furthermore, the hierarchal
approach helps to evaluate input features based on their correlation with the response
variables so that the prediction accuracy can be enhanced. In the second phase, PSO has
been utilized to optimize the rule learning process, and in the final phase, the network is
tuned using a pattern search algorithm. The entire process is explained in detail in the
below sub-sections.

3.1. Fuzzy Inference System Tree

FIS makes use of fuzzy logic to design an expert system that can perform a reasoning
process with the mapping of several input vectors to a single output. There are two different
types of FIS: Mamdani and Sugeno. For the proposed study, the authors used Mamdani
FIS due to its simplest structure and enhanced freedom to map antecedents to consequents
with fuzzy membership [45,46]. In the first phase, an input assessment model is designed
using fuzzy membership functions. The pollutant concentration levels are evaluated based
on their impact on human health, and the ranges are divided into five different categories
as defined in Section 2.3. However, the thermal comfort parameters (temperature and
humidity) are defined using three different categories: good/low, moderate, and high. In
this work, authors used triangular membership functions for defining parameter ranges
recommended by [47] to transform respective input real-valued parameter ranges into fuzzy
values ranging between 0 and 1. The mathematical expression for triangular membership
functions is defined in Equation (2).

µ(x, a, b, c) = max
{

min
{

x−a
b−a , c−x

c−b

}
, 0
}

(2)
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where x = input pollutant concentration, a, b, c are parameter ranges defined by membership
functions. They usually vary as per the defined limits of the respective pollutants under EPA
guidelines. After assigning membership functions to each concentration level, the reasoning
process can be implemented with the help of specific operators. Before developing FIS, it is
necessary to develop an understanding of fuzzy operators used in the reasoning process.
In this work, the authors have used two main fuzzy operators: Union and Intersection,
which represent OR & AND operation, respectively [48]. The mathematical representations
of these operators are given in Equations (3) and (4).

Union (OR) : µA∪B(x) = max{µA(x), µB(x)} (3)

Intersection (AND) : µA∩B(x) = min {µA(x), µB(x)} (4)

In terms of IAQ assessment, FIS models are more useful due to their subjectivity
handling [40]. The fuzzy logics make it easier to interpret the existing knowledge while
mapping to a level of uncertainty to specific evaluations on the fuzzy scale. To ensure
accurate prediction of parameter concentrations, it is necessary to access all IAQ scenarios
carefully while presenting hazardous concentrations with accurate descriptions. Fuzzy
reasoning provides better opportunities to address pollutant concentrations with their
unique impact on human health. The knowledge/rule base can be designed accordingly as
per expert guidelines on air quality situations. For instance, if the temperature is low and
PM2.5 is good, then PM10 is good. Different parameter concentrations can be linked to each
other based on the correlation to each other, guidelines provided by air quality experts, and
the studies already published in the literature [49,50]. The fuzzy reasoning for different
pollutant concentration levels, represented by different membership function ranges, can
be given as below:

Sample Rule 1: If Temp is low and PM2.5 is good, then PM10 is good.
Sample Rule 2: If Temp is moderate and PM2.5 is moderate, PM10 is moderate.
The decision regarding the impact of rule antecedent combination on consequent

conditions is made on the basis of existing research and expert guidelines [40,51,52]. When
the rule contains the AND operator between different antecedent parameters, the combina-
tion can be evaluated jointly using the min operator. For example, if the fuzzy value for
temperature low is equal to 0.1 and for PM2.5 moderate is 0.3, then the min operator for
this condition with PM10, can, consequently, be presented by Equation (5).

µPM10 = min{0.1, 0.3} = 0.1 (5)

The rule base is further aggregated using the max operator to receive output value [48].
After computing the individual rules, the superimposed area of all rule outputs indicates
the final outcome of the reasoning-based evaluations [48]. The membership functions
for input features and with PM10 as response variable are shown in Figure 4. At the
final stage of the FIS, a defuzzification method is used to obtain real-time outputs for the
field-based study. The defuzzification method used in this study is Centroid Function,
and the formula for calculating defuzzified values out of aggregated values is given in
Equation (6) [53]. This method provides the centre of the area under the curve as per
the output membership function [54]. This method returns a value using the restrictions
defined with input membership functions ranging from good to hazardous.

x∗ =
∫

µcm(x)· x′dx∫
µcm(x) dx

(6)
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Figure 4. Membership functions for air quality parameters: (a) Temp, (b) PM2.5, (c) CO2, (d) tVOC,
(e) CO, (f) NO2, (g) Hum and (h) PM10.

The system robustness usually depends upon the number of rules in the FIS. However,
instead of designing the rules manually for all input parameters, the authors used PSO to
the optimized rule learning process.

3.2. Particle Swarm Optimization

PSO is a global optimization algorithm that is inspired by swarm intelligence [55]. In
this approach, the particle is used to indicate the swarm with the two necessary parameters:
position and velocity [56]. All particles in the group work over the same principles, under
similar working conditions, to find the best personal and best overall fitness values. The
objective function is usually problem-dependent, and several iterations are performed
to achieve good results for the target problem space [57]. Each particle has a specific
velocity and position vector in the problem space, and it is updated after every learning
cycle to achieve the best results. The new velocity and position values are obtained as per
Equations (7) and (8), respectively [56].

Vi(t + 1) = wVi(t) + c1r1

(
Ppbest(t)− Pi(t)

)
+ c2r2

(
Pgbest(t)− Pi(t)

)
(7)

Pi (t + 1) = Pi(t) + Vi(t + 1) (8)

where Pi represents position vector and Vi represents velocity vector in the problem space.
Furthermore, c1 and c2 are acceleration constants, r1 and r2 are random numbers distributed
between 0 and 1. Inertia weight (w) is utilized as a control parameter to adjust the impact of
prior velocity values on the current velocity value [56]. As PSO is a global search algorithm,
it has the ability to produce a relevant knowledge base for the FIS when employed at
the rule learning stage. The general algorithm for PSO can be given in Algorithm S1
(Supplementary Materials) [55]:

For the given problem, the parameter initialization was carried out as follows: w = 1,
c1 = 1, c2 = 2, population size = 100 and the number of iterations at PSO rule learning stage
were kept 150. To optimize the rule learning process for the FIS system, the authors first
designed the hierarchical structure of FIS to process input features as per their correlation
with the response variable. Consequently, the membership functions were defined as
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per the air quality concentration guidelines, and the values were assigned to individual
parameters. Finally, the FIS system was allowed to learn rules with the PSO algorithm.
For the current problem, each particle is adjusted to achieve model rules corresponding
to input membership functions. Each particle represents the potential best solution, and
it is updated every time using Equations (7) and (8) to achieve global best fitness value.
Figure 5 represents the general flow of the FIS system with PSO as a knowledge base
optimization algorithm.

Sensors 2022, 22, x FOR PEER REVIEW 10 of 24 
 

 

𝑉௜(𝑡 ൅ 1) = 𝑤𝑉௜(𝑡) ൅ 𝑐ଵ𝑟ଵ  ቀ𝑃௣௕௘௦௧(𝑡) − 𝑃௜(𝑡)ቁ ൅ 𝑐ଶ𝑟ଶ(𝑃௚௕௘௦௧(𝑡) − 𝑃௜(𝑡)) (7)𝑃௜ (𝑡 ൅ 1) =  𝑃௜(𝑡) ൅ 𝑉௜(𝑡 ൅ 1) (8)

where Pi represents position vector and Vi represents velocity vector in the problem space. 
Furthermore, c1 and c2 are acceleration constants, r1 and r2 are random numbers 
distributed between 0 and 1. Inertia weight (w) is utilized as a control parameter to adjust 
the impact of prior velocity values on the current velocity value [56]. As PSO is a global 
search algorithm, it has the ability to produce a relevant knowledge base for the FIS when 
employed at the rule learning stage. The general algorithm for PSO can be given in 
Algorithm S1 (Supplementary Materials) [55]: 

For the given problem, the parameter initialization was carried out as follows: w = 1, 
c1 = 1, c2 = 2, population size = 100 and the number of iterations at PSO rule learning stage 
were kept 150. To optimize the rule learning process for the FIS system, the authors first 
designed the hierarchical structure of FIS to process input features as per their correlation 
with the response variable. Consequently, the membership functions were defined as per 
the air quality concentration guidelines, and the values were assigned to individual 
parameters. Finally, the FIS system was allowed to learn rules with the PSO algorithm. 
For the current problem, each particle is adjusted to achieve model rules corresponding 
to input membership functions. Each particle represents the potential best solution, and it 
is updated every time using Equations (7) and (8) to achieve global best fitness value. 
Figure 5 represents the general flow of the FIS system with PSO as a knowledge base 
optimization algorithm. 

 
Figure 5. General flow of FIS system with PSO rule learning. 

3.3. Pattern Search Algorithm 
Pattern search or direct search is a derivative-free search algorithm that belongs to 

the numerical optimization methods [58]. It does not require a gradient to achieve the best 
value for the objective function. It is widely used for identifying the best match or the 
solution with the lowest error value in the problem space. This method is widely used for 
multidimensional analysis [59]. For the current experimental analysis, the pattern search 
algorithm is applied at the final model tuning stage to enhance the prediction accuracy. 
The number of iterations at this stage was kept 100, and the focus tuning parameters were 
rule base, inputs, and the model output. The general steps for pattern search algorithm 
are given in Algorithm S2 (Supplementary Materials) [58]. This algorithm works with an 
initial guess at solution x0, and the initial choice for the step length parameter is generally 
Δ0 > 0. 

3.4. ADFIST Implementation 

Figure 5. General flow of FIS system with PSO rule learning.

3.3. Pattern Search Algorithm

Pattern search or direct search is a derivative-free search algorithm that belongs to
the numerical optimization methods [58]. It does not require a gradient to achieve the best
value for the objective function. It is widely used for identifying the best match or the
solution with the lowest error value in the problem space. This method is widely used for
multidimensional analysis [59]. For the current experimental analysis, the pattern search
algorithm is applied at the final model tuning stage to enhance the prediction accuracy.
The number of iterations at this stage was kept 100, and the focus tuning parameters were
rule base, inputs, and the model output. The general steps for pattern search algorithm are
given in Algorithm S2 (Supplementary Materials) [58]. This algorithm works with an initial
guess at solution x0, and the initial choice for the step length parameter is generally ∆0 > 0.

3.4. ADFIST Implementation

To design the proposed ADFIST model, the authors arranged multiple FIS in the
form of an incremental tree. As the ADFIST is desired to provide a prediction for all IAQ
parameters, a dynamic approach was followed for setting up input and output variables for
particular instances. As there are seven input features, we have aggregated six FIS systems
to accommodate all inputs; however, two inputs were given at one stage. The reason to
use only two input and single output FIS per stage is to limit the number of rules that
could further reduce the computational complexity at every stage [60]. The decision about
the organization of input parameters at every stage was made based on the correlation
between features and the response variable, as shown in Figure 3 [61–63]. In the first stage,
the correlation between the response variable and all input features was tested, and then
the correlation between features was analyzed. The general structure of DFIST is given in
Figure 6 with 6 FIS at different stages, feeding two input parameters to one FIS module.
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For instance, when PM10 was selected as a response variable, among all input features,
PM2.5 presented maximum correlation (0.98). However, among thermal comfort parameters,
temperature provided a positive correlation of 0.045. Therefore, these two features were
used at the first stage of the FIST and were fed to FIS1. For the next stage, as we have
all features with negative correlation, the combination for FIS2 was decided based on
the features that show the highest correlation with each other. Therefore, tVOC and CO2
were connected to FIS2, and then the output of FIS1 and FIS2 were combined at FIS3.
Furthermore, FIS4 was fed with CO and NO2 as they show the highest correlation with
each other. The output of FIS3 and FIS4 was combined at FIS5, whose output is further
given to FIS6 as the second input, and the first input is given in the form of one remaining
thermal comfort parameter (humidity). Finally, the FIS6 provides the desired output of
the DFIST, which is considered as a prediction output. Furthermore, the DFIST is made
adaptive to the changing input and output combinations with the help of two important
optimization algorithms. Therefore, the proposed model is named as Adaptive Dynamic
Fuzzy Inference System Tree—ADFIST.

The adaptive behaviour of the model is reported at every stage of the tree as the PSO
algorithm is used with every FIS module to optimize the rule learning process with every
dynamic combination of input features. The pattern search algorithm is further used to
tune the entire system for enhanced prediction performance. The complete architecture of
the proposed ADFIST model is given in Figure 7. The full list of rules (in the case of PM10
prediction) for ADFIST is provided in Supplementary Materials.
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The model performance was further evaluated in terms of NRMSE, NMSE, R2, and
MAPE. NRMSE facilitates the assessment of models that work on a dataset with variable
scales. It is preferably expressed in percentage and the lower value is usually better as
it represents lesser residual variance. The mathematical formula for NRMSE is given in
Equation (9). In a similar manner, NMSE is selected for evaluation because of its ability
to avoid bias towards models that over-predict or under-predict. As the model accuracy
is inversely proportional to NMSE, lower value links to better model performance. The
mathematical formula for NMSE is given in Equation (10). Furthermore, R2 is another
widely recommended statistical measure to assess the strength of the linear relationship
between variables. The formula for the R2 parameter is given in Equation (11); the higher
value of this parameter is expected. MAPE is defined as the difference between measured
and forecasted values. It is given in percentage and the smaller value of MAPE indicates
better forecasts. The mathematical formula for MAPE is given in Equation (12) [64,65].

NRMSE =

√
∑N

i=1(Pi−Oi)
2

N
M (9)

where Pi and Oi are predictions and observations, respectively; N represents a number of
observations, andM is the mean of the observations.

NMSE =

(
Co − Cp

)2

Co Cp
(10)

where Co and Cp present observed and predicted concentrations, respectively, and the
overbar indicates mean over the data sampling points.

R2 =
MSS
TSS

=
TSS− RSS

TSS
(11)

where MSS represents the model sum of squares, and it can be given as the sum of squares
of forecasts from linear equation minus mean of that respective variable. TSS represents
the total sum of squares associated with the respective outcome variable.

MAPE =
1
n

n

∑
t=1

∣∣∣∣ At − Ft

At

∣∣∣∣ (12)

where n is the number of fitted points, At is the actual value, and Ft is the forecast value.

4. Results and Discussions

The design methodology and the approach for implementation of ADFIST are already
discussed in Section 3. The proposed model was trained using real-time data obtained from
the IoT-based hardware module installed at a rural site. The pre-processing data stages are
also explained in Section 2. After obtaining detailed information on field data, and feature
correlation, the ADFIST system was fed with the respective input features based on the
selection of response variable at a particular instance. The combination of seven external
input features and the response variables is given in Table 3.

As shown in Figure 6, the output of FIS1 and FIS2 was combined to fed FIS3, and
outputs of FIS3 and FIS4 were further fed to FIS5; however, the output of FIS5 was fed to
the second input of FIS6. As the combination of input features and the hierarchy varies
as per the selected response variable, the proposed model shows dynamic behaviour to
meet the specific requirements of the end-users. For instance, when the end-user requires
the model to predict PM10, all the inputs at different levels of the trees will be adjusted as
per row 3 of Table 3. As described in the data pre-processing, the model was trained using
2956 samples; however, 739 (20%) random samples were kept for model validation.
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Table 3. Input feature arrangements at ADFIST system with respect to the selected response variable.

FIS1 FIS2 FIS4 FIS6 Response Variable

Input 1 Input 2 Input 1 Input 2 Input 1 Input 2 Input 1 -
Temp PM2.5 CO2 tVOC CO NO2 Hum PM10
Hum PM10 CO2 tVOC CO NO2 Temp PM2.5
Hum PM10 PM2.5 tVOC CO NO2 Temp CO2
Temp NO2 CO2 tVOC PM2.5 PM10 Hum CO
Temp CO2 PM10 PM2.5 CO NO2 Hum tVOC
Temp CO CO2 tVOC PM2.5 PM10 Hum NO2

The proposed ADFIST model is trained using pre-processed data samples. The perfor-
mance of a fuzzy system is highly dependent on the knowledge base. However, the biggest
challenge for researchers during experimental studies is to design the most accurate and
responsive rule base [66,67]. An incorrectly designed rule base can have a negative impact
on model performance [68]. Therefore, instead of designing the rule base of the proposed
ADFIST model manually, the authors used PSO for rule learning. Generally, the formation
of rules in FIS systems is based on the number of variables and the number of assigned
membership functions. The higher system complexity due to the higher number of rules at
every stage makes it difficult to implement and realize FIS models. The system complexity
further increases with the higher number of input features. Moreover, the structure may
also become complicated when FIS are connected in tree form to process inputs on the basis
of their priority at different stages.

The global search optimization algorithms can be useful to handle such model com-
plexities [69]. PSO identifies the optimal regions of available complex search spaces by
interacting with every individual in the particle population [56]. Moreover, PSO is known
to present a high-quality solution in short computation time, and the convergence charac-
teristics are also better than other stochastic approaches available in the literature [69]. PSO
enables the realization of a knowledge base simpler with a limited number of parameters
and an easy implementation strategy. Therefore, the authors used PSO for optimizing the
rule learning process at every stage of the proposed ADFIST system. Moreover, the model
adapts to the new rule base as per the selected response variable and the combination of
input features. This adaptive behaviour makes it a reliable solution for changing parameter
conditions and combinations in different scenarios. The adaptive nature of the knowledge
base with changing input combinations and arrangements as per selected response variable
is shown in Table 4.

Table 4. Adaptive knowledge base of proposed ADFIST model.

Number of Iterations
(PSO Rule Learning + Pattern

Search Tuning)
Number of Rules at Different Stages of ADFIST Total Number

of Rules
Response
Variable

- FIS1 FIS2 FIS3 FIS4 FIS5 FIS6 - -
116 + 100 16 21 22 23 17 12 111 PM10
145 + 100 12 19 17 21 20 10 99 PM2.5
150 + 100 15 22 23 20 22 16 118 CO2
133 + 100 14 22 22 20 22 13 113 tVOC
136 + 100 13 20 22 22 22 14 113 CO
140 + 100 13 20 24 23 20 15 115 NO2

For the prediction of PM10, the proposed ADFIST model used a total of 111 rules;
however, for PM2.5, CO2, tVOC, CO, and NO2, the total number of rules were 99, 118, 113,
113, and 115, respectively. The PSO at the first stage helped to optimize rule learning as
per the correlation-based input parameter combinations. However, pattern search at the
second stage tuned ADFIST performance based on the input-output combinations while
eliminating redundant rules to improve computation time and cost of the system. The
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numbers of iterations were set at 150 for the PSO rule learning stage and 100 for the Pattern
Search-based model turning stage. However, the ADFIST model converged at different
levels due to the fast convergence performance of PSO with a unique set of input–output
combinations and rules. The ADFIST model performance is measured in terms of four
essential performance indicators: NRMSE, NMSE, R2, and MAPE [70–72]. The main reason
behind the selection of NRMSE and NMSE for model evaluation is that field data includes
multiple parameters with different units and varying ranges [73–75]. RMSE is a scale-
dependent performance indicator. Consequently, it is not possible to generalize model
performance using this indicator [64]. In a similar manner, MAPE and R2 are also scaled
independent parameters; therefore, they can be used to compare model performance with
existing methods implemented over data with different scales [64]. The performance was
analysed for all six IAQ parameters, and the graphical plots of NRMSE for all six response
variables are shown in Figure S2 (Supplementary Materials).

The performance evaluation tests were conducted on both training and validation data.
Observations ensure that the model does not overfit, even after high variance (Table 2) in
the field data, as prediction performance was comparable in both cases. The NRMSE values
for all six cases for training and validation data are shown in Table 5. For PM10 prediction,
the PSO optimized model provided NRMSE of 0.8046, which was further improved with
Pattern Search-based model tuning to 0.6679. The NRMSE prediction performance graph
for PM10 in Figure S2a (Supplementary Materials) also indicates a close association between
validation data and predicted output. In a similar manner, NRMSE of ADFIST for PM2.5,
CO2, tVOC, CO and NO2 was recorded to be 0.6679, 0.6218, 0.1077, 0.2585, 0.0667 and
0.0635, respectively. Moreover, the numerical values for all performance indicators at two
different stages of the proposed ADFIST are provided in Table 6. It can be observed that
the proposed model shows efficient performance for predicting all different IAQ parameter
conditions. Although the combination of hierarchical approach with optimized rule base
helped to reduce the computational complexity of the forecasting system by a considerable
level, the computational cost needs slight improvement. The proposed ADFIST system took
1 h 38 min for training; the evaluation time was recorded around 3 min 56 s. However, it is a
great improvement to the simple FIS system; several other models exist in the literature that
are computationally less expensive. Among the many advantages of the proposed ADFIST
system, higher computational cost is a main limitation that requires further improvement.

Table 5. ADFIST performance evaluation on training and validation data.

Response Variable NRMSE (Training Data) NRMSE (Validation Data)

PM10 0.7000 0.6679
PM2.5 0.6371 0.6218
CO2 0.1018 0.1077

tVOC 0.2627 0.2585
CO 0.0677 0.0667

NO2 0.0643 0.0635

A direct comparison of results obtained from the given experimental analysis with ex-
isting studies in the literature is limited due to several factors [76]. The first important aspect
is the difference in datasets used for model training and the type of methods [76,77]. Several
researchers in the past have used IAQ and thermal comfort datasets from meteorological
websites and air pollution control boards [78,79]. However, very few considered data
from real-time scenarios that include concentration measurement from sensor units [21,80].
Moreover, the type of sensors used to measure field pollutant concentrations also makes a
considerable difference in the prediction outcomes [81,82].
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Table 6. NRMSE performance of ADFIST after PSO based rule learning and pattern search-based tuning.

Performance
Indicator

Response
Variable

ADFIST

DFIST + PSO DFIST + PSO + Pattern Search

NRMSE

PM10 0.8046 0.6679
PM2.5 0.7334 0.6218
CO2 0.1811 0.1077

tVOC 0.3741 0.2585
CO 0.0800 0.0667

NO2 0.0863 0.0635

NMSE

PM10 0.2645 0.1822
PM2.5 0.2071 0.1489
CO2 0.2783 0.0983

tVOC 0.2489 0.1189
CO 0.4574 0.3176

NO2 0.5162 0.2799

R2

PM10 0.7355 0.8178
PM2.5 0.7929 0.8511
CO2 0.7217 0.9017

tVOC 0.7511 0.8811
CO 0.5426 0.6824

NO2 0.4838 0.7201

MAPE (%)

PM10 4.409 3.609
PM2.5 4.657 4.428
CO2 0.0904 0.0666

tVOC Inf Inf
CO 0.0609 0.0500

NO2 0.0669 0.0457

High-quality sensors can provide more reliable field measurements, but the cost
involved in system design and installation turns out to be very high [23]. On the other side,
the low-cost sensors are likely to experience calibration issues, and the measured parameter
concentrations may show high variance [24]. The authors have also used low-cost sensors
for field data measurements, and the statistical information about data is already provided
in Table 2. It is clear from the last row of Table 2 that measured parameters show high
variance, especially in the case of PM10, PM2.5, and CO2. Moreover, the min, max, and mean
values of the parameter concentrations also vary from one geographical region to another.
Therefore, it is difficult to compare an analysis performed on one dataset using a specific
type of method with an analysis performed on other datasets using a different method.

The variation in forecasting performance can also be observed based on the per-
formance indication parameter selection and the pre-processing data methods used by
researchers [65,83,84]. Several researchers prefer using scaling methods (normalization or
standardization) for field data due to differences in the scales and units of the measured
parameters [85–87]. This technique is necessary while processing time-series data using
neural networks, deep learning, and machine learning-based methods [88]. However, in
this paper, the authors worked on FIS, where field data is processed without scaling. The
main reason to use data without scaling is to design a FIS knowledgebase by focusing
on actual parameter concentration ranges as defined by air pollution experts. The field
information can be further mapped to the fuzzy values ranging between 0 and 1 through
respective membership functions that are assigned as per pollutant concentration ranges.
Additionally, different studies available in the literature use unique performance indicators.
Numerous researchers worked on RMSE and MSE parameters (scale dependent), preferably
when they have scaled the input data before model training [89–91]. Others preferred using
MAE, correlation coefficient (R), and MAPE (%) for analysing model performance [92–95].
Another challenge for comparison with existing studies was to identify works that used
similar parameters for IAQ analysis. The selection of parameters for IAQ analysis usually
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varies as per the common sources of pollution, geographical conditions, and lifestyle of
residents in the target area. Therefore, only a limited number of studies can be used for
comparison with the proposed model.

The performance of the proposed ADFIST system was compared with the existing
studies in the literature (Table 7). As no other study with similar kinds of parameters was
available, the authors compared the performance with different works published in the past
to provide an analysis relevant to all six IAQ prediction parameters under consideration. As
the type of air pollution parameters and the performance indicators used by existing studies
may be different, the authors selected only similar kinds of parameters and indicators for
comparison out of selected papers. The first study added for comparison in Table 7 is
proposed by [96]. The authors in this study [96] used SO2, NO2, CO, O3, and PM10 for
ambient air pollution analysis, and the data were collected from State Pollution Control
Board, West Bengal, India. However, for comparison, only three relevant parameters were
considered that are similar to parameters used in the current study, and the comparison
was made on the basis of NMSE and R2 values.

Table 7. Comparison of proposed Optimized DFIST model with existing studies in the literature.

Method Dataset Normalization Response Variable Performance Ref

ANFIS
State Pollution Control Board, West

Bengal, India
(Ambient Air Pollution)

Yes

PM10
R2 = 0.71

NMSE = 0.23

[96]CO R2 = 0.77
NMSE = 0.33

NO2
R2 = 0.85

NMSE = 0.00

ANFIS-WELM
Environmental Protection

Administration, Northern Taiwan
(Railway Station)

Yes

CO MAPE = 22.13%

[97]PM10 MAPE = 7.1250%

PM2.5 MAPE = 30.948%

SVM
INNOVA—Multipoint sampler and

multi-gas monitor
(School Campus)

NA

CO2
R2 = 0.9883

MAPE = 1.59%
[98]

tVOC R2 = 0.9636
MAPE = 2.01%

Proposed Method
(ADFIST)

IoT based Low-Cost Sensor Hardware
(Rural Home)

No

PM10
R2 = 0.8178

NMSE = 0.1822
MAPE = 3.609%

-

PM2.5 MAPE = 4.428%

CO2
R2 = 0.9017

MAPE = 0.0666%

CO
R2 = 0.6824

NMSE = 0.0667
MAPE = 0.0500%

tVOC R2 = 0.8811
MAPE = Inf

NO2
R2 = 0.7201

NMSE = 0.2799

Prasad et al. used normalized ambient air pollution and meteorology data for analysis,
and they used Adaptive Neuro-Fuzzy Inference System (ANFIS) model for forecasting
respective pollutant concentrations [96]. In the comparative study, multi-collinearity tests
eliminated the redundant input variables, and a forward selection method was utilized for
choosing different subsets of input variables with an aim to reduce the computational cost
and time of the method. However, in this study, the authors used PSO and pattern search
algorithm to reduce the computational time and cost of the proposed ADFIST system. In
this case, PSO helped to generate the most relevant rule base for the DFIST training in lesser
time, and the pattern search algorithm eliminated the redundant feature combinations
and rules during training while reducing the computational cost. The adaptive rule base
generated with the combination of PSO and pattern search algorithm at each stage of
ADFIST is already given in Table 4. As shown in the comparison shown in Table 7, the
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existing study provided R2 = 0.71, NMSE = 0.23 for PM10 forecasting, whereas the proposed
method presents R2 = 0.8172, and NMSE = 0.1822. For CO forecasting, the existed authors
presented R2 = 0.77, NMSE = 0.33; however, the proposed method provided R2 = 0.6824
and NMSE = 0.0667. Similarly, for NO2, the existing method provided R2 = 0.85 and
NMSE = 0.00; however, the proposed method provided R2 = 0.7201 and NMSE = 0.2799.

The performance of the proposed method was observed to be better compared to
the existing studies [96,97] for PM10 forecasting. However, in the case of NO2 and CO
forecasting, the results are required to be improved. As the R2 parameter is highly affected
by variance among dependent and independent variables, it is difficult to rely on this
parameter specifically for performance assessment, especially when different datasets are
involved in the study [99]. However, the authors in the future are also planning to make
further analyses on feature importance and relevant combinations at different stages of
ADFIST so that prediction accuracy for these response variables can be improved.

Another study used for comparison of model performance was published by [97]. The
authors in this study used an Adaptive Neuro-Fuzzy weighted extreme learning machine
(ANFIS-WELM) for forecasting concentrations of CO, NO, PM2.5 and PM10. The field
pollutant concentration data of Dotong Railway station was collected from Environment
Protection Administration in Northern Taiwan. The authors used the unique combination
of ANFIS and WELM to improve the prediction accuracy and generalization ability of the
proposed model. The main contribution of [97] was that the authors provided separate
and detailed analyses on multiscale air pollutant concentration with hourly forecasts. It
was observed that the proposed method performed well for short-term predictions as
compared to long-term predictions. The performance of the existing study was compared
to the proposed method on the basis of three important pollutants (CO, PM2.5, and PM10),
considering MAPE as a common performance indicator. The existing study provided
MAPE = 22.13%, 30.848% and 7.1250% for CO, PM2.5 and PM10, respectively; however,
the proposed study provided MAPE = 0.0500%, 4.428% and 3.609% for CO, PM2.5 and
PM10, respectively.

In [98], the authors worked on CO2, tVOC, and HCHO parameters measured from
five different rooms on a school campus at the University of Singapore. Authors in this
paper reported Support Vector Machine (SVM) as the best method for forecasting CO2 and
tVOC concentrations. The analysis also reports SVM as the optimal data mining algorithm
to receive the most accurate and reliable results, leading to high-precision predictions.
The best R2 values achieved by the existing study for CO2 and tVOC are 0.9883 and
0.9636, respectively. However, the MAPE (%) values for CO2 and tVOC are 1.59 and
2.30, respectively. The proposed method achieved comparatively lesser performance for
these pollutants in terms of R2 with values equal to 0.8811 and 0.9017 for tVOC and CO2,
respectively. Table 5 shows NRMSE = 0.1077 and NMSE = 0.0983 for CO2 prediction,
which indicates reliable performance for forecasting. However, the main reason behind
poor performance in terms of R2 for CO2 prediction is that this performance indicator is
highly affected by variance in data. Table 2 already shows a very high variance in the
field measurements of CO2, which is automatically reflected in the R2 parameter value.
Moreover, as seen from Table 4, unlike other response variables, PSO convergence was
not achieved up to 150 iterations for CO2. Therefore, the performance can be further
enhanced by increasing the number of iterations at the first stage. It can improve the rule
learning process while enhancing the model’s ability to provide more accurate predictions.
Furthermore, MAPE (%) performance achieved with the proposed method for CO2 was
0.0666. However, for tVOC, the exact value of MAPE could not be received due to zeros
present in the actual measurements.

Model Validation with Online GAMS Dataset

The results show that the proposed ADFIST model ensures satisfactory performance
for forecasting real-time IAQ data. However, it is critical to test the proposed unique ap-
proach against another dataset to ensure that it does not follow data-dependent behaviour.
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It was not possible to find another benchmark dataset with similar kinds of parameters.
Therefore, in order to validate the proposed approach, the authors considered the GAMS
dataset that is available online with six relevant IAQ and thermal comfort parameters:
PM10, PM2.5, CO2, VOC, temperature, and humidity [100]. The total number of samples
(from 21 November 2016 to 28 March 2017) available in this online dataset are 1,35,100
with per minute data collection from the field environment. The data contained 0.04%
missing rows that were filled using the mean imputation method, as mentioned in Section 2.
After mean-hour conversion, the remaining number of samples was 3058. The statistical
information of the pre-processed online dataset is provided in Table 8.

Table 8. Statistical information of pre-processed GAMS Dataset.

CO2 Hum PM10 PM2.5 Temp VOC

Count 3058.00 3058.00 3058.00 3058.00 3058.00 3058.00
Mean 716.030509 38.422101 17.378770 15.826833 23.016499 0.117204

Std 402.048356 5.445556 12.662556 11.894725 2.058361 0.082843
Min 372.633333 22.140000 0.833333 0.733333 18.116818 0.062000
25% 433.284545 34.766833 8.155833 7.266118 21.482593 0.064250
50% 501.388889 38.422101 13.807500 12.301667 22.982167 0.079508
75% 894.812500 41.974500 22.826147 20.848873 24.726168 0.138531
Max 2570.409091 68.351538 84.356250 72.896774 27.914815 0.695500

Variance 161,590.0219 29.644378 160.287883 141.438205 4.235465 0.006861

The data was further divided into a training set and validation set using a 20% holdout
approach with k-fold cross-validation, as discussed in Section 2. The number of samples
used for model training was 2446, whereas 612 samples were used for validation. In order
to accommodate five input variables and one response variable, the ADFIST model used
four—two input and one output—FIS modules. The input parameter combination was
followed as per the correlation analysis already discussed in Section 3. The performance of
ADFIST considering all four IAQ parameters of the GAMS dataset are provided in Table 9.
In order to predict the concentration of the PM10 parameter, ADFIST used rules. As the
model had a lesser number of parameters as compared to the previously discussed version,
the number of iterations at the first stage for PSO rule learning were limited to 100, and
the number of iterations used at the second stage were 80. However, PSO rule learning
presented fast convergence in few cases. The NRMSE plots for all four response variables
are given in Figure S3 (Supplementary Materials).

Table 9. ADFIST performance analysis with GAMS dataset.

Response
Variable

Number
of Rules

Number
of

Iterations
NRMSE NMSE R2 MAPE (%)

PM10 70 100 + 80 0.3781 0.2655 0.7345 0.5503
PM2.5 74 100 + 56 0.4799 0.3807 0.6193 0.9204
CO2 69 93 + 80 0.3316 0.3258 0.6742 0.2422
VOC 65 96 + 80 0.6392 0.3473 0.6527 0.5374

From the above analysis, it can be observed that the proposed approach is not data
dependent. Rather, this approach can be used for handling a variety of field IAQ data
to provide real-time assessment and forecasting on parameter concentrations. Tables 6–8
show satisfactory forecasting performance for the proposed ADFIST model. However,
the proposed system also has few limitations. The main problem is the use of low-cost
sensor units. Although the used sensors are factory calibrated and reliability tests are
also conducted before installation, the field data still show considerable variance and the
presence of outliers. Moreover, the study is based on only six IAQ parameters and two
thermal comfort parameters that are relevant to the selected geographical area.
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In the future, the authors are also planning to analyse the performance of the pro-
posed ADFIST system on other relevant pollutant concentrations received from different
geographical conditions. Furthermore, it is also necessary to integrate the proposed model
with an online portal or mobile application that could generate real-time alerts to guide
building occupants regarding critical scenarios. Consequently, the authors are planning
to develop a standalone system that could provide real-time IAQ assessment, forecasting,
and prior alerts relevant to important pollutant concentrations. These systems can be more
useful for improving public health and wellbeing in a building environment.

5. Conclusions

The main contribution of this paper is the unique integration of correlation based
DFIST, optimized with PSO and pattern search at two different stages. The proposed
ADFIST receives field inputs from an IoT-based hardware module, installed in a rural
village of India. It measures eight different IAQ and thermal comfort parameters from
the target environment. A total 42051 samples were collected with real-time monitoring;
however, after pre-processing and mean-hour conversion, the model was trained using
2956 samples and validation tests were conducted on 739 samples.

The proposed ADFIST model process input features were based on the correlation
with the target variable. The membership functions are defined as per the pollutant
concentration ranges defined by field experts; however, the knowledge base is generated
with the help of a global optimization algorithm—PSO. The model performance was further
enhanced with the input–output and rule tuning, using the pattern search algorithm. The
proposed model shows reliable prediction performance for all six IAQ parameters with
the optimized knowledge base. One important concern with this system is that it makes
use of hierarchal structure for evaluating field variables. If the same method is used for the
higher number of variables, the network may become too complex to handle. However, for
a limited number of input parameters, this system can perform well while ensuring lesser
computational complexity. This is because there is no need to process all input parameters
at a single stage that may otherwise lead to a highly complicated rule base, while increasing
the computational complexity of the network. When the inputs are arranged in hierarchal
order, the system shows enhanced performance, even with a limited number of rules.

In future work, the methodology can be further enhanced to accommodate a wide
range of environmental variables to ensure a real-time alert system for the end-users.
However, one of the prime challenges for authors is to reduce the computational costs of
the proposed ADFIST system. The main goal is to design an efficient, cost-effective, and
easy-to-use standalone system that could be installed in urban as well as rural buildings to
perform real-time assessment of pollutant concentrations. Furthermore, a mobile app or
web portal-based alerts can be created to help the building occupants to avoid the critical
consequences associated with pollutant concentration levels.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s22031008/s1, Figure S1: Boxplot representation of monitored
IAQ parameter concentrations; Figure S2: NRMSE based prediction performance of ADFIST for
(a) PM10 (b) PM2.5 (c) CO2 (d) tVOC (e) CO (f) NO2; Figure S3: NRMSE Performance of ADFIST on
Gams Dataset (a) PM10, (b) PM2.5, (c) CO2 and (d) VOC; Algorithm S1: General Algorithm for PSO;
Algorithm S2: General Algorithm for Pattern Search.
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