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Abstract: Parkinson’s disease affects millions worldwide with a large rise in expected burden over
the coming decades. More easily accessible tools and techniques to diagnose and monitor Parkinson’s
disease can improve the quality of life of patients. With the advent of new wearable technologies
such as smart rings and watches, this is within reach. However, it is unclear what method for
these new technologies may provide the best opportunity to capture the patient-specific severity.
This study investigates which locations on the hand can be used to capture and monitor maximal
movement/tremor severity. Using a Leap Motion device and custom-made software the volume,
velocity, acceleration, and frequency of Parkinson’s (n = 55, all right-handed, majority right-sided
onset) patients’ hand locations (25 joints inclusive of all fingers/thumb and the wrist) were captured
simultaneously. Distal locations of the right hand, i.e., the ends of fingers and the wrist showed
significant trends (p < 0.05) towards having the largest movement velocities and accelerations. The
right hand, compared with the left hand, showed significantly greater volumes, velocities, and
accelerations (p < 0.01). Supplementary analysis showed that the volumes, acceleration, and velocities
had significant correlations (p < 0.001) with clinical MDS-UPDRS scores, indicating the potential
suitability of using these metrics for monitoring disease progression. Maximal movements at the
distal hand and wrist area indicate that these locations are best suited to capture hand tremor
movements and monitor Parkinson’s disease.

Keywords: wearable sensors; postural tremor; smart devices; Parkinson’s disease; tremor detection

1. Introduction

Parkinson’s disease (PD) affects 1 to 2 people per 1000 of the population at any one
time [1]. PD is a progressive neurodegenerative disease [2] characterised by both motor [3]
and non-motor [4] symptoms. Motor symptoms include tremors, bradykinesia, rigidity, and
postural instability [5,6] while non-motor symptoms consist of hyposmia, sleep disorders,
depression, and olfactory issues [4,7]. These signs and symptoms hinder the performance of
their daily activities, reducing their level of independence. At present, there is no curative
treatment for PD; rather, treatments are focused on the symptoms [8]. With the aging
population, the number of people with Parkinson’s disease is also increasing [6]. With this
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in mind, it has become more important to easily acquire objective symptom data to monitor
and diagnose PD.

Currently, tremors are one of the most identifiable features of PD. Tremor conditions
are commonly measured visually in either hospitals or home healthcare environments
without specialised equipment [8]. The severity of symptoms, i.e., tremor magnitude
is usually assessed by a clinical scoring system: Movement Disorder Society-Sponsored
Revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS). Some MDS-
UPDRS sub-scores are subjective and rely on visual observations from physicians. These
scores, in turn, are sometimes used for determining medical therapies and drug dosages and
in clinical trials [9,10]. Furthermore, clinical assessments cannot be performed regularly or
continuously in a daily life environment [11]. To enable more frequent and objective ratings
of symptoms and disease courses, continuous monitoring systems are being investigated
for PD.

With new technologies in healthcare, medical devices/sensors are increasingly utilised
as objective methods for diagnosis/monitoring. Wearable sensors are portable, cost-
effective, power-efficient, and provide accurate data [12,13]. To date, wearable sensors
have shown promise in PD [14,15] and in particular for detecting tremors [16], freezing
of gait [17,18], bradykinesia [19,20], and dyskinesia [21]. Commercial health designs of
wearable hand devices (similar to rings/watches) are also available such as Kinetigraph and
KinesiaTM [22]. These systems perform objective tremor quantification by analysing data
obtained from accelerometers or gyroscopes through different computational methods [23].
Recently, several monitoring systems have been developed and tested and have shown
promising results for quantifying PD symptoms [21,24].

However, within these studies, the subject’s hand shape is restricted by having to
either hold or wear a large measuring device. In addition, the optimal area (i.e., wrist,
or which finger joint) to place these devices to capture tremor movements regardless of
disease severity is unknown. Identifying the locations of maximal tremor motion allows
patients with smaller tremor movements (which potentially can identify subtle symptoms
or early signs of PD) to be captured and positions to be defined so comparisons can be
standardised. With devices such as smart rings and watches becoming more common
for health monitoring [15,25], investigation of the best locations to capture hand tremor
movements is needed. Users also have variable preferences as to which location to place
a device, i.e., which finger to wear a smart ring. This study makes use of an already
available Leap Motion camera to identify and measure movements of multiple joints within
the hand simultaneously, including the wrist, to determine locations of maximal tremor
movements. The results of the study provide useful initial information for the placement of
smart devices for PD monitoring.

2. Methods

This study was approved by Health and Disability Ethics Committees of the New
Zealand Ministry of Health (URB/09/08/037/AM23) and performed following relevant
guidelines and regulations. All participants provided signed consent. Subjects were
recruited from the New Zealand Brain Research Institute’s research volunteer database
of PD patients. Table 1 shows the demographic distribution and patient characteristics.
A total of 55 patients (17 female, 38 males, mean age ± SD = 71.7 ± 6.54) who were
diagnosed by a neurologist with PD participated in the experiment. All patients were under
dopaminergic replacement treatment, and their disease duration was 11.1 ± 4.8 years. In
total, 20 left-sided onsets, 34 right-sided onsets, and 1 with bilateral onset were included.
All of the participants were right-handed. Trained clinical personnel evaluated MDS-
UPDRS (approval granted) scores bilaterally within a day of any data acquisition. These
scores encompassed parts I (non-motor), II (motor experience daily living), and III (motor
examination) which includes questions 3_15a and 3_15b relating to the postural tremor
severity for the right and left hand, respectively.
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Table 1. Demographics and disease characteristics (mean ± standard deviation (range)) of
the participants.

Characteristics Participants with Parkinson’s Disease

n (male) 55 (38)
side of onset (left, right, bilateral) 20, 34, 1
age (years) 72 ± 7 (53–87)
Hoehn and Yahr (1–5) 2.0 ± 0.5 (2–3)
Levodopa equivalent dose (mg) 1050 ± 586 (155–2900)
Disease duration (years) 11 ± 5 (3–27)
MDS-UPDRS I 10 ± 5 (2–24)
MDS-UPDRS II 11 ± 6 (1–29)
MDS-UPDRS III 34 ± 12 (14–61)
Q3_15a (Postural Tremor Right hand) 1 ± 0.5 (0–3)
Q3_15b (Postural Tremor Left hand) 1 ± 0.5 (0–3)

2.1. Inclusion Criteria

The inclusion criteria for the study were individuals who were between the ages of 50
and 90 years and who have been diagnosed with at least stage two on the Hoehn and Yahr
scale of Parkinson’s Disease severity [26].

2.2. Exclusion Criteria

Individuals that exhibited musculoskeletal or other neurological conditions [27] which
may affect movement were excluded from the study. Significant dyskinesia was observed
in two patients; thus, these patients were removed from the study. Individuals presenting
with orthopaedic disorders, individuals that use orthotic devices, or those with artificial
joints were further excluded from the study.

2.3. Data Collection and Measurement

A Leap Motion Controller (LMC), (Leap Motion, Inc., San Francisco, CA, USA) in-
frared camera-based motion controller device was used to capture the postural tremors.
The LMC is a cost-effective device that is able to capture numerous hand joint positions
and movements simultaneously. The device has also been used extensively to measure
movements related to Parkinson’s disease, such as postural tremors [28–31], and to estimate
hand dexterity UPDRS scores in PD patients [32]. Weichert et al. [33] analysed the accu-
racy of the Leap Motion Controller and found that it can achieve 0.7 mm overall average
accuracy in all 3 axes. This result is comparable to the average human hand accuracy of
0.4 mm.

Custom-made software was used to capture tremor movements. The application
(Figure 1A shows the application interface) was developed on top of the Leap Motion
SDK to capture all positions simultaneously from all the fingers (thumb—T, index—I,
middle—M, ring—R, and pinky—P, i.e., little finger) and respective joints (distal—D,
intermediate—I, proximal—P, metacarpal—M, proximal metacarpal—PMT), including the
wrist, (Figure 1B). Figure 1B also shows the naming convention example for the pinky finger.
Within the Leap system, the thumb uses the same bones as the other fingers, although an
anatomical thumb has no intermediate phalange. To compensate, the Leap Motion model
and naming system of the thumb has a zero-length metacarpal bone (Leap Motion API)
i.e., the Leap system intermediate and proximal thumb phalanges are analogous to the
anatomical proximal phalange and metacarpal thumb bones respectively.

Each patient was asked to hold their hand (right and left separately), over the Leap
Motion device for 10 s. During the recordings, patients were asked to hold each hand flat
over the Leap with fingers apart from each other (Figure 1C). Each hand was recorded
three times and any analysis output was subsequently averaged.
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red dot provides example locations for pinky finger (modified from Leap Motion). Letters next to 
red dots show the labelling conventions, i.e., P-PMT—pinky proximal metacarpal; (C) experimental 
configuration for acquisition of data from the Leap Motion device. 
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Figure 1. Hand joint acquisition pipeline: (A) custom-made application’s layout for acquisition of
Leap Motion hand data (x, y, z axes), middle top: orientation of Leap Motion x, y, z coordinates and
middle bottom: frequency profile (red indicates high frequency magnitude) (B) hand joint locations;
red dot provides example locations for pinky finger (modified from Leap Motion). Letters next to
red dots show the labelling conventions, i.e., P-PMT—pinky proximal metacarpal; (C) experimental
configuration for acquisition of data from the Leap Motion device.

2.4. Data Analysis
2.4.1. Volumes

All data analysis was conducted using MATLAB 2020a (MathWorks, Natick, MA,
USA). The average sampling rate of the Leap Motion Controller during the study was
approximately 100 Hz; to account for the variable acquisition rate, the change in the
position data was interpolated with a cubic spine and resampled at a frequency of half of
the average sampling rate, i.e., 50 Hz. The magnitudes of the positional data from the Leap
Motion Controller were then filtered using a 4th-order band-pass Butterworth Filter. The
Butterworth filter that was used had a low-pass cut-off frequency of 20 Hz and a high-pass
cut-off of 2.5 Hz to eliminate frequencies that were not of interest, such as those due to
physiological factors such as breathing and heart rate [34].

The filtered x, y, and z data (Figure 2A) were then used to create a volume of the resul-
tant movement. The MATLAB function alphaShape was utilised to create a representation
of the movement. This function uses a set of points in 3D and Delaunay triangulation to
create a tetrahedral mesh. This mesh is estimated by creating a bounding polyhedron that
envelopes the 3D location of the joint movement (Figure 2B).
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Figure 2. Example Leap Motion tremor measurements of right index finger distal joint (I.D): (A) x,
y, and z positional information from the Leap over 10 s; (B) tremor volume calculated from the
three-dimensional positional information.

2.4.2. Tremor Metrics

Euclidean distance (Equation (1)) was calculated from the three-dimensional sampled
positions. The origin of the coordinate system of the Leap Motion Controller is centred
at the top and middle of the surface of the Leap and is assumed to remain stationary.
The change in Euclidean displacement (Equation (2) and Figure 3A) was then calculated
for each recorded frame to determine the magnitude of the change in distance with the
new associated time (Equation (3)). This displacement metric considers the magnitude of
movement from each axis. This approach also standardises the data as a normalisation
process [35].

dn =
√

x2
n + y2

n + z2
n (1)

Dn = dn+1 − dn (2)

Tn = tn+1 (3)

where
n is the frame number;
(xn, yn, zn) are the positional coordinates associated with frame n;
dn is the Euclidean distance;
dn+1 is the Euclidean distance associated with frame n + 1;
Dn is the new Euclidean displacement associated with frame n;
tn+1 is the time associated with frame n + 1;
Tn is the new time associated with Dn.
The displacements enabled the commonly used metrics of velocity and acceleration

of the tremor movement to be determined. A 4th-order Savitzky–Golay FIR filter, with a
frame size of 11 points, was implemented in MATLAB using the sgolay function to smooth
and perform a 1st-order and 2nd-order differentiation on the Euclidean displacement.
This allowed for an approximation of the change in magnitude of the velocity (Figure 3B)
and acceleration (Figure 3C) while removing higher frequency noise that was amplified
from differentiation. Finally, a fast Fourier transform of the acceleration was used to
compute power spectral density and peak (dominant) tremor frequency (Figure 3D). For
inter-joint comparisons, root-mean-squared (RMS) values were calculated for the velocities
and acceleration of tremors. All features were grouped by the subject and signal and were
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subsequently averaged, resulting in a unique scalar combining the magnitude of the three
recordings, thus making the feature values independent of any inter-trial variance in the
statistical analysis.
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Figure 3. Leap Motion feature extraction from right-hand index finger distal: (A) Euclidean distance
calculated from x, y, z position; (B) velocity of movement in mm/s (blue); (C) acceleration of
movement in mm/s2 (green); (D) peak frequency of the acceleration ~7.1 Hz (red). Colours indicate
extracted metric, same colour scheme used in subsequent figures.

2.4.3. Statistical Analyses

Prism (Version 9.2.0) Statistical software (GraphPad Inc., La Jolla, CA, USA) was used.
The tremor metrics were tested for normality using Shapiro–Wilk tests. Log transformation
was subsequently applied for features prior to running mixed two-way repeated-measures
analyses of variance. Geisser–Greenhouse correction was also applied, and Tukey Post hoc
comparisons were used to determine significant differences between the hands and/or
joints (p < 0.05; n = 55). As a supplementary analysis correlations between calculated
measures and MDS-UPDRS scores, questions 3_15a/b, parts I, II, and III were determined
using Spearman’s correlation coefficients.

3. Results

Figure 4 displays an example of the tremor volumes for a right hand and the naming
convention for the joints. In this example, the distal locations along each finger have the
highest movement volumes. Note: the thumb intermediate phalange (T.I) is a result of
the standard naming system of the Leap Motion model. The Leap system intermediate
and proximal thumb phalanges are analogous to the anatomical proximal phalange and
metacarpal thumb bones respectively. Figure 5A shows the average movement volumes of
the hand joints for all participants. For both right and left hands, the volume of movement
for each finger increased from metacarpal to distal locations, there were, however, no
significant differences between all distal finger locations of the hand, including the wrist
and the rest of the joints.
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Figure 4. Example right-hand volume and localisation of the joints, e.g., T.D is thumb distal. Colour
indicates the magnitude of the volumes. Note: the thumb intermediate phalange (T.I) is a result
of the standard naming system of the Leap Motion model. The Leap system intermediate and
proximal thumb phalanges are analogous to the anatomical proximal phalange and metacarpal
thumb bones respectively.

For the velocities and acceleration, the distal locations trended towards being the
highest for each finger for the right hand, while on the left hand, the highest values were
observed in the proximal metacarpal (PMT) locations and wrist (Figure 5B,C).

For the right hand, the wrist had significantly higher velocities than the majority
of hand locations except for the PMT for the middle, ring, index fingers, and all thumb
locations (Table 2). The index, ring, and middle distal locations were also not significantly
different. The acceleration values showed similar trends—the wrist accelerations were
significantly higher for all locations except the distal locations of the index, middle, ring
pinky fingers, and all thumb locations (Table 2). Conversely, for the left hand, the wrist
had significantly higher velocities than all joints on each finger except the distal PMT/all
thumb locations and significantly higher accelerations than the ring distal and all thumb
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locations (Table 2). Frequencies showed no significant difference between any of the hand
join locations for both hands (Figure 5D).
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squared (RMS) velocity (mm/s); (C) RMS acceleration (mm/s2); (D) peak frequency (Hz).
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Table 2. Wrist vs. hand joint comparisons for log-transformed velocity and acceleration. * p value < 0.05,
** < 0.01, *** < 0.001.

Wrist Compared to
Velocities Acceleration

LH RH LH RH

T.D ns >0.999 ns >0.999 ns >0.999 ns >0.999
T.I ns >0.999 ns >0.999 ns >0.999 ns >0.999
T.P ns >0.999 ns >0.999 ns >0.999 ns >0.999

T.MT ns >0.999 ns >0.999 ns >0.999 ns >0.999

I.D *** <0.001 ns 0.147 *** <0.001 ns 0.106
I.I *** <0.001 *** <0.001 *** <0.001 *** <0.001
I.P *** <0.001 *** <0.001 *** <0.001 *** <0.001

I.MT *** <0.001 *** <0.001 *** <0.001 *** <0.001
I.PMT ns 0.999 ns 0.969 *** <0.001 *** <0.001

M.D *** <0.001 ns 0.723 *** <0.001 ns 0.963
M.I *** <0.001 *** <0.001 *** <0.001 * 0.014
M.P *** <0.001 *** <0.001 *** <0.001 *** <0.001

M.MT *** <0.001 *** <0.001 *** <0.001 *** <0.001
M.PMT ns 0.937 ns 0.380 *** <0.001 *** <0.001

R.D * 0.026 ns >0.999 ns 0.238 ns >0.999
R.I *** <0.001 ** 0.005 *** <0.001 ns 0.117
R.P *** <0.001 *** <0.001 *** <0.001 *** <0.001

R.MT *** <0.001 *** <0.001 *** <0.001 *** <0.001
R.PMT ns 0.782 ns 0.067 *** <0.001 *** <0.001

P.D *** <0.001 * 0.010 *** <0.001 ns 0.201
P.I *** <0.001 *** <0.001 *** <0.001 ** 0.002
P.P *** <0.001 *** <0.001 *** <0.001 *** <0.001

P.MT *** <0.001 *** <0.001 *** <0.001 *** <0.001
P.PMT ns 0.894 * 0.041 *** <0.001 *** <0.001

When comparing the hands, the right hand on average showed greater tremor volumes
(p = 0.0001). The left hand also had significantly lower velocity (p = 0.0001) and acceleration
(p = 0.008) than the right hand; however, there was no significant difference in frequencies.

As a supplementary analysis, the features of the Leap Motion were compared with the
MDS-UPDRS scores. The volume, frequency, and velocities significantly correlated with
the MDS-UPDRS scores and specifically questions 3_15a and 3_15b which are related to the
postural tremor severity of the right and left hand, respectively. The results show that the
right-hand volumes, velocities, and accelerations for all joints correlated significantly with
MDS-UPDRS (question 3_15a/b) values associated with the postural tremor (Figure 6A). In
addition, the frequencies of the movements were found to significantly correlate with the
middle, ring, and pinky fingers with the postural tremor MDS-UPDRS ratings (Figure 6A).
MDS-UPDRS part I scores also showed significant correlations with a number the hand
movement velocities/accelerations.

Significant left-hand correlations were observed between the tremor volumes for the
thumb, index, middle fingers, and MDS-UPDRS Q3_15b (left-hand postural tremor severity)
and not the other velocities and accelerations (Figure 6B). All left-hand correlations were
not as high as those of the right hand. In contrast to the right hand, several left-hand
joint velocities/accelerations displayed a significant correlation with part II scores, and the
frequency of the majority of joints showed significant correlations to Q3_15a. No significant
correlations were observed with part III for either hand.
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4. Discussion

Wearable devices are increasingly being used for health monitoring. Research is
required to identify the optimal body locations of such devices to monitor specific condi-
tions. Parkinson’s disease (PD) is a clinical condition incorporating technology/devices,
such as rings and watches, for monitoring disease progression [12,15,25]. For objective
quantification of PD severity, it is important to determine the best locations of these de-
vices for capturing the subtleties of the symptoms. Multiple methods have been used
to investigate the severity of PD using accelerometers [12,15,36] and have been able to
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differentiate between PD and non-PD patients [37,38]. To the best of our knowledge, these
investigations have not compared different regions within the hand, including the wrist
and finger joints, to find maximal tremor locations. This paper presents the first study of
its kind to investigate the localisation of PD movements of multiple hand joints, including
all fingers and the wrist, to find the optimal/standard location to capture maximal tremor
movements. Identification of these locations will enable smaller tremors to be acquired,
whereas placement at other locations may result in non-identification of tremor movements.
Tremor volumes were also extracted, and a supplementary initial correlation was conducted
to investigate their utility for predicting PD severity. The results identified the best joint
locations to detect maximal movements/tremors to be the wrist and distal finger joints
and also provided preliminary validation of each location as an area that can be potentially
used to monitor PD.

The distal joints of the fingers and the wrist trended towards having the highest
magnitude of volumes, velocity, and acceleration, wherein values of acceleration and
velocity agree with the previous literature [39]. On the left hand, the wrist was found to have
significantly greater velocity and acceleration than all joints except for proximal metacarpal
regions and ring distal joint, respectively. For the right hand, the wrist movement was
found to be significantly greater in velocity and acceleration than the metacarpal joints
of all fingers, where rings are normally worn, however, no significant differences were
observed for the distal locations. Greater distal magnitudes are to be expected, as the distal
locations have the highest degrees of freedom; this is also in line with the wrist which has
a high degree of mobility. These findings indicate that the best locations to capture the
maximal movement on the right hand are the distal locations of the hand or at the wrist.
This validates the locations used for devices such as Kinesia OneTM [22], normally placed
distally on the index finger, and also the use of watch devices such as the PKG watch [40].

Other variables such as the frequency of tremors did not vary significantly between
the joints, showing that the observable changes related to tremors are likely to be better
detected by the magnitude of the movement. This is in line with MDS-UPDRS ratings,
where amplitudes of movement are identified [41]. Past studies have also shown that
postural tremors tend to vibrate at a comparable frequency range (5–9 Hz) to that of this
study [42–45]. The average values of ~7 Hz are slightly higher than that seen in the literature,
but this is likely attributed to the utilisation of Euclidean distance acceleration. This form
of acceleration takes into account all three axes to determine frequency response; hence, the
additive nature of the frequencies is likely to increase the acquired peak frequencies.

Additionally, when the left and right hands were compared, the right hand showed
significantly greater values for all metrics. All patients in this study were right-handed, and
approximately 60% of the patient’s side of onset was on the right side. Previous studies in
the literature state that the dominant side of symptoms often occurs with handedness [37],
and patients with left-dominant symptoms have less severe patterns of motor responses [46].
Results from this study indicated for the predominantly right-handed and right side of
onset PD patients, the right hand i.e., the ipsilateral side is potentially the best location to
detect maximal movements. However, further testing and analysis with more patients that
are left-handed/left-sided onset are needed to confirm this finding.

A supplementary investigation to provide initial validation of the use of the multiple
joint locations’ volumes, velocities, and accelerations features was conducted using MDS-
UPDRS score correlations. Consistent significant correlations with the all-hand joint vol-
umes, velocities, and accelerations and MDS-UPDRS scores were observed with the right
hand. Fewer significant correlations for the left hand were found, and this is likely due to
the relatively lower magnitudes in metrics as a result of 60% of the patient’s right side of
onset and factors mentioned previously. This, in turn, may have reduced the separation of
tremor severity for the left hand and, consequently, resulted in lower correlations. Further
investigations with more left-handed/left side of onset patients are required to explore this
relationship. The volume features extracted from the Leap Motion also showed significant
correlations to the MDS-UPDRS scores for all locations on the right hand (Q3_15a) and a
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number of volumes of thumb, index, and middle for Q3_15b of the left hand. While MDS-
UPDRS scores are limited to a five-point Likert-type scale (ranging from 0 to 4), utilising
a combination of the movement metrics such as volumes, accelerations may be able to
provide greater resolution (i.e., due to the continuous nature of volumes/accelerations) in
monitoring the severity of the disease. With further investigation, the Leap Motion device
and the outputs highlighted in this study can be used to provide greater insight into the
disease severity which, in turn, will allow more precise drug dosages. These may enable
the effectiveness of PD drugs such as levodopa to be optimised and fine-tuned which, in
turn, may reduce and delay the tendency to motor fluctuations [9,11].

5. Conclusions

The outcome of this study indicated that smart devices are best placed on either the
wrist or more distal locations of the hand to capture maximal tremor movements. In
addition, these devices should be placed on the ipsilateral side i.e., right side if the patient
is right-handed and has a right side of onset. These findings showed that, in the future,
everyday smartwatches with accelerometers can be implemented with software to detect
the maximal movement of the hands during tremors. Additionally, for smart rings to
monitor PD tremor motion to a high level of sensitivity, they may need attachments that
allow accelerometers to be extended to the distal locations. The main advantages of using
smart devices for tremor recording and analysis are their non-invasiveness and ease of use,
which could translate into routine clinical or even community monitoring. Furthermore,
preliminary investigations on the use of the Leap Motion system and features such as
tremor volumes show promise as a tool for obtaining the severity of tremors. To build on
the findings of this research, a longitudinal study utilising remote transmission of data from
the home environment is needed to fully determine the utility of the use of such devices
and locations.
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