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INTRODUCTION 
 

Pancreatic cancer (PC), the fourth leading cause of 

cancer-related death in the US, is estimated to cause 

227,000 deaths per year worldwide. As the incidence 

rate of PC in developed countries continues to rise, it 

will be the second most fatal cancer in 2020 [1]. 

Although modern cancer chemotherapy and mature 

surgical techniques cause a modest incremental 

improvement in patient outcomes [2, 3], with the 5-year 

overall survival (OS) improving from 5% to 9% and the 

median OS improving to approximately 11 months 

compared with the historic benchmark of 5 to 6 months, 

its prognosis still remains extremely poor [4]. Thus, 

efforts are needed to develop new ways to treat this fatal 

disease. 

 

In recent years, precision medicine has offered 

numerous valuable insights into PC treatment [5]. 

Individual therapy enables PC patients to have the 

largest gains with minimum risk. Much more radical 

treatments, such as combined regimens and extensive 

radical operation, are preferred for PC patients with 

high recurrence risks [6]. Therefore, it is extremely 

necessary to distinguish the high-risk group from all PC 

patients. 
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ABSTRACT 
 

The purpose of this study was to identify a vital gene signature that has prognostic value for pancreatic cancer 
based on gene expression datasets from the Cancer Genome Atlas and Gene Expression Omnibus. A total of 34 
genes were obtained by the univariate analysis, which were significantly associated with the overall survival of 
PC patients. After further analysis, Anillin (ANLN) and Histone H1c (HIST1H1C) were identified and considered to 
be the most significant prognostic genes among the 34 genes. A prognostic model based on these two genes 
was constructed, and successfully distinguished pancreatic cancer survival into high-risk and low-risk groups in 
the training set and testing set. Subsequently, independent predictive factors, including the age, margin 
condition and risk score, were then employed to construct the nomogram model. The area under curve for the 
nomogram model was 0.826 at 0.5 years and 0.726 at 1 year, and the C-index of the nomogram model was 
0.664 higher than the others variables alone. These findings have indicated that high expression of ANLN and 
HIST1H1C predicted poor outcomes for patients with pancreatic cancer. The nomogram model based on the 
expression of two genes could be valuable for the guidance of clinical treatment. 
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However, there is no sufficient predictive system to 

predict the outcomes of patients with PC. Traditional 

risk stratification systems, such as the American Joint 

Committee on Cancer (AJCC) staging system, have been 

considered relatively nondiscriminatory for predicting 

differences in survival among PC patients [7, 8]. With 

the use of next-generation sequencing and microarray 

technologies, many studies have found the importance of 

gene signatures in the initiation, progression and 

prognosis of human tumors [9–13]. The facilitating 

investigation of interactions between gene signatures and 

tumors has made it possible to use signatures to stratify 

patient risks. 

 

In this study, we aimed to explore the differences in 

mRNA expression profiles between PC and the adjacent 

pancreas using The Cancer Genome Atlas (TCGA) and 

Gene Expression Omnibus (GEO) datasets. After 

important prognosis-related genes were identified, we 

established a two-gene prognostic model that included 

Anillin (ANLN) and Histone H1c (HIST1H1) and was 

applicable for guiding prognostic assessment and 

treatment decision-making during the early postoperative 

period. 

 

RESULTS 
 

Common differentially expressed genes between PC 

and normal tissues 

 

As shown in the analysis process flowchart (Figure 1), 

after the genomic differential expression analysis of the 

3 datasets (GSE28735, GSE62452 and TCGA), there 

were 222 differentially expressed genes (DEGs) in 

common (Supplementary Table 1). Using the criteria of 

P value < 0.01, the number of DEGs in GSE28735, 

GSE62452 and TCGA are 5250, 7180 and 222, 

respectively. A Venn diagram was applied to visualize 

the DEG relationships of the 3 datasets (Figure 2A). We 

also used a heatmap of the differentially expressed 

mRNAs to better differentiate normal tissues from PC 

(Figure 2B and Supplementary Tables 2, 3). 

 

Functional annotation of common DEGs 

 

To further describe the biological functions of the 222 

common differentially expressed genes in detail, we 

performed functional annotation and enrichment 

analysis using the R package “ClusterProfile”. The 

biological process indicated that genes were enriched 

for positive regulation of defense response (Figure 3A). 

For cell component enrichment, the common 

differentially expressed genes were primarily enriched 

for apical part of cell (Figure 3B). The molecular 

function of the genes was enriched mainly for 

Alcoholism (Figure 3C). The KEGG pathway indicated 

that the DEGs were mainly enriched for actin binding 

(Figure 3D). 

 

Screening of the prognostic PC gene signature 

among DEGs 
 

After a univariate Cox analysis with the bootstrap 

resampling, we found that 34 of the 222 common DEGs 

 

 
 

Figure 1. The flowchart of the whole analysis process. 
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Figure 2. Common differentially expressed genes between PC and normal tissues. (A) Venn diagram showing the common DEGs in 
PC and adjacent normal tissues from the GSE28735, GSE62452 and TCGA datasets. (B) Heatmap analysis of the 222 DEGs, which contained 
the 50 highest expressed genes and the 50 the lowest expressed genes according to the log2FC between normal tissues and cancer tissues 
from the TCGA datasets. 
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Figure 3. GO and KEGG analysis using the R package “Clusterprofile” for the 222 common DGEs from the three databases. 
P<0.05 was set as the threshold. (A) Biological process. (B) Cell component. (C) Molecular Function. (D) Kyoto Encyclopedia of Genes and 
Genomes. 
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were significantly related to PC patient survival 

(P<0.05). Next, to further reduce the number of genes 

and overfitting, we subsampled 70% of patients from 

TCGA dataset (Supplementary Table 4) for analysis at 

one time and applied a Lasso-penalized regression with 

a 10-fold cross-validation 3000 times when performing 

the stepwise multivariate Cox analysis. Two genes, 

ANLN and HIST1H1C, appeared over 2500 times 

among the 3000 10-fold cross-validation repetitions 

(Figure 4A and Supplementary Table 5). Next, we used 

a box plot to illustrate that ANLN and HIST1H1C are 

constantly and significantly highly expressed in tumor 

tissues from all the datasets (GSE28735, GSE62452  

and TCGA) (Figure 4B–4G and Supplementary Tables 

6–8). Furthermore, the data from Cancer Cell Line 

Encyclopedia (https://portals.broadinstitute.org/ccle) 

were conducted as the heatmap displaying the elevated 

ANLN and HIST1H1C expression levels in several PC 

cells (Figure 4H and Supplementary Table 9). Next, 

we wanted to evaluate the protein expression levels of 

ANLN and HIST1H1C in PC patients. We analyzed 

the immunohistochemical data from the Human 

Protein Atlas (http://www.proteinatlas.org/) shown in 

Figure 4I, and found significantly elevated levels of 

ANLN and HIST1H1C in the tumor tissues. In 

addition, the pancancer analysis from GEPIA 2.0 

(http://gepia2.cancer-pku.cn/#index) showed that 

upregulated ANLN and HIST1H1C transcripts are 

frequently observed in multiple cancer types, including 

PC (Supplementary Figure 1). Taken together, ANLN 

and HIST1H1C play potential oncogenic roles in most 

types of human cancers. 

 

The risk stratification and ROC curve indicate the 

good performance of the two-gene based signature 

 

Using the TCGA dataset, we generated a predictive 

model based on the expression of two genes, which was 

characterized by the linear combination of the expression 

levels of the two genes weighted by their relative 

coefficient in the multivariate Cox regression. We 

subsequently calculated the two-gene expression risk 

score and used X-tile diagrams to produce the optimal 

cut-off value for the risk score. According to the risk 

score cut-off point, 42 patients were classified into the 

high-risk group, and the remaining 118 patients were 

assigned to the low-risk group. As is shown in Figure 5A 

and Supplementary Table 10, the Kaplan-meier (K-M) 

OS curves of the two groups based on the two genes were 

significantly different (median OS, 1.81 years vs 1.08 

years, P=0.00027). To assess the prognostic capacity of 

the two-gene signature, the area under curve (AUC) of a 

time-dependent ROC curve was calculated. The AUCs of 

the two-gene biomarker prognostic model were 0.781, 

0.673 and 0.646 for the 0.5-, 1- and 1.5-year survival 

times, respectively (Figure 5B). To further evaluate the 

generality of the two-gene biomarker prognostic model, 

we verified the model with the GEO dataset (GES28735), 

which contains both mRNA expression and clinical 

survival data from 45 PC patients. Using the same data 

management as in the TCGA, we also calculated the two-

gene risk score according to the expression levels in 

GES28735 and the coefficient of the multivariate Cox 

regression and found an optimal cut-off value for the risk 

score by means of the X-tile diagrams. A total of 42 PC 

patients in the GSE28735 dataset were classified into 

high-risk group (n=11) and low-risk group (n=31). 

Consistent with the results in the TCGA, and as is shown 

in Figure 5C and Supplementary Table 11, the K-M OS 

curves indicated that the OS of PC patients included in 

the GSE28735 data in the high-risk group was 

significantly lower than that in the low-risk group 

(median OS 0.58 years vs 2.08 years, P=0.0016). 

Moreover, the time-dependent ROC analyses for the 

survival prediction of the prognostic model obtained 

AUCs of 0.624 at 0.5 years, 0.692 at 1 year and 0.664 at 

1.5 years (Figure 5D). In addition, we further verified the 

risk model with the GEO dataset (GSE62452), which 

contains both mRNA expression and clinical survival 

data from 69 PC patients. A total of 66 PC patients in the 

GSE62452 dataset were classified into high-risk group 

(n=33) and low-risk group (n=33). Consistent with the 

results in the TCGA and GSE28735, and as is shown in 

Figure 5E and Supplementary Table 12, the K-M OS 

curves indicated that the OS of PC patients in the high-

risk group from GSE62452 was significantly lower than 

that in the low-risk group (median OS 1.26 years vs 2.09 

years, P=0.002). Moreover, the time-dependent ROC 

analyses for the survival prediction of the prognostic 

model obtained AUCs of 0.729 at 2 year and 0.824 at 3 

years (Figure 5F). Above all, we concluded that the two-

gene signatures were able to predict the prognosis in PC 

patients. 

 

Building and validating a predictive nomogram 
 

Univariate and multivariate Cox regression analyses 

were employed to detect the independent predictive 

ability of the two-gene-based prognostic model in the 

abovementioned TCGA PC cohort with detailed clinical 

information. Using the univariate Cox regression 

analysis, we found that the prognostic model and age 

had prognostic values, while the others variables did not 

significantly correlate with OS (Figure 6). Considering 

that the margin condition almost reached statistical 

significance (P=0.054) and might affect the prognosis of 

PC patients according to the clinical experience, we 

incorporated age, margin condition and prognostic 

model into the multivariate Cox regression analysis. As 

a result, both the age and prognostic model were 

independent prognostic factors, and the margin condition 

nearly reached statistical significance (Figure 6). 

https://portals.broadinstitute.org/ccle
http://www.proteinatlas.org/
http://gepia2.cancer-pku.cn/#index
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Figure 4. Screening of the two-gene-based signatures in PC patients. (A) After 3000 analyses, ANLN and HIST1H1C appeared more 
than 2500 times as the independent prognostic genes among 35 survival related genes. (B–D) The boxplot shows that ANLN were constantly 
high-expressed in GSE28735, GSE62452 and TCGA. (E–G) The boxplot shows that HIST1H1C were constantly high-expressed in GSE28735, 
GSE62452 and TCGA. (H) The heatmap of ANLN and HIST1H1C mRNA expression in PC cells from Cancer Cell Line Encyclopedia. (I) the Human 
Protein Atlas project shows representative immunohistochemical images of ANLN and HIST1H1C in PC tissues compared with surrounding 
normal tissues. 
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Figure 5. The K-M plot showed a lower overall survival in the high risk group compared to the low risk group divided by the 
optimal cut-off point. (A, B) K-M and time-dependent ROC curves for the prognostic model based on ANLN and HIST1H1C expression in 
the TCGA PC cohort. (C, D) K-M and time-dependent ROC curves for the prognostic model based on ANLN and HIST1H1C expression in the 
GSE28735. (E, F) K-M and time-dependent ROC curves for the prognostic model based on ANLN and HIST1H1C expression in the GSE62452. 
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To make the prognostic model clinical applicable, a 

nomogram was applied to predict the probability of the 

0.5-, 1-, and 1.5-year OS in the TCGA cohort. The 

predictive factors in the nomogram include age, margin 

condition and prognostic model. The C-index of the 

nomogram model was 0.664, which was higher than the 

others variables alone (Figure 7A and Supplementary 

Table 13). Moreover, calibration plots were also used to 

visualize the performance of the nomograms, with more 

overlap with the gray-line representing better 

performance (Figure 7B–7D). The AUCs of the 

different models were also calculated; the nomogram’s 

AUC was 0.826 at 0.5 years and 0.726 at 1 year, which 

was the largest compared to the other models (Figure 8). 

These findings demonstrated that the nomogram built 

with the combined model is the best nomogram to 

predict survival for patients with PC, when compared 

with nomograms built with a single prognostic factor, 

and demonstrated significance for facilitating patient 

counseling, decision-making and follow-up arranging. 

 

DISCUSSION 
 

Pancreatic cancer is one of the deadliest malignant 

tumors worldwide, with a gradually increasing morbidity 

each year. Despite the availability of improving surgical 

techniques, progress in PC treatment still remains slow, 

as the 5-year overall survival rate has only improved to 

9% in the period 2006 to 2012 in the US [4, 14, 15]. The 

reasons for this phenomenon could be various, though 

one specific reason might be critical, namely, the lack  

of a risk assessment system, which makes it difficult  

to make therapy decisions for an individual patient  

with PC. 

 

As is known to all, treatment for pancreatic cancer has 

experienced some changes from curative resection alone 

to surgical treatment with adjuvant chemotherapy, which 

has provided patients with many kinds of therapeutic 

regimens. In addition, owing to the enormous and high-

quality clinical trials focused on adjuvant chemotherapy 

regimens after surgery, combination chemotherapy has 

been found to lead to longer survival in select PC 

patients [16]. However, the greater concomitant toxicity 

of combination chemotherapy has aroused a new debate: 

should combination chemotherapy be the first-line 

chemotherapy for all PC patients, especially when the 

patients are of a low recurrence risk? Moreover, the 

course of adjuvant chemotherapy and the frequency of 

reexamination after discharge also remain controversial 

 

 
 

Figure 6. Univariate and multivariate analysis of the risk score and clinicopathological characteristics with OS. The residual 
(R0/non-R0) and risks core indicated the margin condition and prognostic model, respectively. 
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[17, 18]. It would be much better if there were an 

accurate and clinical applicable criterion to assess the 

possibility of recurrence in PC patients. It is important to 

note that resectability status alone is not a reliable 

prognostic factor in PC; even in potential curative 

resection patients, median survival outcomes were 

similar to nonradical resection patients [19]. Except for 

anatomical considerations, CA 19-9 levels are the most 

commonly used antigen in the clinic to assess the 

resectability and prognosis of PC patients [20]. 

However, CA 19-9 is also elevated in other benign 

conditions and multiple cancer types with limited 

sensitivity [21]. Several studies have recently 

characterized whole-genome changes occurring in PC by 

analyzing the mutational landscape of these deadly 

diseases [21]. Owing to these findings, the discovery of 

gene signatures to assess PC patient prognosis is of 

practicable and great value. 

 

Recently, using the overlapping analysis, Yan et al. [22] 

identified four survival-related genes (LYRM1, KNTC1, 

IGF2BP2 and CDC6) in four public PC datasets. And 

the predictive nomogram based these four survival-

related genes shows robust performance in predicting 

PC prognosis. However, the disturbances arising from 

outliers do not fit well in their framework. Therefore, 

more reliable predictive model needs to be built and 

optimized. In our study, we selected genes that were 

 

 
 

Figure 7. Building and validating a predictive nomogram. (A) A nomogram to predict survival probability at 6, 12 and 15 months after 
surgery. (B) Calibration curve for the nomogram when predicting 6 months of overall survival. (C) Calibration curve for the nomogram when 
predicting 12 months of overall survival. (D) Calibration curve for the nomogram when predicting 15 months of overall survival. 
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significantly highly/lowly expressed in all three 

datasets. Among the 35 survival-related genes, aside 

from the two genes that have not been reported to have 

a relationship with tumor progression or prognosis in 

any cancer types, 16 (45.7%) genes have been reported 

to be related to tumor progression and prognosis. 

Moreover, 11 (31.4%) genes have been reported to be 

related with the occurrence and outcome of PC, which 

demonstrated the correctness and repeatability of our 

data mining methods and results. To further minimize 

the scope of the survival-related genes, we applied 

multivariate Cox regression complex with a Lasso 

regression. To reduce the overfitting and avoid 

disturbances arising from outliers, we also used a 10-

fold cross validation and performed the whole analytical 

process 3000 times. We selected the most frequent 

genes (ANLN and HIST1H1C) to construct the 

predicting model, which is different from the model 

conducted by Yan’s group [22]. Then, we proved that 

the prognostic signature performed well for the 

discrimination of the high and low risk groups using 

both the TCGA PC datasets and GEO datasets. At the 

same time, the AUCs of the two-gene biomarker 

prognostic model were plotted, which demonstrated the 

acceptable predictive value of the two genes. Consistent 

with previous studies, the AJCC staging system allowed 

the prediction of clinical outcomes for PC patients. In 

spite of the anatomical extent of the cancer, which was 

assessed using a staging system, biological 

heterogeneity might play a critical role in pancreatic 

carcinoma. Compared with a single factor, our 

nomogram is more powerful for prediction and may 

became a reference item in the clinic in the future. 

 
ANLN, an actin-binding protein, is essential for 

assembly of the cleavage furrow during the late stages 

of mitosis and acts as the central organizer at the 

cytokinetic machinery hub [23]. Owing to its critical 

role, studies have observed overexpressed ANLN in 

several types of cancers [24–26], and it has also been 

proven to be correlated with poor prognoses in breast 

cancer, lung cancer and hepatocellular carcinoma [27–

29]. However, the role of ANLN in PC remains unclear. 

To the best of our knowledge, our study was the first to 

validate that high-expressed ANLN is associated with 

low overall survival by means of bioinformatic analysis. 

The pathogenesis of ANLN in tumor progression might 

act as a cell cycle regulator, enabling the promotion of 

tumor growth by decreasing apoptosis and DNA 

damage, though the detailed mechanisms require further 

investigation [30]. HIST1H1C, another PC molecular 

marker, is a basic nuclear protein responsible for 

interaction with the linker DNA between nucleosomes 

and functions to compact chromatin into higher order 

structures. Until now, however, only one study has 

reported HIST1H1C as a hub gene among the DEGs in 

nonfunctional pituitary adenomas, and one study 

illustrated that HIST1H1C is involved with tumor 

growth in pancreatic cancer [31]. There are few studies 

focused on HIST1H1C, which makes the significance of 

this gene in PC uncertain and worthy of future 

investigations. 

 

 
 

Figure 8. The time-dependent ROC curves of the nomogram and single variables in the model predicting the overall survival after surgery at 
0.5 years (A) and 1 year (B). 



 

www.aging-us.com 18332 AGING 

Nevertheless, there are some limitations of our study. 

First, considering the poor prognosis of pancreatic 

carcinomas, there were not enough patients with an OS 

over 3 years, meaning that this approach could be 

inaccurate if we are going to predict the more long-

term outcomes from patients with PC. Second, due to 

the lack of particular clinical data in GSE28735 and 

GSE62452, we were unable to perform external 

validation of our nomogram in those GES databases, 

which means the nomogram should be further 

validated using multicenter clinical trials and 

prospective studies. 

 

In conclusion, two genes have been identified as having 

a prognostic significance in pancreatic carcinoma using 

a relatively rigid regression model method. For the first 

time, we report that ANLN and HIST1H1C are related to 

the clinical outcome of PC patients. We also 

constructed a nomogram comprising the prognostic 

models to assist clinicians treating patients with PC in a 

personalized way. 

 

MATERIALS AND METHODS 
 

Patients and samples 
 

The mRNA expression and corresponding clinical data 

of PC patients were obtained from the TCGA dataset 

that contained 178 PC tissues and 4 adjacent 

noncancerous pancreatic tissues, which is in 

accordance with the report from Lu’s group [32]. This 

TCGA dataset was downloaded from Genomic Data 

Commons Data Portal (https://portal.gdc.cancer.gov/) 

at January 2019. The processed mRNA expression 

data of patients with pancreatic ductal adenocarcinoma 

were downloaded from two GEO datasets (GSE28735 

and GSE62452) [33, 34] that contained the microarray 

gene-expression profiles of 69 pancreatic tumors  

and 61 adjacent nontumor tissues as well as the 

microarray gene-expression profiles of 45 matching 

pairs of pancreatic tumors and adjacent nontumor 

tissues from 45 separate patients. We screened 

potential GEO datasets according to the following 

inclusion criteria: 1) PC samples and nonmalignant 

adjacent tissues, 2) studies with more than 45 PC 

samples or adjacent noncancerous tissues, 2) 

expression profiling by array, and 3) all samples from 

Homo sapiens. As afore mentioned [10], the datasets 

with samples from other organisms or cell lines, those 

that performed the expression profiling by high-

throughput sequencing, those with non-coding RNA 

profiling by high-throughput sequencing, those with 

genome variation profiling by genome tiling array, and 

those with methylation profiling by array or single 

nucleotide polymorphism genotyping by array were 

excluded. 

RNA-seq data quantification and analysis 
 

Initially, the raw PC mRNA expression profile  

counts were downloaded from the TCGA database 

(https://portal.gdc.cancer.gov/), GSE28735 and 

GSE62452 (https://www.ncbi.nlm.nih.gov/gds). 

Second, we calculated the DEGs from the TCGA data 

by means of the limma package and from the GEO data 

by means of the “edgeR” package. The DEGs from the 

datasets with a P<0.01 were selected and a Venn 

diagram was plotted. Only the DEGs in all three 

datasets were considered for subsequent analysis. 

 

Functional enrichment analysis 
 

The Gene Ontology (GO) and Kyoto Encyclopedia of 

Genes and Genomes (KEGG) pathway enrichment 

analysis of the common DEGs in the three datasets were 

performed using the R package “clusterProfiler” for 

Annotation and Visualization. 

 

Constructing the gene-related prognostic model 

 

We initially employed a univariate COX regression 

analysis of the TCGA datasets to investigate the 

correlation between patient OS and the expression 

levels of each gene, which was considered to be 

significant when the P<0.05. We then used the R 

package “glmnet” to perform the Lasso-penalized Cox 

regression along with a 10-fold cross-validation to 

further screen significant genes with prognosis [35, 36]. 

During the Lasso-penalized Cox regression selection, 

we randomly subsampled 70% of TCGA patients with 

3000 replacements and selected the genes with repeat 

occurrence frequencies greater than 2500 times. We 

adopted the largest lambda value such that the error was 

within one standard error of the minimum, which was 

called “1-se” lambda [37]. Subsequently, a multivariate 

Cox regression analysis with a stepwise method was 

performed to assess the contribution of a gene as an 

independent prognosis factor for patient survival and to 

further select the best model. The robustness of all the 

above-mentioned models was validated by bootstrap 

procedures [38]. Finally, the risk score (RS) of  

the mRNA signature was calculated according to the 

following formula: 
1

RiskSor ,(e )i i

n

i
coef Expr


  

where Expr was the mRNA expression and coef is the 

mRNA Lasso coefficient. The optimal cut-off value of 

RS was determined by X-tile plots version 3.6.1 (Yale 

University School of Medicine, New Haven, CT, USA) 

[39]. Based on the cut-off value of RS, patients were 

classified into the low-risk group and high-risk  

group, and the K-M curves for the different groups  

were plotted. Time-dependent receiver operating 

characteristic (ROC) curve analysis was performed to 

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/gds
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evaluate the predictive value of the prediction model. 

Furthermore, the prognostic gene signature was also 

validated using the GEO dataset (GSE28735). 

 

Independence of the prognostic gene signature from 

other clinical characteristics 

 

To prove the independent predictive power of the 

prognostic gene signature when other clinical variables 

(such as age, sex, histologic grade, AJCC stage, tumor 

size and tumor residual) were present in patients with 

PC, univariate and multivariate Cox regression analyses 

were performed with the clinical characteristics and 

gene prognostic model set as independent variables and 

the OS set as the dependent variable. The robustness of 

all the above-mentioned models was also validated by 

bootstrap procedures [38]. All reported P values were 

two-sided. The hazard ratio (HR) and 95% confidence 

intervals (CI) were calculated. 

 

Building and validating a predictive nomogram 
 

To improve the generalization ability and applicability 

of the model, we combined clinical variables with 

prognostic power with the gene signature model, and 

we applied the nomogram for the prediction of PC 

patient prognosis. In this study, the combined model 

based on all independent prognostic factors selected by 

the multivariable Cox regression analysis was used to 

construct a nomogram to assess the probability of the 

0.5-, 1-, and 1.5-year OS for patients with PC. 

Subsequently, the C-index was calculated using R with 

the “survival” package. Then, to prove that the 

combined model has an advantage over other single 

variables, time-dependent ROC curves were obtained 

using the R package “pROC” [40]. 

 

Statistical analyses 

 

The levels of ANLN and HIST1H1C that were 

differentially expressed between cancerous and adjacent 

noncancerous pancreatic tissues were estimated using 

Student’s t-test with SPSS 12.0 software. In addition, 

the significantly annotated KEGG and GO were 

calculated in clusterProfiler, and false discovery rate 

was analyzed using Benjamini correction. Significance 

of survival analysis was performed by K-M curve with 

log-rank test. A P value less than 0.05 is considered 

statistically significant. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figure 
 

 
 

Supplementary Figure 1. The pancancer analysis of ANLN and HIST1H1C expression across multiple cancer types in GEPIA 2.0 
database. Red tumor abbreviations indicated significant upregulation of ANLN and HIST1H1C in cancers, while green tumor abbreviations 
indicated significant downregulation of ANLN and HIST1H1C. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1, 2, 3, 4, 6, 7, 8, 10. 

 

Supplementary Table 5. 3000 times lasso cox regression genes. 

 Gene Times 

1 ECT2 316 

2 ANLN 2640 

3 HIST1H2BD 0 

4 NEK2 0 

5 HIST1H2AC 326 

6 CD36 1692 

7 HIST1H2BJ 0 

8 ZMAT1 0 

9 CHEK1 0 

10 KIF4A 0 

11 CDC6 0 

12 BCL11A 0 

13 HIST1H2BC 0 

14 CLK4 0 

15 HIST1H1C 2543 

16 HIST1H2BK 0 

17 PLCG2 312 

18 MAP3K14 1 

19 GSDMC 0 

20 SCML4 0 

21 ZBTB32 0 

22 HRASLS2 0 

23 HIST1H4I 0 

24 GDPD5 30 

25 GYPC 0 

26 RNF166 0 

27 CCM2L 0 

28 LIMD2 948 

29 OXER1 0 

30 IL16 1673 

31 PSTPIP1 0 

32 AGER 0 

33 VENTX 0 

34 GH1 0 

35 BTNL9 0 
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Supplementary Table 9. The expression of  ANLN and HIST1H1C in PC cells  
from Cancer Cell Line Encyclopedia (CCLE). 

Gene ANLN HIST1H1C 

SNU410_PANCREAS 7.595567 5.063576 

PANC0403_PANCREAS 7.45979 3.238598 

PANC1_PANCREAS 7.032564 4.064839 

PK45H_PANCREAS 6.952955 5.389367 

SW1990_PANCREAS 6.893646 4.444045 

PATU8902_PANCREAS 6.839072 3.806673 

SNU213_PANCREAS 6.79091 3.951536 

KP2_PANCREAS 6.65843 5.718855 

HS766T_PANCREAS 6.294668 6.366739 

PANC0203_PANCREAS 6.291476 4.468557 

PANC1005_PANCREAS 6.249681 5.16116 

PATU8988T_PANCREAS 6.243406 4.120279 

T3M4_PANCREAS 6.232112 6.643391 

KP3_PANCREAS 6.17958 4.369459 

PK1_PANCREAS 6.102597 3.550379 

PANC0327_PANCREAS 6.077964 6.297954 

YAPC_PANCREAS 6.05971 3.701167 

HUPT3_PANCREAS 6.056466 6.20422 

KP4_PANCREAS 5.910993 6.217787 

PANC0504_PANCREAS 5.89602 4.113109 

SUIT2_PANCREAS 5.895513 3.811658 

TCCPAN2_PANCREAS 5.875302 6.281926 

PANC0213_PANCREAS 5.815443 4.933527 

CAPAN2_PANCREAS 5.763245 3.244718 

MIAPACA2_PANCREAS 5.712785 5.638969 

PANC0813_PANCREAS 5.665741 4.26619 

SNU324_PANCREAS 5.623243 4.435857 

PK59_PANCREAS 5.584925 4.309652 

CAPAN1_PANCREAS 5.458695 6.691079 

BXPC3_PANCREAS 5.431424 5.106647 

CFPAC1_PANCREAS 5.410521 6.612041 

HPAFII_PANCREAS 5.405624 4.803013 

L33_PANCREAS 5.322749 4.259711 

HPAC_PANCREAS 5.19894 3.818123 

HUPT4_PANCREAS 5.196609 3.970606 

DANG_PANCREAS 5.165471 3.057551 

PATU8988S_PANCREAS 5.028114 4.90915 

PSN1_PANCREAS 4.380796 3.110652 

ASPC1_PANCREAS 4.184791 3.775559 

SU8686_PANCREAS 3.933033 2.336863 

QGP1_PANCREAS 3.925441 4.861757 
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Supplementary Table 11. The two-gene expression risk stratification in GSE28735. 

 ID HIST1H1C ANLN Surtime Surstat Riskscore Groupby 

1 GSM711904 4.59351 3.478818 4.25 1 0.401283 Low risk 

2 GSM711906 5.383048 6.50617 0.58 1 1.851105 High risk 

3 GSM711908 4.642691 6.541408 0.25 1 3.62942 High risk 

4 GSM711910 3.707255 2.865696 3.5 1 0.555705 Low risk 

5 GSM711914 4.629382 5.674897 3 1 1.945416 High risk 

6 GSM711916 4.828843 4.864498 0.17 1 0.902076 Low risk 

7 GSM711922 4.808846 4.835817 1.58 1 0.89889 Low risk 

8 GSM711924 4.515929 5.470503 1.08 1 1.849385 High risk 

9 GSM711926 4.718713 4.651367 1.33 1 0.849599 Low risk 

10 GSM711928 4.044202 4.589405 3.42 1 1.464419 Low risk 

11 GSM711930 4.380305 5.038249 0.25 1 1.516759 High risk 

12 GSM711932 4.133895 6.320266 1 1 4.815825 High risk 

13 GSM711934 4.482482 4.605157 2.08 1 1.009769 Low risk 

14 GSM711936 4.709863 2.9729 3.17 0 0.250142 Low risk 

15 GSM711938 4.472675 2.621358 0.08 0 0.237873 Low risk 

16 GSM711940 5.041278 5.580661 1.08 1 1.266404 Low risk 

17 GSM711942 4.77368 5.394913 1.92 1 1.396585 Low risk 

18 GSM711944 4.523715 5.181269 0.92 1 1.485881 Low risk 

19 GSM711946 3.95196 3.259936 2.42 1 0.598995 Low risk 

20 GSM711948 4.34825 3.772391 2.33 1 0.616691 Low risk 

21 GSM711950 4.441237 3.769534 2.33 0 0.567338 Low risk 

22 GSM711952 5.284748 5.607847 1.17 1 1.044138 Low risk 

23 GSM711954 4.415777 5.321105 0.58 1 1.809254 High risk 

24 GSM711956 5.069863 4.410287 2.33 0 0.523712 Low risk 

25 GSM711958 5.338916 5.728907 2 0 1.088248 Low risk 

26 GSM711960 4.75965 4.458094 2 0 0.71143 Low risk 

27 GSM711962 4.692492 6.405433 0.67 1 3.145077 High risk 

28 GSM711964 4.87009 5.140327 1.83 0 1.065114 Low risk 

29 GSM711966 5.500636 5.748288 1.75 0 0.958246 Low risk 

30 GSM711968 4.71547 5.310038 1.75 0 1.380871 Low risk 

31 GSM711970 5.056518 4.657617 0.75 1 0.635193 Low risk 

32 GSM711972 5.393925 6.276303 1.42 0 1.549226 High risk 

33 GSM711974 4.565349 5.451879 0.5 1 1.747143 High risk 

34 GSM711976 4.734871 4.955239 1.33 0 1.046703 Low risk 

35 GSM711978 4.637025 4.249571 0.42 1 0.679697 Low risk 

36 GSM711980 4.19272 4.349029 0.92 0 1.07827 Low risk 

37 GSM711982 4.914539 6.970197 0.33 1 3.918385 High risk 

38 GSM711984 4.047127 2.808281 0.83 1 0.395805 Low risk 

39 GSM711986 5.846707 5.333412 0.83 0 0.522338 Low risk 

40 GSM711988 4.780226 4.680945 1.25 1 0.82275 Low risk 

41 GSM711990 4.518276 3.429367 0.42 1 0.413314 Low risk 

42 GSM711992 4.661236 4.14586 1.08 1 0.616738 Low risk 

 

  



 

www.aging-us.com 18341 AGING 

Supplementary Table 12. The two-gene expression risk stratification in GSE62452. 

 Sample Fultime Fustate Type Express_ANLN Express_HIST1HIC Riskscore Groupby 

1 GSM1527105 4.258333 1 Tumor 3.28581 4.15587 0.69245 Low risk 

2 GSM1527107 0.575 1 Tumor 6.37726 4.98483 3.641451 High risk 

3 GSM1527109 0.225 1 Tumor 6.27981 4.12032 1.334185 High risk 

4 GSM1527111 3.466667 1 Tumor 2.72845 3.3195 0.235374 Low risk 

5 GSM1527115 2.991667 1 Tumor 5.47523 4.14786 1.141673 High risk 

6 GSM1527117 0.2 1 Tumor 4.65815 4.3633 1.20571 High risk 

7 GSM1527123 1.625 1 Tumor 4.63507 4.33638 1.163162 High risk 

8 GSM1527125 1.05 1 Tumor 5.27076 4.1233 1.058728 High risk 

9 GSM1527127 1.333333 1 Tumor 4.42231 4.23132 0.982557 High risk 

10 GSM1527129 3.408333 1 Tumor 4.39364 3.68734 0.526347 Low risk 

11 GSM1527131 0.233333 1 Tumor 4.76962 3.9566 0.779813 Low risk 

12 GSM1527133 0.966667 1 Tumor 6.14909 3.71616 0.818008 Low risk 

13 GSM1527135 2.058333 1 Tumor 4.45058 4.10903 0.860839 Low risk 

14 GSM1527137 3.333333 0 Tumor 2.82307 4.17296 0.633992 Low risk 

15 GSM1527139 0.1 1 Tumor 2.48363 3.94183 0.450665 Low risk 

16 GSM1527141 1.1 1 Tumor 5.38821 4.62335 1.919456 High risk 

17 GSM1527143 1.933333 1 Tumor 5.20154 4.40832 1.439838 High risk 

18 GSM1527145 0.9 1 Tumor 5.02687 4.06697 0.93839 Low risk 

19 GSM1527147 2.416667 1 Tumor 3.0661 3.52321 0.32084 Low risk 

20 GSM1527149 2.308333 1 Tumor 3.55992 3.9235 0.566902 Low risk 

21 GSM1527151 2.3 0 Tumor 3.56466 3.98591 0.609194 Low risk 

22 GSM1527154 1.15 1 Normal 2.30865 3.24949 0.197173 Low risk 

23 GSM1527155 0.566667 1 Tumor 5.07569 4.01034 0.890008 Low risk 

24 GSM1527157 2.35 0 Tumor 4.21571 4.71055 1.613475 High risk 

25 GSM1527159 0.816667 1 Tumor 5.63999 4.9959 3.106545 High risk 

26 GSM1527161 1.966667 0 Tumor 4.26289 4.30718 1.03195 High risk 

27 GSM1527163 0.641667 1 Tumor 6.21958 4.25898 1.539909 High risk 

28 GSM1527165 1.816667 0 Tumor 4.95109 4.51506 1.533367 High risk 

29 GSM1527167 1.766667 0 Tumor 5.56318 5.1566 3.662255 High risk 

30 GSM1527169 1.758333 0 Tumor 5.08181 4.21906 1.129573 High risk 

31 GSM1527171 0.741667 1 Tumor 4.47359 4.67485 1.645144 High risk 

32 GSM1527173 1.441667 0 Tumor 6.17811 5.04493 3.722144 High risk 

33 GSM1527175 0.533333 1 Tumor 5.21309 4.07266 0.986266 High risk 

34 GSM1527177 1.366667 0 Tumor 4.75762 4.28066 1.123428 High risk 

35 GSM1527179 0.383333 1 Tumor 4.04649 4.23222 0.901257 Low risk 

36 GSM1527181 0.883333 0 Tumor 4.1425 3.71913 0.514734 Low risk 

37 GSM1527183 0.35 1 Tumor 6.79223 4.4891 2.284431 High risk 

38 GSM1527185 0.858333 1 Tumor 2.80611 3.64402 0.346414 Low risk 

39 GSM1527187 0.808333 0 Tumor 5.15503 5.44705 4.631561 High risk 

40 GSM1527189 1.241667 1 Tumor 4.50642 4.38521 1.193225 High risk 

41 GSM1527191 0.375 1 Tumor 3.26562 4.09829 0.645597 Low risk 

42 GSM1527193 1.075 1 Tumor 3.95943 4.3022 0.956221 Low risk 

43 GSM1527196 0.791667 1 Tumor 4.54332 3.84922 0.654933 Low risk 

44 GSM1527198 0.525 1 Tumor 5.90911 4.32916 1.551464 High risk 

45 GSM1527199 0.075 1 Tumor 4.35018 4.08732 0.820502 Low risk 

46 GSM1527200 0.491667 1 Tumor 3.4362 3.42219 0.311788 Low risk 

47 GSM1527202 0.816667 1 Tumor 4.83738 4.44265 1.375509 High risk 

48 GSM1527204 0.441667 1 Tumor 6.22746 4.1379 1.344611 High risk 
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49 GSM1527205 1.791667 1 Tumor 3.64831 4.32354 0.911297 Low risk 

50 GSM1527207 1.183333 1 Tumor 6.01381 4.34821 1.624452 High risk 

51 GSM1527209 2.666667 1 Tumor 5.50742 4.31662 1.393137 High risk 

52 GSM1527210 1.908333 1 Tumor 5.93411 5.57191 6.39679 High risk 

53 GSM1527212 3.825 1 Tumor 3.47327 3.88402 0.531243 Low risk 

54 GSM1527213 1.825 1 Tumor 5.24938 3.28717 0.407756 Low risk 

55 GSM1527215 3.5 0 Tumor 3.08215 3.39736 0.279167 Low risk 

56 GSM1527216 3.191667 0 Tumor 3.19303 3.81927 0.462455 Low risk 

57 GSM1527218 1.141667 1 Tumor 7.66299 4.93645 4.647977 High risk 

58 GSM1527219 0.908333 1 Tumor 5.13991 4.24769 1.18276 High risk 

59 GSM1527220 1.775 1 Tumor 6.3008 4.59253 2.291621 High risk 

60 GSM1527223 0.775 1 Tumor 3.63132 3.69955 0.447 Low risk 

61 GSM1527225 1.658333 1 Tumor 3.98875 4.95504 2.020132 High risk 

62 GSM1527227 5.9 0 Tumor 3.59565 3.98568 0.61344 Low risk 

63 GSM1527228 5.666667 0 Tumor 3.56692 4.14986 0.734199 Low risk 

64 GSM1527230 5.641667 0 Tumor 3.65724 4.28682 0.875908 Low risk 

65 GSM1527232 4.141667 1 Tumor 3.11183 4.27017 0.75713 Low risk 

66 GSM1527234 0.266667 1 Tumor 3.60256 4.10509 0.703624 Low risk 

 

Supplementary Table 13. The C-index of nomogram model. 

Univariate analysis      

Age(36-84) 1.00 1.05 0.018 1.03 1.03(1.00,1.05) 

Sex(Male/Female) 0.56 1.42 0.628 0.99 0.99(0.56,1.42) 

Grade(G1-2/G3-4) 0.60 1.59 0.929 1.10 1.10(0.60,1.59) 

Stage(III-IV/I-II) 0.17 2.07 0.417 1.12 1.12(0.17,2.07) 

Size(1.8-12) 0.92 1.34 0.259 1.13 1.13(0.92,1.34) 

Residual(R0/non-R0) 0.39 1.01 0.054 0.70 0.70(0.39,1.01) 

Prognostic model() 1.43 2.16 0.000 1.80 1.80(1.43,2.16) 

Multivariate analysis  0.000    

Age 1.00 1.05 0.021 1.03 1.03(1.00,1.05) 

Residual 0.40 1.03 0.067 0.72 0.72(0.40,1.03) 

Riskscore 1.48 2.21 0.000 1.85 1.85(1.48,2.21) 

 

Items C-index 

Age 0.55 

Residual 0.577 

riskscore 0.647 

nomogram model 0.664 

ANLN 0.633 

HIST1H1C 0.553 

 


