

Introduction

Nature and computers are words that used to mean unrelated
things. However, this view changed, starting in the 1940s, when a
revolutionary scientific paradigm, systemics based on platonic
idealistic philosophy, gained popularity [1] [2] [3].

The roots of philosophical idealism based systemics goes back to
Plato. A centerpiece of Plato’s (428/7 to 348/7 BC) work is his
theory of forms, also called theory of ideas [2]. Forms are archetypes,
blueprints, the essences of the various phenomena of the same thing.
The superior world consists, due to Plato, of mathematical objects,
terms and non-materialistic abstract ideas. Moreover, Plato introduced
in his dialogue Philebus a concept called System [4]. A system is
according to Plato a model for thinking about how complex structures
are developed. Another idealistic philosopher, Kant, introduced, in
1790, in his Critique of Judgment the concept of self-organizing [5].
Idealistic concepts based systemics have become important in
contemporary science in order to understand complexity and big data
problems. Between the 1950s and 60s three groundbreaking works
were published: 1948, Norbert Wiener publishes “Cybernetics or
Control and communication in the animal and machine” [1]. In 1955
William Ross Ashby’s “Introduction to cybernetics” came out [6].
1968, Ludwig Bertalanffy published “General System theory:
Foundations, Development, Applications” [7]. Bertalanaffy defined
the concept of systems. Cybernetics explains complex systems that
exist of a large number of interacting and interrelated parts. Wiener
and Ashby pioneered the use of mathematics to study systems. This
systems theory was further developed in the following years.
Important contributions to the field are by Heinz Foerster, whose
work focused on cybernetics, the exploration of regulatory systems,
and who founded in 1958 the Biological Computer Lab (BCL) at the
Department of Electrical Engineering at the University of Illinois [8].
The work of the BCL was focused on the similarities in cybernetic
systems and electronics and especially biology inspired computing [9].

Other important contributions to systemics are by the Nobel-prize
winning work of Ilya Prigogine on self-organization and his systems
theory concepts in thermodynamics [10]. Furthermore: Mitchell
Feigenbaums work on Chaos theory [11]. Contemporary application
finds systems theory in bioscience in fields such as systems biology,
and its practical application synthetic biology [12]. The term systems
biology was created by Bertalanffy in 1928 [13]. Systems biology
focuses on complex interactions in biological systems by applying a
holistic perspective [12].

Altogether, this kind of thinking has led to the identification of
ideas behind data processing in nature, but also in machines, such as
silicon computers.

Natural Computing

This idea based thinking led to three distinct, but inter-related

approaches, termed natural computing: computing inspired by nature,
computer models of nature, and computing with natural materials
[14] (Figure 1).

Focusing on information flow can help us to understand better
how cells and organisms work [15]. Data processing can be found in
nature all down to the atomic and molecular level. Examples are DNA
information storage, and the histone code [16]. Moreover, cells have
the potential to compute, both intra cellular (e.g. transcription
networks) and during cell to cell communication [17]. Higher order
cell systems such as the immune and the endocrine system, the
homeostasis system, and the nerve system can be described as
computational systems. The most powerful biological computer we
know is the human brain [18].

General systems theory is an important fundament for computer
science [1]. Interesting work has be done, as discussed above, by the
Biological Computer Laboratory led by Heinz Foerster [8] [9].

In practical terms, nature inspired to programming paradigms
such as cellular automata, artificial neural networks, evolutionary
algorithms, evolutionary biology, genetic programming, swarm

CSBJ

Abstract: Systemics, a revolutionary paradigm shift in scientific thinking, with applications in systems biology, and synthetic
biology, have led to the idea of using silicon computers and their engineering principles as a blueprint for the engineering of a
similar machine made from biological parts. Here we describe these building blocks and how they can be assembled to a general
purpose computer system, a biological microprocessor. Such a system consists of biological parts building an input / output
device, an arithmetic logic unit, a control unit, memory, and wires (busses) to interconnect these components. A biocomputer can
be used to monitor and control a biological system.

The biological microprocessor, or how to build a computer with

biological parts

Gerd HG Moe-Behrens a,*

Volume No: 7, Issue: 8, April 2013, e201304003, http://dx.doi.org/10.5936/csbj.201304003

aLeukippos Institute, Berlin, Germany

* Corresponding author.

E-mail address: leukipposinstitute@googlemail.com

1

intelligence, artificial immune systems, membrane computing and
amorphous computing [14] [19]. The common aim of all these
concepts is solving complex problems.

The aim of the simulation and emulation of nature in computers
is to test biological theories, and provide models that can be used to
facilitate biological discovery. Moreover, these models can potentially
be used for computer aided design of artificial biological systems.

Systems biology provides theoretical tools to model complex
interactions in biological systems [12]. Design principles of biological
circuits have been translated into mathematical models. These design
models find their practical application in synthetic biology in general,
and cellular computer especially. The different areas of natural
computing clearly influence each other.

A breakthrough in the modeling and synthesis of natural patterns
and structures was the recognition that nature is fractal [14]. A fractal
is a group of shapes that describes irregular and fragmented patterns
in nature, different from Euclidean geometric forms [20].

Other mathematical systems, as cellular automata, are both
inspired by nature and can be used to modulate nature in silico, as
some biological processes occur, or can be simulated, by them such as
shell growth and patterns, neurons and fibroblast interaction [21]
[22].

Another computational model of nature is the Lindenmayer-
system (or L-system), which is used to model the growth process of
plant development [23]. A major step towards the creation of
artificial life was recently achieved by Karr et al [24]. This group
reports a whole-cell computational model of the life cycle of the
human pathogen Mycoplasma genitalium that includes all of its
molecular components and their interactions. This model provides
new insight into the in vivo rates of protein-DNA association and an
inverse relationship between the durations of DNA replication
initiation and replication. Moreover, model predictions led to

experiments which identified previously undetected kinetic parameters
and biological functions.

Engineering ideas behind silicon computers can be applied to
engineering with natural materials in order to gain control over
biological systems. This concept started to emerge in the 1960s when
Sugita published ground breaking theoretical work where he
performed a functional analysis of chemical systems in vivo using a
logical circuit equivalent [25] [26]. He discussed the idea of a
molecular automaton, the molecular biological interpretation of the
self-reproducing automata theory, and the chemico-physical
interpretation of information in biological systems [27] [28]. Sugita
made analogies between an enzymatic cascade and logic, values and
concentrations, and interactions and circuit wires.

The emerging field of synthetic biology has contributed with
novel engineering concepts for biological systems [29] [30]. The
development of standardized biological parts has been a major task in
synthetic biology, which led among other things to the open MIT
Registry of Standard Biological Parts, and the BIOFAB DNA tool kit
[30] [31] [32]. Another engineering principle, abstraction hierarchy,
deals with the question of how standardized parts build a complex
system. Systems (systemics) are another important engineering
paradigm dealing with complexity [9] [33]. A system is a set of
interacting or independent components forming an integrated whole.
Common characteristics of a system are: components, behaviors and
interconnectivity. Systems have a structure defined by components.
Systems behavior involves input, processing and output of data.
Behavior can be described with terms such as self-organizing, dynamic,
static, chaotic, strange attractor, adaptive. Systems have
interconnectivity. This means that the parts of the system have
functional as well as structural relationships between each other. This
kind of thinking represents a move form molecular to modular
biology [34]. The challenge is to define the hierarchical abstraction for
such a modular system for biocomputers, and finally actually build
such a system.

A breakthrough paper was published in 1994 by Leonard
Adleman [35]. For the first time a biocomputer, based on DNA, was
built. This system was able to solve a complex, combinatorial
mathematical problem, the directed Hamiltonian path problem. This
problem is in principle similar to the following: Imagine you wish to
visit 7 cities connected by a set of roads. How can you do this by
stopping in each city only once? The solution of this problem, a
directed graph was encoded in molecules of DNA. Standard protocols
and enzymes were used to perform the "operations" of the
computation. Other papers using DNA computing for solving
mathematical problems followed [36]. Adelman’s paper basically kick
started the field of biological computers (reviewed in [17] [18] [37]
[38] [39]).

Biological parts as system components for biocomputers

A system consists of defined components. In order to build a

biocomputer system, we need to identify these components and
standardize them. Although important work is done in synthetic
biology in respect to part standardization in general, for biocomputer
parts this work is so far rudimentary. Thus, we will try in the
following to identify and classify them. Such standardized biological
parts suitable for computing can be found all along the line of the
central dogma of biology: DNA, RNA, protein, and cells (Table 1 to
4).

Figure 1. Natural computing: A platonic idea is an archetype, a blueprint,
the essence of various phenomena of the same thing. Systemics and
systems biology are such ideas, describing data processing systems in
nature in terms of mathematics and formal logic. Systemic ideas have
been used as a blueprint for silicon computing. Ideas derived from the
observation of nature have also inspired computer models of nature.
Engineering ideas behind silicon computer (such as standardized parts,
switches, logic gates, input /output device, arithmetic logic unit, control
unit, memory, and busses) have been used by synthetic biologists to build
computers with biological parts, with the ultimate goal to control data
processing in nature.

The biological microprocessor

2

Volume No: 7, Issue: 8, April 2013, e201304003 Computational and Structural Biotechnology Journal | www.csbj.org

The natural function of DNA is to store hereditary information
and regulate the expression of this information [40]. Following the
Adelman paper a wide range of DNA properties suitable for
computing were explored. DNA may serve either as a principal
structural component, or as a mediator that arranges tethered ligands
or particles [40].

Structural properties of the DNA as the order of nucleotides,
recombinational behaviors, self-assembly due to Watson-Crick base
paring and storage of free energy have been used for different aspects
of computational systems (see Table 1).

Nucleotide sequence: The order of nucleotides within a DNA
molecule can be used to store information [41] [42] [43] [44] [45].

DNA recombination: Recombinational DNA behavior, allowed by
specified classes of enzymatic activities, has been described in terms
of the formal language theory, a branch of theoretical computer
science [46]. The associated language consists of strings of symbols
that represent the primary structures of the DNA molecules that may
potentially arise from the original set of DNA molecules under the
given enzymatic activities. Moreover, DNA recombination has been
used to [47] solve a mathematical problem: sorting a stack of distinct
objects (genetic elements) into proper order and orientation (site-
specific DNA recombination) using the minimum number of
manipulations [47].

Self-assembly: DNA can self-assemble through Watson-Crick base
pairing to produce an arrangement of tiles (shapes) that covers the
plane [48]. Computation by tiling is universal, because tiles and
matching rules can be designed so that the tilings formed, correspond
to a simulation of that device [49]. Thus, macroscopic self-assembly
of different DNA-based tiles can be used to perform DNA-based
computation. This was e.g. demonstrated by building a one-
dimensional algorithmic self-assembly of DNA triple-crossover
molecules that can be used to execute four steps of a logical XOR (if
either input 1 or input 2 is true (1), so output true; if all input are
false (0) or all input are true, so output false) operation on a string of
binary bits [50]. Chemically, the value of a tile, 0 or 1, is denoted by
the presence of a restriction site (eg Pvu II represents 0, false and
EcoR V represents 1, true). Each molecular tile contains a reporter
strand in order to extract the answer after self-assembly occurred. The
answer produces a barcode display on an analytic gel. This system is
static as self-assemble results into prescribed target structures.

However it is also possible to engineer transient system dynamics such
as in self-assembly pathways. It has been shown that it is possible to
program diverse molecular self-assembly and disassembly pathways
using a 'reaction graph' abstraction to specify complementarity
relationships between modular domains in a versatile DNA hairpin
motif [51]. Programming of functions such as a catalytic circuit,
nucleated dendritic growth, and autonomous locomotion were
achieved with this approach. Moreover, even something sophisticated
such as barcodes have been engineered from self-assembled DNA
[52].

Free energy stored in DNA: The hydrolysis of the DNA backbone
and strand hybridization, are spontaneous because they are driven by
the potential free energy stored in DNA itself. A molecular computer
using these operations may, in principle, be fueled by its DNA input.
Thus it is possible to use the potential energy of a DNA input
molecule to drive molecular computation [40] [53] [54].

As mentioned, another way DNA may function in biocomputers
is as a mediator that arranges tethered ligands or particles [40].

Transcriptional regulatory circuits: A cell senses its environment
and calculates the amount of protein it needs for it various functions.
This information processing is done by transcription networks. These
networks, a major study object of systems biology, often contain
recurring network topologies called 'motifs' [55]. Composition and
engineering concepts for these circuits have been extensively studied
[56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66]. Many
interesting functions such as oscillators, frequency multipliers and
frequency band-pass filter have been engineered [67] [68] [69] [70]
[71] [72]. Transcriptional regulatory circuits can be seen as an analog
to electronic circuits. Data input, data processing and data output is
an abstraction found in both circuit types. Transcriptional circuits
have chemicals as an input. Data processing happens as functional
clusters of genes impact each other's expression through inducible
transcription factors and cis-regulatory elements. The output is e.g.
proteins. Diverse computational functions (see below) have been
engineered through changes in circuit connectivity [73].

Transcription factors: Trigger-controlled transcription factors,
which independently control gene expression, have been used as part
of the processing unit in a programmable single-cell mammalian
biocomputer [74]. Artificial Cys(2)-His(2) zinc finger transcription
factors specifically bind different DNA sequences and thus provide
components for designing of regulatory networks[75].

The biological microprocessor

3

Volume No: 7, Issue: 8, April 2013, e201304003 Computational and Structural Biotechnology Journal | www.csbj.org

Combinatorial promoters: Promoters control the expression of

genes in response to one or more transcription factors. Rules for
programming gene expression with combinatorial promoters have
been identified [76]. This opens the option to engineer a wide range
of logic functions. Both Boolean and non-Boolean logic is possible as
the concentration of regulators is not necessary binary. As an example,
a combinatorial promoter has been engineered, which expresses an
effector gene only when the combined activity of two internal input
promoters is high [77].

Enzymatic machinery for DNA manipulation: Novel cleavage
specificities have been designed by combining adapter
oligodeoxynucleotide and enzyme moieties [78]. Moreover, functional
higher-order nucleic acid complexes can be built from modular motifs
such as aptamers (a DNA molecule that specifically binds a small
molecule or biomolecule), aptazymes (a DNA molecule that is
comprised of an aptamer domain fused to a catalytic domain) and
deoxyribozymes (DNAzymes, a DNA molecule with catalytic
properties) [79]. This kind of design results in highly programmable,
smart complexes, which enable engineering beyond conventional
genetic manipulation. In line with this, a DNA-based computational
platform has been constructed that uses a library of deoxyribozymes,
and their substrates, for the input-guided dynamic assembly of a
universal set of logic gates and a half-adder/half-subtractor system
[80].

Dynamic constructs formed by DNA: Furthermore, DNA can be
used to engineer dynamic constructs such as molecular switches and
oscillating molecular machines (see below).

Another promising approach for building biocomputers uses
RNA molecules and RNA-based regulation [81]. RNA editing, the
modification of RNA sequences, can be viewed as a computational
process [37]. Moreover, RNA is involved in regulatory networks,
which have been described as normal forms of logic function in the
form of: input, logic gate and output [81] [82]. In many RNA based
computational systems the inputs are often small RNA molecules or
motifs, while the output is mRNA [81] [83] [84]. Different classes
of regulatory RNA components for engineering such systems, have
been identified e.g. RNA aptamer, ribozymes, riboswitches,
orthogonal ribosomes, miRNA and siRNA (Table 2) [85].

Binary RNA library and ribonuclease (RNase) H digestion: The
Adleman molecular computing approach has been expanded to RNA
[86]. Using specific ribonuclease digestion to manipulate strands of a
10-bit binary RNA library, a molecular algorithm was developed and
applied to solve a chess problem.

RNA aptamer: A RNA molecule that specifically binds a small
molecule or biomolecule has been engineered to function as an input
sensor in biological computing devices [87] [88].

Ribozymes: Catalytic RNA, ribozymes, can play an interesting
role in biocomputing [89] [90]. In general, ribozyme activity
(cleavage) in cis will repress translation, whereas activity (cleavage) in
trans may repress or activate translation [85]. The hammerhead
ribozyme is a small, naturally occurring ribozyme that site-specifically
cleaves RNA [91]. This ribozyme can function as an actuator in a
RNA computing device [88]. Input binding is translated to a change
in the activity of the actuator, where a “ribozyme- active” state results
in self-cleavage of the ribozyme [88]. The RNA device is coupled to

the 3′ untranslated region of the target gene, where ribozyme self-
cleavage inactivates the transcript and thereby lowers gene expression
[88]. Different signal integration schemes act as various logic gates.

Riboswitches: Regulatory RNA elements can act by binding a
small molecule, and thus switching gene expression on or off [92]
[79] [93]. Ligand binding may repress or activate transcription or
translation [85].

Orthogonal ribosomes: Multiple unnatural (orthogonal - O)
ribosomes can be used combinatorially, in a single cell, to program
Boolean logic functions [94]. O-ribosomes functioned as input, O-
mRNAs as logic gate and fluorescence as output.

miRNA: Binding of microRNA (miRNA) represses translation
[85]. This makes miRNA suitable to serve as sensory module to
DNA-based digital logic circuits [95] [84] [96] [97].

siRNA: Small interfering RNAs (siRNA) are a class of short
RNAs that stimulate post- transcriptional gene silencing through the
RNA interference (RNAi) pathway in higher eukaryotes [85]. RNAi
has been used to construct a synthetic gene network that implements
general Boolean logic to make decisions based on endogenous
molecular inputs [98] [97]. The state of an endogenous input was
encoded by the presence or absence of 'mediator' small interfering
RNAs (siRNAs).

The biological microprocessor

4

Volume No: 7, Issue: 8, April 2013, e201304003 Computational and Structural Biotechnology Journal | www.csbj.org

Programmable DNA/RNA editing: Recently, a new kind of

endonuclease has been discovered which can potentially play an
interesting role in the design of biocomputers. This endonuclease is
the CRISPR (Clustered regularly interspaced short palindromic
repeats) associated Cas9 [99]. Cas9 forms a complex with dual-
RNAs. The RNA sequence defines a site-specific DNA binding of
this complex. This results dsDNA cleavage. This system has a
potential for RNA-programmable genome editing. Another RNA-
editing platform has been developed by using the bacterial CRISPR
pathway [100]. This enables predictable programming of gene
expression.

 Protein based logic systems have been generated in vitro
[101]. Furthermore, recent studies have developed strategies for
protein synthetic biology in vivo [102]. Proteins play both as input
and output signals a crucial role in the information processing in the
cell. Moreover, logic can also be implemented by the regulation of
protein functions governing the production, destruction, localization,
and activities of biochemical molecules [102] [103] (Table 3).

Enzymes: We have already discussed some roles of enzymes in
biocomputing e.g. in DNA manipulation. Another interesting concept
for engineering an in vitro protein-based logic system is based on
input and output of enzymatic reactions [104] [105] [106] [107].
Different enzymes were used alone or coupled to construct different
logic gates. The added substrates for the respective enzymes, act as the
gate inputs, while products of the enzymatic reaction are the output
signals that follow the operation of the gates.

Transactivator/transrepressor: Transcription control in
mammalian cells can be enabled by logic gates [74]. It has been
shown, that chimeric promoters containing operators specific for up
to three different transactivators/transrepressor enable NOT and

AND-type regulation profiles with three molecular intervention levels
[108].

Chemically inducible dimerization (CID): In CID systems, a small
molecule induces the dimerization of two different proteins,
producing a ternary complex [101]. Such a system has been used to
engineer a transcriptional logic device [109]. A major drawback of
many engineered logic circuits is that they require minutes to hours to
execute their logic functions due to the long processing time of the
transcription and translation machinery [101]. Non genetic circuit
devices based on CID might be able to overcome this obstacle. Such a
rapid logic device has been built by Miyamoto et al [110]. Boolean
logic gates were synthesized by using two chemical inputs. These gates
produced output signals such as fluorescence and membrane ruffling
on a timescale of seconds.

Inter cellular signaling can be used to build logic into biological
systems. An interesting aspect lies in compartmentalization of the
circuit where all basic logic gates are implemented in independent
single cells that can then be cultured together to perform complex
logic functions [111]. Such systems are possible in a wide variety of
settings. Examples are cell to cell communication in bacteria by
quorum sensing and artificial neural networks (Table 4).

Quorum sensing: Quorum sensing is a system used by many
species of bacteria to coordinate gene expression according to their
population density. A simple genetic circuit has been combined with
quorum sensing to produce more complex computations in space
[112]. Biological neural networks: Biological neural networks are
composed of circuits of biological neurons. This has not to be
confused with the artificial neural networks we described above, which
are programming constructs that mimic the properties of biological
neurons. Biological neurons have been used to engineer logic gates
[113] [114].

The biological microprocessor

5

Volume No: 7, Issue: 8, April 2013, e201304003 Computational and Structural Biotechnology Journal | www.csbj.org

A biological microprocessor

We now move from system components to the complete

biocomputer system, and define the general purpose silicon computer
system as a template for biocomputers. Such a template consists of
four units: the input and output device (I/O), the arithmetic logic
unit, the control unit and the memory (Figure 2) [115].

The first three units collectively build the central processing unit

(CPU), typically constructed on a single integrated circuit called a
microprocessor. The control unit coordinates the various system
components. It decodes the program instructions, and transforms
them into control signals, which activate other system parts. This
finally results in a change of the system state. Historically the control
unit was defined as a distinct part, whereas in modern design this unit
is an internal part of the CPU. Busses (often made of groups of
wires) interconnect these units. Each unit contains a huge number of
small electrical circuits. Switches can turn these circuits on (1) or off
(0). A logic gate can perform a logic operation on one or more of
such logic inputs and produce a single logic output. Thus, basic
elements of any biocomputer unit are switches and logic gates.

As discussed the basic function of a switch is to produce an on or
off state. Such switches have been engineered based on transcription
regulation, artificial DNA, or RNA.

The DNA based type can either be based on a gene regulatory
circuit or on DNA molecule properties. The toggle switch, a
synthetic, bistable gene-regulatory network in Escherichia coli, belongs
to the first category [116]. This toggle switch is a quite famous one,
published in a landmark paper, which helped to kickstart synthetic
biology. The toggle is constructed from two repressible promoters,
such as that repressor 1 inhibits transcription from promoter 1 and is
induced by inducer 1, whereas repressor 2 inhibits transcription from
promoter 2 and is induced by inducer 2. The switch can take two
stable states, if the inducers are absent: one in which promoter 1
transcribes repressor 2, and one in which promoter 2 transcribe
repressor 1. The switch is flipped between these stable states by
transient chemical or thermal induction of the currently active
repressor. All together, the toggle switch forms an addressable cellular
memory unit.

Another type of switch, called I-switch, an artificial DNA nano-
device, that has cytosine-rich regions, which act as a sensor for

chemical input in the form of protons and functions as a pH sensor
based on fluorescence resonance energy transfer (FRET) inside living
cells. [117]. The I-switch consists of three oligonucleotides, where
two with single stranded overhangs are hybridized onto the adjacent
third. At acid conditions these overhangs are protonated, leading to a
closed conformation with high FRET. This switch was used to map
spatial and temporal pH changes during endosome maturation. These
experiments demonstrate the potential of DNA scaffolds responsive
to triggers in living cells. These principles might be applied to
switches in DNA or RNA scaffolds which assemble proteins [118].

We have already discussed one kind of RNA based switche, the
riboswitche, above. Another approach is switches based on an
engineered riboregulator, which enable post-transcriptional control of
gene expression [119]. This riboregulator is constructed such that a
small sequence, complementary to the ribosome binding site (RBS), is
inserted downstream from a promoter and upstream from the RBS.
After transcription a stem loop is formed at the 5‘ end of the mRNA,
which blocks ribosome docking and translation. This mRNA can be
targeted by another non-coding RNA and undergo a linear-loop
interaction, that expose the obstructed RBS and thus activates
expression. Interestingly, this kind of artificial riboregulator have been
used to build a genetic switchboard that independently controls the
expression of multiple genes in parallel [120].

As mentioned above, it is possible to engineer Boolean logic based
on RNAi. A tunable switch has been built based on a synthetic gene
network that couples repressor proteins with a design involving
shRNA (Figure 3C) [121].

Although protein based switches, that do not comprise
transcription factors, are not uncommon in nature, they have been so
far not a major focus [18].

A logic gate is an elementary building block of a digital circuit.
These gates can have one or two inputs, but only one output. Inputs
and output are of Boolean nature, thus they can be either true (1) or
false (0). Different logic operators can be applied on the input. Basic
types of logic gates are: AND, OR, NOT (inverter), XOR, NAND,
NOR, and XNOR [101] [18]. These operators are the basis for
different truth tables (Figure 4). We get a true output from the gate
for the following case: AND - both inputs are true; OR - either or
both inputs are true; NOT - (has only one input) if the input is false;
XOR (either/or) - either input 1 or input 2 is true; NAND - (is an
AND gate followed by a NOT gate) both inputs are false, or one is
true; NOR (OR followed by NOT) - both inputs false; and XNOR
(XOR followed by NOT) - both inputs are true or both are false. All
other cases give a false output respectively. Over a period of about two
decades DNA, RNA and protein based logic gates have been
engineered and classified [122] [101]. A wide range of core
machinery and inducers has been developed.

DNA based logic gates: One strategy for engineering a logic gate
in vivo is to build a core machinery, based on gene expression
regulation [123] [124] [125] [126] [127] [128] [129]. One such
system had two inputs such as beta-D-thiogalactopyranoside and
anhydrotetracycline (aTC) and a fluorescent protein as output [73]. In
order to build such a logic system, a network plasmid was generated
composed of a set of three transcription factor encoding genes (LacI,
TetR, and lambda cI) and their corresponding promoters. The
binding state of LacI and TetR can be changed with the input
molecules. Moreover, the system consists of five additional promoters
which can be regulated by the three transcription factors. Two of the
promoters are repressed by LacI, one is repressed by TetR, and the
remaining two are respectively positively or negatively regulated by

Figure 2. Four units of a general purpose computer: Input and output
device (I/O; I = input signal; O = output signal), the arithmetic logic unit,
control unit, memory. Busses (groups of wires) connect these units.

The biological microprocessor

6

Volume No: 7, Issue: 8, April 2013, e201304003 Computational and Structural Biotechnology Journal | www.csbj.org

lambda cI. Altogether, this results in 125 possible networks. Various
GFP expressing systems can be formed using a combination of
various promoters, input molecules and host strains e.g. E.coli. In
such manner functional networks were formed with logic operations
such as NOR, NOT, and NAND.

Another option to build a core machinery both in vivo and in
vitro is by using DNA aptamers [130] [131]. Yoshida et al built an
AND gate by fusing an adenosine-binding DNA aptamer and a
thrombin-binding DNA aptamer [130]. Each aptamer binds to
partially complementary fluorescence quencher-modified nucleotides,
QDNA1 and 2 respectively. When the two inputs adenosine and
thrombin are bound both QDNAs are released from the aptamers
leading to increased fluorescence intensity. Other input combinations
(0 + 0, 0 +1, and 1 +0), lead to the presence of zero or one QDNA
and a weaker fluorescence. Similar, an OR gate can be created, if the
positions of the fluorophore and QDNA are modified. Another study
built an aptamer based nanorobot, which has an open and closed
conformation [131]. DNA aptamer–based lock mechanism opens in
response to binding of antigen keys. This lock functions as an AND
gate, where the aptamer-antigen activation state serves as input, and
the nanorobot conformation as output.

Hybridization can serve as another in vitro option for engineering
a core machinery feasible for functioning in a logic based network
[95] [132]. A two input logic gate of type AND, OR or NOT were
constructed by using a branch-migration scheme with a mechanism
built on strand recognition and strand replacement. Single stranded
nucleic acids are input and output of such a scheme. The gate
function is created by sequential base pairing triggered by

toehold−toehold binding between single strands and subsequent
breaks.

Moreover, in vitro deoxyribozyme-based (DNAzymes) logic gates
have been engineered [127] [128] [133]. In order to engineer an
AND gate, two different oligonucleotide inputs were hybridized with
corresponding controlling elements [127]. This led to the cleavage of
the substrate in the presence of both inputs and subsequent
conformational change of controlling elements. A NOT and XOR
gate was constructed in a similar fashion (Figure 4B).

Recently, a novel in vivo system, called transcriptor, has been used
to build permanent amplifying AND, NAND, OR, XOR, NOR, and
XNOR gates to control transcription rates (Figure 4A) [134].

RNA based logic gates: The other major class of logic gates is
RNA-based. The core machine can be based on RNA aptamer, a
riboswitch, ribozymes, hybridization, amber suppressor tRNA, or an
orthogonal ribosome [101].

Culler et al demonstrated in vivo that it is possible to engineer an

AND gate based on a β-catenin binding RNA aptamer [135]. This
aptamer was inserted into the intron position, between a protein-
coding exon and an alternatively spliced exon (Ex) containing a stop
codon, followed by another intron, the next protein-coding exon and
the herpes simplex virus- thymidine kinase (HSV-TK) gene whose

product, in turn, is an activator of ganciclovir (GCV). Binding of β-
catenin with the RNA aptamer led to mature mRNA which lacked
Ex. This led to the expression of HSV-TK. If the alternatively spliced
exon was not excluded from the mature mRNA, an early translation
termination occurred. This resulted in the synthesis of a
nonfunctional peptide. For the induction of apoptosis as output, both
expression of HSV-TK and the presence of GCV are required.
Another study from the same lab demonstrated the building of AND,
NOR, NAND, or OR gates based on RNA aptamer as a core
machine (Figure 4C) [88].

We already discussed a simple riboswitch as a structure suitable to
build logic. Sudarsan et al. reported a tandem riboswitch core

machinery in vivo that facilitate more sophisticated control [136].
They discovered in the 5' untranslated region of Bacillus clausii metE
RNA two naturally occurring riboswitches. Both riboswitches bind
independently to two different metabolites, one to S-
adenosylmethionine (SAM) and the other to coenzyme B12
(AdoCbl). This binding induced the transcription termination of gene
of interest through cis-acting corresponding riboswitches. Only in the
absence of both inputs (not SAM and not AdoCbl) we get the full
length transcript as output. All together this system functions as a
two-input Boolean NOR logic gate.

Logic gates have been engineered with ribozymes as core
machinery both in vivo and in vitro [137] [138]. An AND is built
when simultaneous hybridization of two oligonucleotide inputs with
the ribozyme lead to its activation [137]. Chen et al engineered a YES
gate (if input 0 so output 0; if input 1 so output 1) in a system based

on a ribozyme, which was inserted into the 3′-UTR of a target
transgene [138]. The ribozyme was inactivated in the presence of
theophylline, allowing the target transgene to be expressed.

Alternatively a logic gate can be based in vivo on hybridization,
with siRNA or miRNA as input [98] [97]. An AND like logic
function has been built by using two groups of miRNAs as input and
the hBAX protein as output [97]. The miRNAs act as a repressor of
activators and repressors in the gate.

Amber suppressor tRNA can be used in vivo as the core
machinery for a logic gate [139] [140]. This kind of tRNA identifies
the “amber” stop codon (UAG), inserts an amino acid, and do not
terminate translation. Anderson et al. utilized an amber suppressor
tRNA (SupD) to engineer a two input AND gate [140]. One input is
a salicylate responsive promoter, which is linked to the transcription
of the amber suppressor tRNA supD. The other input is a arabinose
responsive promoter, that regulates the transcription of T7 RNA
polymerase. T7 has been mutated to contain two amber stop codons
and thus requiring SupD expression for a fully functional T7, which is
connected to the expression of green fluorescent protein as an output.

Furthermore, an AND gate has been engineered in vivo using an
orthogonal (unnatural) ribosome / mRNA pair [94]. The inputs in
this system are two orthogonal rRNAs, which limit the translation of
two respective mRNAs. These mRNAs encode two fragments of
beta-galactosidase, which’s activity is the output of the system.

Protein based logic gates: The third class are protein based logic
gates, where a transactivator, an enzyme, chemically inducible
dimerization (CID), a T7 RNA polymerase or a zink finger
transcription factor can act as core machinery in a logic gate [101]
[141].

Transactivator: Various logical gates have been engineered in vivo
based on chemically inducible transactivator-based gene circuits [108]
[74]. This conception was used by Ausländer et al. to construct several
logic gates and combination of them, such as NOT, AND, NAND
and N-IMPLY (if a = 0 and b = 1, so output = 1; else output = 0)
[74]. Such a N-IMPLY gate was engineered by combining an
erythromycin-dependent transactivator and an apple metabolite
phloretin-dependent transactivator. The output, fluorescent d2EYFP,
was only visible by fluorescent microscopy or FACS analysis in the
presence of erythromycin and absence phloretin.

Enzyme based logic gates, such as XOR, N-IMPLY, AND, OR,
NOR, NOT, and YES (one input; if input =1, output =1; else
output = 0), have been constructed for in vitro systems with a wide
variety of inputs, such as glucose, H2O2, NADH, acetaldehyde,
starch, phosphate, NAD+, acetylcholine, butyrylcholine, O2 [101]
[104] [105] [106] [142]. Baron et al. constructed eg a two input
AND gate [104]. Both H2O2 and glucose are in this case necessary
input in order to activate the catalytic chain with gluconic acid as
output.

The biological microprocessor

7

Volume No: 7, Issue: 8, April 2013, e201304003 Computational and Structural Biotechnology Journal | www.csbj.org

Another option for building Boolean logic in vivo is based on a

CID system [109] [110]. Bronson et al. utilized a CIT system to
engineer a two input AND gate [109]. Dexamethasone– methotrexate
input induced the dimerization of an activation domain, B42-
glucocorticoid receptor chimera (B42-GR), and a DNA-binding
domain, LexA-dihydrofolate reductase chimera (LexA-DHFR). Both
B42-GR and LexA-DHFR expression is placed under the control of
the GAL1 promoter. Thus galactose is required as second input in the
system in order to form the ternary complex. This complex induces, as
output of the system, acts as a transcriptional activator and stimulates
the transcription of the output, a lacZ reporter gene.

Recently Shis et al. published another interesting option to build
an AND gate [141]. A functional T7 RNA polymerase can be built
from two fragments, whereas the larger T7 RNA polymerase fragment
is encoded by a gene that responds to arabinose and the smaller
fragment by a gene that responds to lactose. T7 RNA polymerase will
be functional active in the presence of both inputs, arabinose and
lactose.

OR, NOR, AND and NAND logic has been based on artificial
Cys2– His2 zink finger (ZF) transcription factors as computing

elements [75]. Input signals led to expression of corresponding ZF-
based transcription factors, which acted on response promoters. An
OR gate was constructed, which contained target sites for two
different ZF activators [75]. BCR_ABL-1:GCN4 and erbB2:Jun
activators were used as ZF-1 and ZF-2, respectively. AmCyan
fluorescent protein output, measured by flow cytometry, was observed,
when either or both inputs were present.

Cell to cell communication based logic gates: Logic systems built
on gene expression regulation can be expanded to multicellular
engineered networks [112] [143]. Different logic gates were carried in
one study by different strains of E.coli, which communicate by
quorum sensing (see above) (Figure 4D) [112]. Input was aTC or
arabinose. Colonies containing different gates were wired together via
quorum molecules. Different combinations of colonies containing
specific simple logic gates resulted in the construction of 16 two-
input Boolean logic gates. Different combinations of 2 input
molecules such as NaCL, galactose, 17 beta-estradiol, doxycycline,
galactose, or glucose were used in another study which builds a
multicellular network based on gene expression regulation [143].

Figure 3. Input/Output (I/O) device: A) In a “digital” biological I/O device input molecules induce due to a set of non-steady state chemical reactions
(engineered coherent with a logic scheme) an output molecule. All molecules have a defined concentration translated into Boolean logic; alternative on (1) or
off (0). B) In order to do so, normalized molecule concentrations (conz.), which change over time, are defined as off (0), if they are under a certain threshold
(tr), and, if they are above, as on (1) C) A switch, which produce an on (induced) or off (not induced) state: The figure gives an example of a switch in a synthetic
gene network (adapted from [121]). Off (no detectable EGFP expression): LAcl repressor proteins, which are constitutively expressed, bind to two introns with
lac operator (lacO) sites, inducing transcriptional repression of EGFP and TetR respectively. Repression of TetR allows transcription of shRNA, which can
subsequently bind to its target sequence, and repress it’s shRNA target. On (EGFP expression induced): isopropyl-b-thiogalactopyrano (IPTG) binds to Lacl
proteins. As a consequence, the repressor proteins are inactive, as they change their conformation. Thus, TetR, which represses shRNA, and EGFP get
transcribed.

The biological microprocessor

8

Volume No: 7, Issue: 8, April 2013, e201304003 Computational and Structural Biotechnology Journal | www.csbj.org

Finally, one might ask how many gates can be interconnected with

the present technology in a circuit. A study by Privman et al. tried to
determine this maximum number under optimal noise reduced
conditions [144]. They concluded that under such conditions, logic
gates can be concatenated for up to order 10 processing steps. Beyond
that, it will be necessary to engineer novel systems for avoiding noise
buildup.

A biomolecular I/O device is basically an engineered set of
chemical reactions with input and output molecules with distinct
concentrations, formalized as e.g for the case of a two input device:
[input molecule 1] + [input molecule 2] <-> [output molecule]
(Figure 3A).

In order to act in a digital manner, the concentrations need to be
defined as distinguishable high or low, which can be translated to

Boolean logic (low as 0 or of, and high as 1 or on) (Figure 3B). As we
already discussed above, a variety of interesting devices have been
constructed (Figure 3C) [79] [92] [93] [116] [117] [119]
[120][121][137]. However, reaction kinetics and dynamics are often
difficult to predict as values in a living cell are often continuous, can
variate to a certain degree, are away from a steady state, and can be
difficult to quantitate [18]. Thus, to facilitate Boolean logic,
thresholds of inputs and outputs must be well defined, which can be
difficult to achieve in biological systems [18]. Depending on the kind
of system this can this be concentrations, localization of biomolecules
or enzyme activity [101]. A linear system can contribute to minimize
retroactive effects; as such a system allows applying well defined
control theory. Oishi et al tried to address these kinds of problems
and tried to identify design principles for an ideal linear I/O system
[145]. Their implementation of such an I/O systems was based on
idealized chemical reactions, and on enzyme-free, entropy-driven
DNA reactions.

Figure 4. Arithmetic logic unit: Shown are four basic Boolean logic gates (AND, NOT, NOR, and XOR), their symbols and respective truth tables. 1 means that the
input (a, b) is sensed or the output (out) is released, whereas 0 means not. In the examples system output = 0 is highlighted as pink, output = 1 as green. A) An
AND gate can be based on the transcriptor (T), an asymmetric transcription terminator, which can block RNA polymerase flows one directional. If both
terminators are flipped, induced by their respective input signal (a and b), RNA polymerase flows unhindered (full length RNA output). B) Deoxyribozyme based
NOT gate: The deoxyribozyme (DNA based catalyst) is in an active form, if no input (in) is present (in = 0). Cleavage activity results in this case in a fluorescent
oligonucleotid (F) as output. An oligonucleotide input (in) (in = 1) leads to hybridization of the input strand (green) with the closed loop strand, which is marked
purple. This results in an inactive, open loop and the absences of a fluorescent product. C) An RNA aptamer based NOR gate: NOR is an OR gate followed by a
NOT gate. Two subsequent RNA devices consist, is this case, each of three functional components: a sensor, made of an RNA aptamer (brown), an actuator
component, made of a hammerhead ribozyme (purple), and a cobbling sequence between these parts, the transmitter (blue). Translation of the gene of
interest (here GFP), encoded upstream of the device, is only possible in the case of the absence of both inputs (a and b). D) An inter cellular network based XOR
gate: The system is built from four Escherichia coli colonies, whereas each colony consists of a strain engineered to contain a single gate. Three cell colonies (cell
1, 2, 3) containing NOR gates and a fourth (cell 4) a BUFFER gate (two subsequent NOT gates; if in = 0, so out = 0; or if in = 1, so out = 1). The cell colonies
communicate through quorum sensing, which represent the “wires” of the system. If both inputs (a, b) are present, or if a and b are absent, the system has no
output. If either a or b is present, yellow fluorescent protein (YFP) is expressed.

The biological microprocessor

9

Volume No: 7, Issue: 8, April 2013, e201304003 Computational and Structural Biotechnology Journal | www.csbj.org

The arithmetic logic unit performs two classes of operations:
arithmetic and logic. Both have been engineered in biological systems.

Biological computers have shown t no be able to execute simple
arithmetic such as addition and subtraction, as Ausländer et al have
demonstrated by a combinatorial assembly of chemically inducible
transactivator-based logic gates [74]. Moreover, it has been shown that
more complex arithmetic is achievable. A combination of several
DNA hybridization based logic gates make it e.g. possible to calculate
the integer part of a square root of a four-bit binary number [132]
[146].

Logic can be built, as discussed by means of logic gates (Figure 4).
The ability of biocomputers to solve logic problems beyond the

Hamiltonian path problem have been demonstrated by the
implementation of several logic requiring games [35] [147] [133]
[47] [86]. A molecular automaton was engineered, which was able to
play a game which covers all possible responses to two consecutive sets
of four inputs [147]. Moreover, a deoxyribozyme-based automation is
able to play a complete game of tic-tac-toe [133]. A device based on
DNA recombination was able to solve a sorting problem, where a
stack of distinct objects needed to be placed into a certain order and
orientation using a minimal number of manipulations [47]. A

Figure 5. Control unit; central processing unit: A) A final state machine, as shown here, is a theoretical model which can help to understand what is going on in
the central processing unit. Simplified: Symbols a and b are written on a tape, which is read by the machine letter by letter from left to right. In this example
the tape ends with the final letter b. Each letter provides the instruction to the machine into which state (S1, or S0) it should move; here a means move to state
state 0 (S0) and b codes the instruction move to state 1 (S1). The final state of the machine in this example is thus S1. B) Molecular implementation of a final
state machine. The upper part of the figure contains the definitions for this machine: The symbols a, b, and t (terminator) are implemented as a sequence of six
specific nucleotides. The state (S1 or S0) of the machine is defined by a 5’ overhang (generated during the computing process, see below) consisting of 4
specific nucleotides (inside the frames). The terminator defines the final symbol read. The machine consists of an input molecule, a transition molecule, an
output detector and two enzymes Fokl and ligase. The input molecule consist of a Fokl recognition site (F), a spacer x (a certain defined number of nucleotides),
a nucleotide sequence defining a and b, a sequence with the remaining symbols (rem = n numbers of a and b in a defined order) and the terminator sequence
(t). Fokl is a restriction endonuclease which can bind to F. It cleaves the DNA (without further sequence specificity) on the sense strand 9 nucleotides
downstream and the anti-sense strand 13 nucleotides upstream of the nearest nucleotide of the recognition site. Thus the space x defines where Fokl is cutting.
The cleavage of the input molecule results in the first intermediate state (S0), an 5’ overhang, reading a. Ligase ligate this product with the transition molecule.
This transition molecule determinates the transition between the states, in this example: if a is read, move from S0 to S0. Other transition molecules can be
generated defining all the other possible transition rules. These molecules are designed such that the 4 bases long 3’ overhang reads the symbol, the spacer x
defines the cutting point of Fokl 1 and the state the machine will transit to (here S0). The input molecule and the transition molecule get ligated. A new
digestion with Fokl leaves an 5’ overhang representing S0 and a reading b. This cycle continues until all remaining symbols (rem) are read and state transitions
are executed. The last digestion leaves a 5’ overhang with a terminator sequence defining the final state, in general either S0 or S1 (in this example S0). The
molecule in its final state, gets ligated to an output detector, engineered to recognize either state 0 or 1. This forms an output-reporting molecule, which can be
detected by gel electrophoresis.

The biological microprocessor

10

Volume No: 7, Issue: 8, April 2013, e201304003 Computational and Structural Biotechnology Journal | www.csbj.org

molecular algorithm based on ribonuclease digestion to manipulate
strands of a 10-bit binary RNA library has been used to address the
so called "Knight problem" which asks what configurations of
knights in a chess game can one place on a 3 x 3 chess board such that
no knight is attacking any other knight on the board [86]. Moreover,
DNA hybridization based logic has been used to implement simple
logic programs [148]. This logic system consisted of molecular
representations of facts such as Man(Socrates) and rules such as
Mortal(X) <-- Man(X) (Every Man is Mortal). The system was able
to answer molecular queries such as Mortal(Socrates)? (Is Socrates
Mortal?) and Mortal(X)? (Who is Mortal?).

A state machine is a theoretic mathematical model, which helps to
understand what is going on in the central processing unit of a
computer, and which can be experimentally implemented (Figure 5A)
[18] [149] [150].

State is defined as all the stored information, at a given point in
time, to which the circuit or program has access. The output of a
circuit or program is determined by its input and states. The simplest
form of such a state machine is called finite state machine (or finite
state automata). In simple terms, this machine contains a tape with
symbols a and b. The tape can move in one direction and the machine
can read the symbol on the tape. The machine changes its state due to
the letter it reads. A string transducer is a state machine that also can
write symbols and a Turing machine can in addition move from left to
right [151].

State machines have been engineered with biomolecules [152]
[153] [154] [40] [155] [156] [157] [158]. Hagiya et al. built in
1997 the first state to state transition system by guiding DNA
polymerase based DNA extension by a template strand with a
transition rule sequence [152] [153]. The present state is encoded by
the 3’-end sequence of a single-stranded DNA molecule. The
template strand (rule) enclosed a binding site for the 3-end of the
DNA molecule and the extension template. State transition occurred,
if the current state is annealed onto an appropriate portion of DNA
encoding the transition rules and the next state was copied to the 3’-
end by extension with polymerase. The extension template represents
the new state.

The first experimental implementation of a finite state machine,
comprising DNA and DNA-manipulating enzymes, was published by
Benenson et al. in 2001 (Figure 5B) [154] [18]. Similar to the
concept developed by Benenson et al. several finite state machine were
later developed in which the transitions were executed by autonomous
biochemical steps based on DNA sticky end recognition, ligation and
digestion [40] [156]. This system was expanded by Adar et al. to
allow stochastic computing. The core of this form of computing is
the choice between alternative computing paths (biochemical
pathways), each with a prescribed probability, which were
programmed by the relative molar concentrations of the software
molecules coding for the alternatives [155]. Another finite state
machine based on DNA aptamer generated different configurations
(outputs) in response to a set of two different groups’ chemical inputs
[157]. Moreover, by using molecular finite state machines
simultaneously with fluorochrome labeled DNA it was possible to
distinguish between two distinct images encrypted onto a DNA chip
[158].

DNA’s biological role is to encode huge amounts of data,
theoretically up to two bits per nucleotide or 455 exabytes per gram
of ssDNA [43]. It has been recently shown, that it is possible to

encode arbitrary digital information in DNA, e.g. an html-coded draft
of a book that included 53,426 words, 11 JPG images and 1
JavaScript program into a 5.27 megabit bitstream [43]. The
oligonucleotides library was engineered by utilizing next-generation
DNA synthesis techniques. In order to read the encoded book, the
library was amplified by PCR and subsequent sequenced. A similar
study encoded computer files totalling 739 kilobytes into a DNA
code [44].

Another important feature of DNA is the relatively permanence
of the storage. Even after the cells die, one might be able to recover
information from the DNA. These storage abilities make DNA
suitable as core machinery for engineered memory devices.

Several biological storage devices have been engineered [41] [42]
[45] [159]. Some feedback motifs in natural systems exhibit memory
such as mutual inhibition and auto regulatory positive feedback [41].
One synthetic example is a modular memory device that has been
built in vivo, based on a transcriptionally controlled network,
containing such an auto regulatory positive feedback (Figure 6A) [41].

Another study engineered an integrated logic and memory device,
where the memory raised from the ability of recombinases to ‘write’
information in DNA [45].

One of the major goals in the field of biocomputing is to
engineer in vivo a general form of state machine. This requires the
ability to erase a symbol from the band of the machine and write a
new symbol, thus to reversibly write information. Bonnet et al. built in
vivo a rewritable recombinase addressable data module that stored
data within a DNA sequence (Figure 6B) [42].

Wires in silicon microprocessors are made from solid state metals,
whereas wires in biocomputers, in the systems engineered so far,
consist of signaling molecules, such as regulatory proteins. This has
been theoretically proposed by Sugita, as we have already discussed,
and later executed in many systems. The quorum sensing system we
mentioned above is one of many examples [112]. In this concrete case
are the quorum sensing molecules are used as wires between different
logic gates (Figure 4D).

Potential applications of biological computers

Biological computers possess some distinct advantages over silicon

computers [17] [18] [39]. These systems can self-assemble and self-
reproduce, which might provide some economic advantages. Moreover,
cells can be engineered to sense and respond to environmental signals,
even under extreme conditions such as high temperature, high
pressure, radioactivity or toxic chemicals. Biological systems have the
ability to adapt to new information from a changed environment.

The ultimate goals of biocomputing are the monitoring and
control of biological systems [18].

Biological systems need to be monitored in respect to disease
diagnostic, to drug screening, to understand experimental systems, and
to observe the environment [18].

In line with this, a biocomputer has been utilized to detect
multiple disease indicators, such as mRNA of disease-related genes
associated with small-cell lung cancer and prostate cancer [160]
[161]. Moreover, they can be used in experimental models, such as
conditional transgenes or inducible expression systems [162].
Environmental monitoring is another interesting application. A cell
based biosensor using logic gates has been used to detect arsenic,
mercury and copper ion levels [163].

The biological microprocessor

11

Volume No: 7, Issue: 8, April 2013, e201304003 Computational and Structural Biotechnology Journal | www.csbj.org

Biocomputers can potentially be used to control development, cell
differentiation and re-programming, as all these processes depend on
gene regulatory networks [18] [164]. Another application area is
tissue engineering and tissue regeneration [165]. Metabolic
engineering has the potential to produce from simple, inexpensive
starting materials a large number of chemicals that are currently
derived from nonrenewable resources or limited natural resources
[166]. The metabolic flux can potentially be controlled by a
biocomputer [120]. Interesting might also be to control the immune
system by a biocomputer, e.g. in transplantation medicine [167]. An
important application area is the control of malign growth. Some
interesting experiments with logic based biological devices have been
executed to detect cancer cells (e.g. small-cell lung cancer, prostate
cancer, HeLa cells), and to induce selective apoptosis of these cells
[77] [97] [160]. Furthermore, biocomputers can be used to engineer

context-dependent programmable drugs [161] [125]. A biocomputer
with a context-sensing mechanism, which can simultaneously sense
different types of molecules, has been engineered [161]. In the future
it might be used to detect a broad range of molecular disease
symptoms, and react with the release of a drug molecule suitable for
the treatment of the specific condition. In line with this concept a
programmable NOR-based device has been developed capable of
differentiating between prokaryotic cell strains based on their unique
expression profile [125].

Summary and outlook

Two decades have passed since the landmark paper of Adelman

[35]. A major game changer has been the advance of synthetic
biology, with novel concepts for bioengineering strongly based on
systems theory. This led to trials for identifying, characterizing and

Figure 6. Memory: A) Shown is a simplified diagram of a modular memory device, which is a transcriptionally controlled network composed of two transcription
factor encoding genes, a sensor gene and a positive (+) auto feedback gene (P-GAL = GAL 1/10 promoter, P-CYC = CYC 1 promoter, DNA BD = sequence encoding
a DNA binding domain of the respective transcription factor). The network can be in three states, off, on and memory. The system is in of state, if it has never
been exposed to a signal (here galactose). It is on, if galactose is present. In this case the signal induces the synthesis of a transcription factor, the sensor. This
triggers the expression of another transcription factor able to bind to its own promoter. The system is in memory state, if the signal is removed. The auto
feedback activator is able to initiate its own expression even if the inducing signal is lacking, which means that the system has stored information. B) A
rewritable recombinase addressable data module, able to store data within a DNA sequence (simplified adaption from [42]): Serine integrase and excisionase
are used to invert and restore specific DNA sequences. The system has two potential inputs; a set and a reset transcription signal. This set signal drives
expression of integrase which inverts a DNA element, functioning as a genetic data register. Flipping the register converts the flanking sites (triangle). The
system is now in state 1 (S1). Alternatively a reset signal drives integrase and excisionase expression and restores register orientation and the flanking sites. The
system is in its other state (S0). The register comprises a promoter, which is driving state dependent, strand-specific transcription of either red or green
fluorescent protein, the two possible outputs of the system.

The biological microprocessor

12

Volume No: 7, Issue: 8, April 2013, e201304003 Computational and Structural Biotechnology Journal | www.csbj.org

standardizing biological parts useful for a general purpose computer.
Major advances have been made in areas such as engineering of
switches and logic gates, letting the dream of engineering a general
Turing machine come close to reality. This dream is finally about our
human superiority and rule over nature, making biocomputers one of
the really exiting challenges in contemporary science, both in respect
to engineering and ethics. We still face a couple of challenges before
we will see biocomputers in our daily environment.

Novel concepts for Turing machines have been suggested, such as a
deoxyribozyme based molecular walker, as this kind of machines have
the ability to read and transform secondary cues [168]. However, the
general Turing machine requires the ability of erasing and writing of
symbols. Recently, major advantages have been made in respect to
genome wide codon replacement in vivo by applying multiplex
automated genome engineering technology [169]. This technology
provides novel opportunities to implement a general Turing paradigm.

On this road we need to clarify whether the digital paradigm is in
fact the best approach to molecular computing. As we have seen, the
values of biological signals are typically analog, we need to explore, if
analog computing might be an alternative road to explore. In any case,
we need to engineer signals, both as input and output with well-
defined stable concentrations, thus do not fluctuate, and stable circuits
[170] [171] [172] [107]. If we wish to use Boolean logic we need to
be able to group signals in low expressed and high expressed. The
engineering design of the logic gate based on the transcriptor, as we
discussed above, mark the advances that have been made towards
digitalization of signals and the engineering of clearcut thresholds
[134].

Moreover, the engineering of standardized reusable modules has
been a major objective of synthetic biology. Signals are physically
separated in microelectronics, contributing to standardization. Many
biological devices, engineered so far, lack this signal separation, thus
limiting the engineering of standardized, reusable modules [173].
Limitations towards this goal are due to circuit unpredictability,
incompatible parts or random fluctuations. Moreover, wiring multiple
logic gates is often difficult to implement reliably within mono
cellular systems, as connections need to be implemented by a different
molecule. One could potentially avoid this by using multiple cells in
biological computer following the distributed computing paradigm of
silicon computer, where a distributed system consists of multiple
computers that communicate through a computer network [112]
[143]. These multi cellular systems, as we discussed above, allows the
output signal to be distributed among different cell types, which can
be combined in multiple, reusable and scalable ways. Regot et al.
demonstrated in yeast that these systems can reduces wiring
constraints, which allowed the building of more complex synthetic
devices, as they were able to implement many logic functions by using
just a few engineered cells. [143]. In any case, we are still far from a
general purpose computer, as also these kinds of systems will still be
engineered with specific functions in mind.

Another area of focus might be processing speed, in general a
critical factor for all forms of computation. Systems running on
biological gates are relatively slow compared with silicon computers.
The activation time both of biological logic devices systems ranges
from seconds, as the CID system, to days as some transactivators and
RNA aptamer [101]. In between do we have cell free logic devices
which act in a time scale of minutes (protein enzyme, ribozyme) to
hours (e.g. deoxyribozyme and branch migration). The cell based logic
devices mainly have a typical activation time in the range of hours (e.g.
miRNA, network plasmids, riboswitch, RNA aptamer, ribozyme,
assembled RNA, intercellular networks, amber suppressor tRNA).
The invention of other very rapid acting systems such as the CID
system might be desirable. One might be able to take advantage of the

fact that many cellular functions happen in parallel. Thus parallel
computing paradigm might provide an interesting engineering
paradigm. Moreover, optimization of individual components will
increase processing speed [174].

Silicon computers have been a fruitful inspiration for the
engineering of computing systems from biological materials. These
engineered biological computers have some advantages over the silicon
counterpart, as they can potentially self-organize and self-replicate.
This has the potential to reduce engineering costs and efforts.
However, the overall capabilities of today’s artificial engineered
biological computers are still premature in many aspects in
comparison to the silicon based one. We have already discussed some
of the technical reasons behind this, such as the limitations for
building complex systems. We have seen, that today’s logic gates can
only be concentrated for up to order 10 processing steps [144]. We
have discussed the problems of long processing time. The logic
problems solved so far by biological computers are impressive, but also
demonstrate the inferiority of such systems in comparison with their
silicon counterparts, as they are still of relatively simple nature [35]
[47] [86] [133] [147]. These problems are both due to the novelty of
the field, but also, as we have seen, to system specific properties of the
biological matter. As discussed, biochemical reactions have by nature
often long reaction times [174]. The input and output signals are of
analog and not digital nature [18]. Biochemical reactions are often in
solution and not in all cases compartmentalized, which results, as
discussed, in the lack of signal separation [173]. Novel
compartmentalization concepts, organizing signal transduction by eg
binding mediators to a scaffold, might further contribute to signal
separation [118]. Although some solutions have been discussed
above, these kinds of inert material properties might define the
natural limitations for the engineering of biological computers. One
might consider, a change in the computing paradigm applied, in order
to engineer more in coherence with these material properties. The
analog computer paradigm, which uses continuous values, might be
interesting in this respect. Daniel et al have recently published a paper
exploring analog computing in living cells [175]. They demonstrate
that synthetic analog gene circuits can be engineered to execute
sophistical computational functions in living cells. Moreover, further
improvement might be possible to advancements in biological
engineering. Standardized parts are, as discussed, the fundament,
further engineering can build on [30] [31] [32]. Much of the work
necessary is in line with standard quality insurance in biological
experiments such as system stability and consistency under different
conditions, system quantification, and identification of system
imperfections [18]. Examples of such experimental problems are:
systems might be unstable due to transient transfections. Moreover,
cell populations might be not homogenous due to heterogeneity of
gene copies, rate constants and stochastic effects. Furthermore, system
measurements are potentially difficult in respect to measuring
intracellular input levels. Once experimental advances are made
towards standardized and well defined parts, one of the major next
engineering steps will be to combine the different units of the
biological microprocessor to one complex system. A challenge will be
the spatial organization of such a complex system. Novel artificial
scaffold systems might be necessary to develop for this purpose.
Efficient manufacture methods might also be required. The emerging
field of 3-D printing might provide novel ways for system engineering.
Further advancements in engineering of biological control units might
be necessary for powerful integrated systems. Altogether, this will
push biological systems closer to the level of complexity and problem
solving power of silicon computers. Such an integrated system will
have much more computing power and advances the problem solving
capability. Evidence for the potential of the potential computing

The biological microprocessor

13

Volume No: 7, Issue: 8, April 2013, e201304003 Computational and Structural Biotechnology Journal | www.csbj.org

power of a biological system is provided by the capabilities of nature’s
most powerful biological computer, the human brain.

Novel areas for development are on the horizon. Hybrids of
electronic semiconductor and biological machines might be interesting
to explore; playing on the initial discussed feedback loop between
biology inspired engineering and engineering inspired biology [176]
[177]. Some interesting research is going on in this area both in
academic labs and in industry. Several promising biocomposites have
been developed, such as cells treated with silicic acid; DNA as a
mediator that arranges fullerenes, golden particles and DNA-
templated nanowire formation; and DNA metamaterials and hydrogels
with memory [178] [179] [180] [181] [182] [183]. Another
interesting device under development is IBM’s DNA transistor [184].
This system controls DNA translocation through the nanopore. It is
composed of a metal/dielectric/metal/dielectric/metal multilayer
nano-structure built into the membrane that contains the nanopore.
The function of this system is based on the interaction of discrete
charges along the backbone of a DNA molecule with the modulated
electric field to trap DNA in the nanopore with single-base resolution.
DNA might be moved through the nanopore at a rate of one
nucleotide per cycle. This could lead among other to a nanopore-
based reading device.

Finally, as the young field of synthetic biology and systems
biology most likely will further advance in the years to come, so will
biocomputing. A biological microprocessor, an implication of a
general Turing machine is on the horizon.

̈

The biological microprocessor

14

Volume No: 7, Issue: 8, April 2013, e201304003 Computational and Structural Biotechnology Journal | www.csbj.org

The biological microprocessor

15

Volume No: 7, Issue: 8, April 2013, e201304003 Computational and Structural Biotechnology Journal | www.csbj.org

The biological microprocessor

16

Volume No: 7, Issue: 8, April 2013, e201304003 Computational and Structural Biotechnology Journal | www.csbj.org

The biological microprocessor

17

Volume No: 7, Issue: 8, April 2013, e201304003 Computational and Structural Biotechnology Journal | www.csbj.org

Competing Interests:
The authors have declared that no competing interests exist.

© 2013 Moe-Behrens.
Licensee: Computational and Structural Biotechnology Journal.
This is an open-access article distributed under the terms of the Creative
Commons Attribution License, which permits unrestricted use,
distribution, and reproduction in any medium, provided the original
author and source are properly cited.

What is the advantage to you of publishing in Computational and
Structural Biotechnology Journal (CSBJ) ?

 Easy 5 step online submission system & online manuscript tracking
 Fastest turnaround time with thorough peer review
 Inclusion in scholarly databases
 Low Article Processing Charges
 Author Copyright
 Open access, available to anyone in the world to download for free

WWW.CSBJ.ORG

The biological microprocessor

18

Volume No: 7, Issue: 8, April 2013, e201304003 Computational and Structural Biotechnology Journal | www.csbj.org

http://www.csbj.org/

