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Abstract

Estimating recent effective population size is of great importance in characterizing and predicting the evolution of
natural populations. Methods based on nucleotide diversity may underestimate current day effective population sizes
due to historical bottlenecks, whereas methods that reconstruct demographic history typically only detect long-term
variations. However, soft selective sweeps, which leave a fingerprint of mutational history by recurrent mutations on
independent haplotype backgrounds, holds promise of an estimate more representative of recent population history.
Here, we present a simple and robust method of estimation based only on knowledge of the number of independent
recurrent origins and the current frequency of the beneficial allele in a population sample, independent of the strength of
selection and age of the mutation. Using a forward-time theoretical framework, we show the mean number of origins is a
function of h ¼ 2Nl and current allele frequency, through a simple equation, and the distribution is approximately
Poisson. This estimate is robust to whether mutants preexisted before selection arose and is equally accurate for diploid
populations with incomplete dominance. For fast (e.g., seasonal) demographic changes compared with time scale for
fixation of the mutant allele, and for moderate peak-to-trough ratios, we show our constant population size estimate can
be used to bound the maximum and minimum population size. Applied to the Vgsc gene of Anopheles gambiae, we
estimate an effective population size of roughly 6� 107, and including seasonal demographic oscillations, a minimum
effective population size >3� 107, and a maximum <6� 109, suggesting a mean �109.
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Introduction
Studying the differences in sequences between individuals in
a population has the potential to give new insight into evo-
lutionary processes: the evolutionary forces of selection, mu-
tation, migration, and drift can leave a signature in the
pattern and frequency of polymorphisms in time and space,
which population genetic theory can be used to infer
(Bollback et al. 2008; Gutenkunst et al. 2009; Liu and Fu
2015; Zanini et al. 2015; Khatri 2016; Petkova et al. 2016;
Feder et al. 2017). A key parameter to estimate for any evolv-
ing population is the effective population size (Fisher 1930;
Wright 1931), as it determines the underlying nature of the
evolutionary dynamics and the relative importance of genetic
drift versus selection for evolving traits. In particular, having
an accurate estimate of recent effective population size has
impact on our ability to predict the outcomes of evolution, as
the current population size controls the mutational input
through the parameter h ¼ 2Nl and the fate of rare variants
in a population via the population scaled strength of selection
2Ns (Kimura 1962). However, there is not a single well-defined
measure of effective population size and different estimates
will depend on the particular evolutionary pressures on the
trait or genomic region under consideration, as well as on

previous population histories (Charlesworth 2009). A com-
mon method to estimate effective population size is from the
nucleotide diversity p of neutral regions of a genome, where
for 2Nl� 1, we expect p ¼ 2Nl (Charlesworth 2009). This
relation represents a balance between mutations introducing
variation at rate l and drift removing variation at rate 1

2N.
However, nucleotide diversity will tend to be dominated by
population bottlenecks, and so be insensitive to recent pop-
ulation expansions (Karasov et al. 2010), and there is a need
for methods to estimate effective population sizes which are
more representative of current day census size. Methods
based on linkage disequilibrium tend to be limited to small
population sizes (Waples and Do 2010). On the other hand,
although there are a number of methods that attempt to
directly infer demographic history (Pybus et al. 2000;
Gutenkunst et al. 2009; Browning and Browning, 2015; Liu
and Fu 2015), these methods are either complex and com-
putationally intensive or only able to detect long-term
changes in population size. There are currently no methods
that simply and robustly allow estimation of very recent ef-
fective population sizes.

A recent popular paradigm to study variation in popula-
tions is “soft sweeps,” where for sufficiently large population
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sizes (Nl � 1), multiple copies of the same mutation, distin-
guished by their haplotype background, coexist in the popu-
lation. This provides a direct genetic fingerprint on the rate at
which mutations enter a population h, which without their
distinguishing haplotype backgrounds would be hidden.
Precise information about h is effectively hidden when muta-
tions arise infrequently per generation (Nl� 1), since in this
weak successive mutations regime, a single dominant haplo-
type fixes in a population before other haplotypes have a
chance to establish; these are termed “hard sweeps,” as
each subsequent sweep erases any previous information, giv-
ing a weak bound that h� 1. In a series of seminal articles by
Pennings and Hermisson (Hermisson and Pennings 2005;
Pennings and Hermisson 2006a, 2006b), much of the basic
theory of soft sweeps was developed within a coalescence
framework. In particular, the mean number and the distribu-
tion of independent origins in a neutral population sample
were found to be given by Ewens’ sampling framework
(Ewens 2010). Recently, using this approach, Anderson et al.
(2017) estimated the effective population size of the malaria
parasite; such estimates of N from soft sweeps should be
representative of the effective size over the time period of
the sweep (Karasov et al. 2010) and more representative of
current day census size. However, estimating the maximum
likelihood effective population size requires using Ewens’ for-
mula (Ewens 2010) for the probability of observing a certain
number of distinct alleles in a sample of only neutral alleles;
although exact it is not very practical for large sample sizes, as
it requires evaluating the Stirling number of the first kind, a
combinatorial factor that has not been implemented in most
programming languages. In addition, when the mutant allele
has not yet gone to fixation, we need to account for the fact
that samples will contain both wild type and mutant alleles;
this requires the extra complication of having to convolve
Ewens’ formula with a binomial distribution for the probabil-
ity of observing a given number of mutants in a sample given
the frequency of the mutant. Finally, Pennings et al. (2014)
estimated an effective population size of HIV from soft
sweeps of N � 105 larger than estimates from nucleotide
diversity; however, they used a specific theory for the case
of a single amino acid change given by two different nucleo-
tide mutations, so that the two codons give a maximum of
two detectable independent origins.

In this article, we present a simple semideterministic for-
ward-time approach, based on a nonhomogeneous Poisson
establishment rate of independent mutants, which thereafter
grow deterministically (Messer and Neher 2012). We show
that this gives very accurate estimates of the number of in-
dependent origins as a function of the time since selection
sets in. In the haploid case, we show explicitly the likelihood
function is independent of the selection coefficient and only
dependent on the frequency of the mutant allele and so does
not require estimation of the selection coefficient or the age
of the allele. This approach has the advantage of being simple
to implement, as the likelihood function is a nonhomogene-
ous Poisson process, and is particularly appealing as the
results can be understood in intuitive terms in a forward-
time framework. Further, we show the method is robust to

whether or not the mutation was preexisting in the pop-
ulation and is equally accurate for diploid populations with
incomplete dominance (0 < h < 1). Finally, we apply our
method to recent data from the Vgsc locus from the
Anopheles gambiae 1000 genomes (1000Ag) project
(Anopheles gambiae 1000 Genomes Consortium 2017) to
find an estimate of effective population size almost 2 orders
of magnitude greater than is estimated by analyzing nucleo-
tide diversity. Moreover, to account for the marked seasonal
population dynamics of this species, we show that it is pos-
sible to calculate a bound for the maximum and minimum
effective population sizes, based on an estimate of effective
population size using the constant population size method.

Theory
We calculate the likelihood of the number of origins with two
assumptions: 1) we assume a nonhomogeneous (time-depen-
dent) Poisson process such that mutant alleles establish with
rate aðtÞ ¼ 2Nls½1� xðtÞ�, where x(t) is the frequency of all
mutant alleles in the population; 2) after establishment of the
kth mutant allele, its frequency xkðtÞ increases deterministi-
cally. The mean number of origins at time T is then deter-
mined by calculating the average number of establishment
events in a time window 0 to tK, where tK is the latest possible
time of establishment, such that it can grow deterministically
to a critical frequency to be sampled from the population at
some time T.

Deterministic Growth
We assume that the overall mutant population grows accord-
ing to the following differential equation:

dx

dt
¼ sxð1� xÞ þ lð1� xÞ; (1)

where the first term is the change in frequency due to fre-
quency independent selection (assuming s� 1) and second
is the change in frequency due to mutations arising from the
wild-type population at mutation rate l. This has the follow-
ing closed-form solution:

xðtÞ ¼ ðsx0 þ lÞeðsþlÞt � lð1� x0Þ
ðsx0 þ lÞeðsþlÞt þ sð1� x0Þ

; (2)

which in its tanh form is

xðtÞ ¼ s� l
2s
þ c

s
tanhcðt� t�Þ; (3)

where

t� ¼ 1

c
tanh�1 s� l� 2sx0

sþ l

� �
; (4)

where c ¼ ðsþ lÞ=2 and x0 is the initial frequency of the
total mutant population. As in this deterministic framework,
the mutant allele only asymptotically reaches fixation as
t!1, we identify t� as the characteristic or typical time
to fixation, which is the inflexion point of the tanh function
and roughly the point at which the mutant has reached a

Robust Recent Estimate of Ne from Soft Sweeps . doi:10.1093/molbev/msz081 MBE

2041

Deleted Text: y
Deleted Text: -
Deleted Text: ,
Deleted Text: paper
Deleted Text: Anderson et<?A3B2 show $146#?>al.,(
Deleted Text: (
Deleted Text: -
Deleted Text: paper
Deleted Text: -
Deleted Text:  
Deleted Text: -
Deleted Text: ,
Deleted Text: -
Deleted Text: -
Deleted Text: ,
Deleted Text: s
Deleted Text: -
Deleted Text: g
Deleted Text:  
Deleted Text:  
Deleted Text: :


frequency of ðs� lÞ=2s � 1=2 for s	 l; the actual time to
fixation with discrete populations and drift will always be of
the same order of magnitude as t�. Here, we assume that the
initial frequency of the mutant is zero and so using the iden-
tity tanh�1ðzÞ ¼ 1

2 ln 1þz
1�z

� �
(jzj < 1),

t� ¼ 1

sþ l
ln

s

l

� �
: (5)

We see that the typical time to fixation t� has a logarithmic
dependence on the mutation rate and can increase without
bound for small mutation rates since we must wait for muta-
tions to arise before selection can act to increase its frequency.
Note that our approach here is in contrast to (Karasov et al.
2010; Messer and Neher 2012; Wilson et al. 2014) who typi-
cally assume an expression for the mutant frequency which
ignores initial conditions and de novo mutation, which as we
see can cause a large effect on the time to fixation; in our case,
this is important as we require the mutant to have zero initial
frequency, when the selection pressure arises.

Stochastic Establishment and Likelihood of Number of
Origins
We assume mutant alleles arise by de novo mutation at a
time-varying (nonhomogeneous) rate proportional to the
number of wild-type individuals Nl½1� xðtÞ�. De novo
mutants must reach a critical frequency xest � 1

2Ns at which
point more mutant individuals are added by selection com-
pared with the change in number due to drift (Desai and
Fisher 2007). The probability that a de novo mutant, starting
at frequency 1=N, grows by drift to size Nxest ¼ 1

2s, is just the
inverse of the size of this neutral subpopulation, pest � 2s.
The rate of establishment of mutants is then

aðtÞ ¼ 2Nls½1� xðtÞ�: (6)

We make the assumption that establishments occur ran-
domly and independently and so the underlying probability
distribution for the number of establishments up to time
tKðTÞ, the time of establishment of last mutant to possibly
be sampled at a latter time T, is given by a nonhomogeneous
Poisson process:

p½gðTÞjN; s; l� ¼ L½N; s; ljgðTÞ� ¼ �gðTÞg

g!
e��gðTÞ; (7)

where gðTÞ is the number of independent origins at time T,
and where the mean is given by the integral of the rate a up
to time tKðTÞ:

�gðTÞ ¼
ðtKðTÞ

0

aðtÞdt

¼ 2Nl

�
ctK � ln

coshcðtK � t�Þ
coshct�

� �	
:

(8)

The time of the last establishment tKðTÞ is straightforward to
calculate as shown next.

Calculating tK

The time for the last possible establishment, tK of the Kth mu-
tant, in order to be sampled with high probability at time T, is
calculated by using a deterministic approximation for the
change in frequency of the Kth mutant. In an experiment,
and in simulation, individuals of a population are sampled
with a sample size ns; in simulation this is done using multi-
nomial sampling with the allele frequencies determined from
simulation. Here, for simplicity, we assume that when a mutant
allele frequency is above xs ¼ 1=ns then the mutant will be
found in a sample of size ns. With a deterministic time-course
of the Kth mutant, there is a one-to-one correspondence be-
tween its frequency at time T, xKðTÞ and the time of estab-
lishment tK, given that its frequency must be xKðtKÞ ¼ 1=2Ns.

To calculate xKðtÞ, we use the fact that in the deterministic
limit the ratio of the frequency of any mutant allele is fixed
with respect to the overall mutant population, that is,
xKðtÞ=xðtÞ ¼ const; this is true whenever the growth func-
tion of each mutant is of the same form dxi

dt ¼ fðxÞxi, which
can be proved by showing

dðxi=xjÞ
dt ¼ 0. In this case, once a

mutant arises in the population, we assume no more muta-
tions can create the mutant from wild type and that there are
no back mutations, so the growth of each mutant follows:

dxi

dt
¼ sð1�

X
j¼1

xjÞxi; (9)

while the growth of the total number of mutants is given by
equation (1); however, once the overall mutant population
has established the effect of mutations will be weak compared
with selection, as long as s	 l, and so to a good approxi-
mation, the total mutant population also follows the same
form as equation (9).

It is then simple to show that the frequency of the Kth
mutant is just a scaling of the frequency of the total mutant
population x(t):

xKðtÞ ¼
xðtÞ

2NsxðtKÞ
; (10)

where we have used the fact that at the establishment time tK

we know that the frequency of the mutant must be
xKðtKÞ ¼ 1=2Ns, and that xKðtÞ=xðtÞ ¼ xKðtKÞ=xðtKÞ. We
then solve xKðTÞ ¼ xs, for tK to give

tKðTÞ ¼ t� þ 1

2c
ln

2Nlþ xðTÞ=xs

2Ns� xðTÞ=xs

� �
; (11)

where we have again used the identity tanh�1ðzÞ ¼ 1
2 ln 1þz

1�z

� �
(jzj < 1) to arrive at this expression.

Simple Expression for Mean Number of Origins
The mean number of origins is calculated by inserting equation
(11) into equation (8) and then after some algebra we find:

�gðTÞ ¼ 2Nl ln 1þ xðTÞns

2Nl

� �
; (12)

which we see only has dependence on the selection coeffi-
cient s through the frequency of the total mutant frequency
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x(T) at time T. This is consistent with the results in Pennings
and Hermisson (2006a), where in the coalescence framework
they find the probability of a soft sweep in a sample size of 2,
at fixation, is independent of the frequency sample path of
the mutant allele and weakly bounded by selection through
the fixation time. This result suggests that larger sample sizes
ns increase the number of independent origins we should
expect to observe. In practice, we can replace x(T) by the
frequency of the mutant in the sample with little error, since
it has a weak logarithmic dependence in equation (12), so
that xðTÞns ¼ nm is the number of mutants in the sample.
Making the standard replacement h ¼ 2Nl, we arrive at a
pleasingly simple expression for the mean number of origins
in the sample:

�gðTÞ ¼ h ln 1þ nm

h


 �
; (13)

which is only a function of h and the number of mutants nm.
As shown in the Supplementary Material online, the the-

ory can be extended to the diploid case, where we find an
expression for the mean number of origins as a function of
the dominance coefficient h (assuming incomplete domi-
nance 0 < h < 1) and the selection coefficient s, as well
as N and l. In this case it is not clear whether the mean
number of origins, and hence the Poisson distribution, is in-
dependent of the selection parameters s and h, as the result-
ing expression is complex. However, as we will see, the haploid
expression, with h ¼ 4Nl in equation (13), is as accurate in
the estimation of the effective population size as using the
diploid expression, which suggests the dependence on s and
h are weak. In addition, as shown by Pennings and Hermisson
(2006a), the probability of a soft sweep has a weak �s2 de-
pendence in diploid populations, which would also suggest a
weak dependence on s for the number of origins.

Simulations

Methods
We simulate the population genetics of multiple recurrent
mutations at a single locus using an infinite-alleles Wright–
Fisher process. Simulations start assuming a fixed wild type, so
that the mutant frequency xðt ¼ 0Þ ¼ 0; each subsequent
mutation that arises is given its own “allelic” identity to rep-
resent it arising on a different haplotype background, and
once it enters the population the same allele cannot be pro-
duced by mutation from the wild type or any other allele. As
is commonly assumed for an infinite-alleles process, we as-
sume in addition there are no back mutations to the wild
type. Each mutant allele has the same selective advantage s
relative to the wild type. For population sizes up to N ¼ 106,
we use multinomial sampling of alleles with fixed population
size N to calculate the stochastic change in frequency be-
tween generations due to selection and drift. This is replaced
by the equivalent multivariate Gaussian distribution with co-
variance matrix hDxiDxji � hDxiihDxji ¼ xiðdij � xjÞ for
population sizes larger than 106. Correspondence between
the two methods was checked for simulations at smaller
population sizes (not shown). In both cases, mutations are

treated separately and introduced with a nonhomogeneous
Poisson process, where the mean number of new mutant
alleles in generation tþ 1 is given by Nl½1� xðtÞ�, where
x(t) is the frequency of all mutants in generation t; each of
these new mutant alleles arise in the population with fre-
quency 1=N (or 1=2N in the diploid case).

At various time points T, we sample the vector of frequen-
cies of all independent mutants xðTÞ ¼ ½x1ðTÞ; x2ðTÞ;
x3ðTÞ; . . .; xKðTÞ�, using multinomial sampling with Kþ 1
categories (including the wild type, which has frequency
1�

PK
k¼1 xk), and sample size ns. This produces a sample

vector nðTÞ, where nkðTÞ is the number of the kth mutant
sampled. The number of origins gðTÞ is then the number of
different mutants that are nonzero in the sample.

Results
In figure 1 is plotted the time series of the frequency of each
recurrent mutation from the Wright–Fisher simulations for N
¼ 106 and s¼ 0.05 and two different mutation rates, corre-
sponding to 2Nl ¼ 1 (A) and 2Nl ¼ 10 (B). We see that at
the larger mutation rate there are correspondingly many
more mutants in the population, and that the rate of pro-
duction of mutants is proportional to the frequency of the
wild type, signified by the lack of new mutants once the total
mutant population has fixed. The red curve is a plot of equa-
tion (3), the deterministic solution for the total mutant pop-
ulation over time, and we see that it matches well the time-
course found in the simulations, particularly for 2Nl ¼ 10,
where stochastic effects of the de novo generation of mutants
becomes negligible. The frequency of each of the recurrent
mutants follows the same scaling as the total frequency of all
mutants, as assumed in the Theory section, and once the
mutant population fixes, each of the recurrent mutants pla-
teaus and stops changing in frequency (up to small relative
fluctuations), which is as predicted by equation (9). In other
words, in the deterministic limit there is a “crowding-out”
effect, characteristic of logistic growth, where the growth of
a mutant is limited by all other mutants in the population.

In each plot, the highlighted mutant in the thick magenta
solid line shows an example of a mutant establishing at the
frequency xest ¼ 1=2Ns, at time tK, and then reaching the
critical sampling frequency at a time T. If T is the time of
sampling, then this would be the last possible mutant that
could contribute to a sample, and the time between 0 and tK

would be the window over which mutants can be generated
that could contribute to a sample at time T. The distribution
of the number of origins at time T is just the distribution of
the number of establishments in this time window; this is the
basis of the semideterministic theoretical calculation of the
number of origins described above.

Figure 2 shows the results for the mean number of origins
�gðtÞ calculated from simulation (squares), compared the
semideterministic theory presented in this article (thick lines)
and Pennings and Hermisson’s calculation (thin lines) based
on Ewens’ sampling theory (Pennings and Hermisson 2006a;
Ewens 2010). We see in general that the time-course of �gðtÞ
reflects the time-course of the frequency of the total mutant
population, with a sigmoidal variation, where for the largest
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A B

FIG. 1. Time series of the frequency of each independent origin of the same recurrent mutant (range of different colors). (A) N ¼ 106; 2Nl ¼ 1,
and s¼ 0.05, (B) same as (A), but with 2Nl ¼ 10. Solid black line is the sum of all mutant frequencies (xðtÞ ¼

P
k xkðtÞ), dashed black line the

frequency of the wild type (1� xðtÞ), and the solid red line is the deterministic time-course given by equation (3).

FIG. 2. Average number of origins for population sizes of N ¼ 106; N ¼ 107, and N ¼ 108. The filled symbols show the simulation results and
standard error bars for the parameter combinations shown in the legend; for N ¼ 106 and N ¼ 107, the simulations used multinomial sampling of
the Wright–Fisher drift process with 50 and 10 replicates, respectively, for each parameter combination, whereas for N ¼ 108, the multinomial
sampling is replaced by the multivariate Gaussian distribution approximation of the drift process (see the Methods section above), where 100
replicates are used in this plot. The solid thick lines are the predictions for the same parameter combination of the semideterministic theory
described in this article (Methods), whereas the thin lines represent the prediction of Pennings and Hermisson (2006a), based on Ewens’ sampling
theory (Ewens 2010).
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selection coefficients we see a plateau reached in <500 gen-
erations. Both the semideterministic theory and Ewens’ the-
ory predict that the plateau of �gðtÞ is independent of the
selection coefficient, since �gð1Þ is roughly given by time
window over which mutants can be generated, which ap-
proximately scales as 1=s, multiplied by the rate of establish-
ment of mutants, which scales like �s, cancelling the s
dependence. This is seen more clearly in figure 3 which is
the number of origins plotted for N ¼ 108 over a longer
timescale for various values of 2Nl and s; we see that the
semideterministic theory and the simulations show the pla-
teau is indeed independent of the selection coefficient and
only dependent on 2Nl. We see that the simulations agree
with this prediction for the larger population sizes, but for
N ¼ 106, the number of origins decreases for long times; this
is due to drift removing very low frequency variants at the
smaller population size, whereas at the larger population sizes
drift acts more slowly, such that the change is insignificant on
the timescale of the simulation. Finally, we see that the time-
course of the mean number of origins before the plateau is
different for each population size, where for the smaller se-
lection coefficients the mean number of origins arises more
slowly for larger population sizes. This is related to the deter-
ministic time-course of the mutant frequency which, given
the initial condition that the mutant frequency is zero, has a
strong dependence on the mutation rate as shown by equa-
tion (5). The simulations are performed for fixed 2Nl, and so
a larger population size means a smaller mutation rate and so
�gðtÞ increases more slowly.

We also examine the distribution of the number of origins
in figure 4 from Wright–Fisher simulations (1,000 replicates)
at a population size N ¼ 108, selection coefficient s¼ 0.05,
and mutation rates 2Nl ¼ f0:1; 1; 10g. The theory pre-
sented in this article describes the distribution very well for

all times up to and including fixation. On the other hand,
Ewens’ sampling framework predicts in a sample of ns neutral
alleles that the distribution of the number of distinct mutant
alleles g is

pðgjN; l; nsÞ ¼
hg½ ns

g �

hðnsÞ
; (14)

where ½ n
k
� is the unsigned Stirling number of the first kind,

which is a combinatorial factor which arises in the expansion

of the rising factorial hðnÞ ¼
Pn

k¼0½ nk �h
k ¼ hðhþ 1Þ

ðhþ 2Þ. . .ðhþ n� 1Þ. However, if the mutant allele has
not fixed then the probability distribution of g mutants alleles
is the convolution of equation (14) with a binomial distribu-
tion that in a sample of size ns we see nx mutant alleles given a
frequency x(t) of the mutant population. This convolution
has no known closed-form solution and for large sample sizes
is computationally intensive. In figure 4, the dotted lines are a
plot of Ewens’ theory equation (14) without this convolution
and ns replaced in equation (14) by nsxðtÞ (calculated in
Mathematica [Wolfram Research, Inc. 2018]) and as expected
it does poorly when the mutant has not yet fixed and is quite
accurate at later times when the mutant is near or at fixation.
When the mutant allele is at fixation, the semideterministic
likelihood of this article and that from Ewens’ formula are
closely matched (fig. 7).

Parameter Estimation

Haploid
As described above, the semideterministic theory calculates
the likelihood function for the number of observed indepen-
dent origins, and we find it is only a function of 2Nl, the

FIG. 3. Average number of origins for population size of N ¼ 108 on linear-log scale, for 2Nl ¼ f1; 10; 100g and s ¼ f0:05; 0:005g showing that
plateau number of origins is independent of s. The filled symbols show the simulation results and standard error bars for the parameter
combinations shown in the legend. The solid thick lines are the predictions for the same parameter combination of the semideterministic theory
described in this article (Methods).
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frequency of the mutant population at the time of sampling
x(T) and the sample size ns ¼ 1=xs. Typically, the mutation
rate will have been independently determined, and so we can
determine a maximum likelihood estimate of N given knowl-
edge of the ns and x(T), which can be estimated from the
sample. In figure 5A is the log 10-error of this estimation
process using 100 replicate Wright–Fisher simulations, with
sample size ns ¼ 1,000, where the true N is known. We see
that for mutant frequencies x> 0.1, the error of our estimate
N� is always less than a factor of 100:2 � 1:6, which means
the effective population size is accurately determined to
much less than an order of magnitude. Moreover, the accu-
racy increases for increasing 2Nl, where it is<100:1 � 1:3 for
2Nl 
 10.

Diploid
We can also accurately estimate the effective population size
from diploid simulations. As described in the Supplementary
Material online, we extend the semideterministic theory to
the diploid case with incomplete dominance (0 < h < 1)
by using the exact implicit solution t(x) for how the frequency
x of the mutant allele changes over time to calculate time of
establishment of the last mutant to be sampled at some later
time T. This is then used to calculate the likelihood function
pðgjN; s; h; lÞ, where we assume a known mutation rate. We
are still left with having to jointly estimate N, s, and h in the
diploid case. However, we expect that the dependence on
h and s will be weak (Pennings and Hermisson 2006a), al-
though it is not straightforward to show this explicitly, as in
the haploid case, where there is no dependence on s, even
before fixation. To show this, we use the implicit relation
(eq. 2, Supplementary Material online) to numerically esti-
mate s� that gives t(x) ¼ T, where we assume perfect

knowledge of the dominance coefficient h. We see in
figure 5B that the estimate of the effective population size
from diploid simulations has a similar accuracy as the haploid
simulations and is robust to knowledge of the exact time
selection sets in T; the error is taken up in the estimate of s
(not shown). We also use the haploid semideterministic the-
ory to estimate the effective population size, using h ¼ 4Nl
in equation (13) to account for double the number of chro-
mosomes, shown by plus signs in figure 5B; again we see that
the estimate of N is identical using the haploid method for a
given set of parameters, s, h, and l. Both the robustness of
estimates to the exact knowledge of T and that the haploid
theory gives identical estimates indicates that the direct de-
pendence on s and h is very weak or nonexistent, at least for
weak absolute selection (Pennings and Hermisson 2006a).

Haploid with Preexisting Mutations
Finally, we examine the effect that preexisting mutations have
on our estimate of the effective population size. We run
simulations such that for times Td < t < 0 the
mutant allele has a negative selection coefficient s ¼ �sd,
where 2Nsd ¼ f0; 103; 104; 105; 106g; Td ¼ �1; 000 gener-
ations and N ¼ 108, s¼ 0.05 and 2Nl ¼ 1. The mean num-
ber of origins �g is plotted in figure 6A, for the various values of
sd as well as for the case of no preexisting mutations (black
hexagram symbols); we see that as the mutant allele becomes
increasingly neutral before positive selection sets in, the num-
ber of origins is larger, except for long times where the plateau
of �g is approximately independent of sd. This suggests the
overall effect of preexisting mutations is to cause a time ad-
vance on the number of origins. This again would suggest that
the estimate of effective population size should be robust to
preexisting mutations, which we see to be the case in

FIG. 4. Distribution of the number of origins for simulations with various mutation rates for N ¼ 108 and s¼ 0.05 (open circles) compared with
theory in this article equation (12) and (7) (solid lines) and Ewens’ sampling formula (dotted lines), both with ns¼ 1,000. For the mutation rates
2Nl ¼ f0:1; 1; 10g, the corresponding typical fixation time (eq. 5) is t� � f370; 320; 280g generations.
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figure 6B, where the error in estimating N using equation (13)
for the mean of the Poisson likelihood function is roughly
independent of sd and very similar to assuming no preexisting
mutations (black hexagrams).

Application to Data from Ag1000 Project
Recently published data from the Ag1000 project have exten-
sive population level sampling of the genomes of mosquitoes
across sub-Saharan Africa (Anopheles gambiae 1000 Genomes

A B

FIG. 5. log 10-error in estimating the true effective population size, for (A) haploid populations with N ¼ 108, (B) diploid populations with
N ¼ 5� 107, for various selection coefficients, mutation rates, and dominance coefficients (diploid only) from Wright–Fisher simulations (100
replicates for each parameter combination). (A) We use equations (12) and (7) to determine the maximum likelihood estimate. (B) For the diploid
population, we use the same Poisson likelihood function, but with mean given by equations (13) and (14) in the Supplementary Information,
where we assume perfect knowledge of T (squares) and also compare to the case where we have a systematic error in our knowledge of T, where the
true time is T=2 instead T (circles), and we see the estimates are unchanged. In addition, for the diploid population we use the haploid likelihood
function (eqs. 13 and 7) with h ¼ 4Nl to estimate N (plus signs) and find again excellent agreement.

A B

FIG. 6. Mean number of origins for haploid simulations with preexisting mutations (A), where the black hexagram symbols represent simulations
without preexisting simulations, and (B) log 10-error in maximum likelihood estimate of the true effective population size N ¼ 108 from Wright–
Fisher simulations with various values of the deleterious selection coefficient sd (100 replicates for each parameter combination).
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Consortium 2017). The gene for the voltage-gated sodium
channel (Vgsc) is known to have at least two single nucleotide
mutations in the same codon that confer resistance to insec-
ticides, L995S (2984T > C) and L995F (2985A > T), and
phylogenetic analysis of this gene reveal ten haplotype
clusters (fig. 4 in Anopheles gambiae 1000 Genomes
Consortium [2017]) with a current mutant frequency of
x � 0:78 determined directly from the data. If we assume
either mutation is required for resistance, this gives a mu-
tation rate of l � 6� 10�9, assuming a base-pair muta-
tion rate of 3� 10�9, which is based on a recent accurate
estimate from Drosophila (Keightley et al. 2014), as the
mutation rate has not been directly measured for A.
gambiae. Applying the haploid algorithm to this data,
using h ¼ 4Nl in equation (13) (accounting for the factor
of 2 between chromosomes and individuals), and nm ¼
1,193 (given a sample size of ns ¼ 1,530 chromosomes
from 765 mosquitoes), gives an estimate of h ¼ 1:5
ð0:66; 3Þ, which corresponds to an effective population
size N ¼ 6:2� 107 ð2:7� 107; 1:2� 108Þ, where the val-
ues in brackets are the 95% confidence intervals (2 ln units
from max likelihood), as shown in the plot of the likeli-
hood function in figure 7. This estimate is almost 2 orders
of magnitude greater than that of N � 106 from a nucle-
otide diversity p � 0:01. In the same article, the authors
use the more sophisticated “stairway” plot (Liu and Fu
2015) and @a@i (Gutenkunst et al. 2009) method to esti-
mate population history and find most recent effective

population sizes of order N � 107, which is roughly six
times less than our estimate.

Note that we can also apply the method to each resistance
mutant separately L995S and L995F, which have frequencies
of�0:28 and�0:5, and five independent origins each, which
assuming a single base-pair mutation rate of �3� 10�9 for
each of these, gives the following estimates of effective pop-
ulation size N ¼ 6:6� 107 ð1:9� 107; 1:7� 108Þ, and
N ¼ 6:0� 107 ð1:8� 107; 1:5� 108Þ, respectively, where
the values in brackets, are again the 95% confidence intervals.
We see the estimates based on each single nucleotide poly-
morphism are consistent with the estimate above based on
both single nucleotide polymorphisms, but, as expected, with
larger confidence intervals.

However, it is known that in many sub-Saharan regions
mosquitoes undergo seasonal demographic changes, where
the population size changes between wet and dry seasons by
up to a peak-to-trough factor of / ¼ Nmax=Nmin ¼ 100
(Minakawa et al. 2002; Mabaso et al. 2007; Bomblies et al.
2009; Walker et al. 2013), where Nmax and Nmin are the max-
imum and minimum of the population size. To check the
impact of demographic changes on our population size esti-
mates, we ran simulations for a mutant with s¼ 0.05, with
an oscillating population size NðtÞ ¼ 1

2 Nmax þ NminÞð
þ 1

2 Nmax � NminÞ sinð2pt=DTÞð , with a period of DT ¼ 12
generations, which is �1 year and much shorter than the
expected time to fixation of the mutant of�300 generations

FIG. 7. Likelihood (normalized) of the number of origins as function of effective population size given an observed number g ¼ 10 and samples size
ns¼ 1,530 chromosomes, corresponding to that found for the Ag1000 project (Anopheles gambiae 1000 Genomes Consortium 2017) for the Vgsc
resistance locus. As shown in the legend, the semideterministic theory in this article, assuming a current day frequency of x¼ 0.78 (as observed) is
compared with assuming x¼ 1 and the Ewens’ sampling theory equation (14), which only has applicability for x¼ 1. The 95% confidence intervals
(gray dotted lines) and maximum likelihood effective population size (red dotted line) are shown for the semideterministic likelihood function
with x¼ 0.78.
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(eq. 5). The simulations were performed with various peak-to-
trough ratios / ¼ Nmax=Nmin ¼ f10; 100; 1000g and with
two constraints: 1) that the geometric mean hNiG
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NmaxNmin

p
¼ N ¼ 108 and 2) that the harmonic mean

hNiH ¼ 2ðN�1
max þ N�1

minÞ
�1 ¼ N ¼ 108. Simulations with

constrained arithmetic mean were also performed but are
not shown.

Overall, we see in figure 8 that constraining the harmonic
mean of the maximum and minimum population size for a
given / gives fewer origins than simulations with a constant
population size, and more origins than simulations that con-
strain the geometric mean, the exception being for / ¼ 10
where the number is slightly larger, but roughly equal, to the
constant population size case. This means we can broadly say
that using the constant population size theory to estimate N�

will give a relatively tight lower bound on the true harmonic
mean (with weaker lower bounds on the geometric
mean, and arithmetic mean as discussed below). Given the
simple relation between the harmonic mean and maximum
and minimum population sizes we can derive expressions
for a lower bound on Nmin and Nmax given an estimate of
N� and /:

Nmax >
N�

2
ð1þ /Þ

Nmin >
N�

2
1þ 1=/Þ:ð

(15)

This is true for any value of /. On the other hand, from
figure 8, we can see for / ¼ 100 that the number of origins

due to the harmonic constraint is approximately one half the
origins assuming a constant effective population size, so as
equation (13) is almost linear in h, with only a weak logarith-
mic nonlinearity, the true harmonic mean can be estimated
as hNiH � 2N� (simulations with harmonic mean con-
strained to 2N� confirm this—not shown). The field data
(Minakawa et al. 2002; Mabaso et al. 2007; Bomblies et al.
2009; Walker et al. 2013) suggest / � 100, which means
hNiH < 2N�. We can then upper bound the maximum
and minimum effective population sizes as Nmax < N�ð1þ
/Þ and Nmin < N�ð1þ 1=/Þ, which is only true specifically
for / � 100.

Altogether, this gives the following bounds on Nmax and
Nmin: 3:1� 109 � Nmax � 6:2� 109 and
3:1� 107 � Nmin � 6:2� 107, using the estimate above
of N� ¼ 6:2� 107. Using these bounds, we can then put a
bound on the arithmetic mean hNi ¼ 1

2 Nmax þ NminÞð , as
1:6� 109 � hNi � 3:1� 109. Note that this result needs
a little care in interpretation, since as seen in figure 8 for /
¼ 10 the harmonic constraint gives slightly greater indepen-
dent origins, however, it is with near equality and within the
errors of these estimates. Simulations that constrain the ar-
ithmetic mean of the maximum and minimum population
sizes show that the number of origins monotonically
decreases with increasing /, but are significantly less than
even the constrained geometric mean case (not shown).
This means our estimate N� will be less than the arithmetic
mean for all /, but as with the geometric mean, the equiv-
alent to equation (15) would provide a much weaker lower
bound on Nmax and Nmin.

FIG. 8. The mean number of origins from Wright–Fisher simulations (1,000 replicates) for oscillating population size with period DT ¼ 12
generations, selection coefficient s¼ 0.05, 2Nl ¼ 1, and with the geometric mean (green) and harmonic mean (purple) of Nmax and Nmin

constrained to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NmaxNmin

p
¼ 2ð1=Nmax þ 1=NminÞ�1 ¼ N ¼ 108, for different peak-to-trough ratios. Black squares represent constant popula-

tion size simulations.
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Discussion
Estimating the recent effective population size is of para-
mount importance to understanding and predicting the evo-
lutionary dynamics of natural populations. As has been
previously suggested (Karasov et al. 2010), methods that es-
timate effective population size based on nucleotide diversity
are likely to give estimates which are much smaller than the
current day census size, as such metrics are dominated by
historical population bottlenecks. Although methods based
on linkage disequilibrium can detect recent effective popula-
tion sizes, they tend to be limited to small populations
(Waples and Do 2010). In addition, methods that estimate
demographic histories tend to be computationally compli-
cated and with limited range of applicability, such as only
detecting long-term variations (Pybus et al. 2000;
Gutenkunst et al. 2009; Liu and Fu 2015) or limited to small
population sizes (Browning and Browning 2015). However, a
genomic region undergoing current selection should leave a
signature which represents an effective population size more
representative of the census size during the sweep (Karasov
et al. 2010). When the mutational input into a population is
large 2Nl > 1, we expect a signature of a selective sweep will
be a large diversity of haplotype backgrounds, due to multiple
and recurrent independent instances of the same mutation
that is under positive selection; such a sweep has been termed
a soft sweep as multiple rather than a single haplotype dom-
inate the sweep (Hermisson and Pennings 2005). Although
Pennings and Hermisson seminal work (Pennings and
Hermisson 2006a, 2006b) laid out much of our understanding
of soft sweeps within a coalescence framework, many quan-
tities like the likelihood of the number of origins, particularly
when the mutant population has not yet fixed, are not
straightforward to calculate numerically.

In this article, we have presented a simple semidetermin-
istic haploid forward-time theory of the number of indepen-
dent origins of a recurrent mutation. We show that the
distribution of the number of origins is very closely approx-
imated by a Poisson distribution with a mean number of
origins that has an exact and simple closed-form solution
for the haploid case, which is independent of the selection
coefficient and the age of the allele, and only depends on 2Nl,
the sample size and the current day mutant frequency. We
show it works robustly for diploid populations with incom-
plete dominance, and whether or not mutations are preexist-
ing in the population before the selection pressure arose.

Our forward-time semideterministic theory also provides
an intuitive insight into the dynamics of soft sweeps, where it
is clear there is a demarcation between the stochastic and
deterministic stages for each haplotype contributing to a soft
sweep. New origins are generated by recurrent mutation, and
these must establish by growing to a frequency where deter-
ministic selection outweighs drift; thereafter growth is ap-
proximately deterministic of each independent mutant.
The deterministic part of the theory shows that at sufficiently
large population sizes the growth of each recurrent mutant is
just a scaling of the overall mutant population and grows
logistically, where other mutants “crowd-out” the growth of

a particular mutant; once the wild type is extinct new
mutants cannot arise, and growth of each recurrent mutant
is zero, so this structure is effectively frozen, which is con-
firmed by simulation up to small fluctuations due to drift.
Including drift in this picture means that this frozen structure
is only temporary as drift will take of order N generations to
act. This is seen in the simulations at even a moderate pop-
ulation size of N ¼ 106, where drift can act on the small
frequency variants causing a decrease in independent origins
for long times; however, for very large populations N	 107

there is a stable plateau as predicted by the theory. This
suggests that Ewens’ sampling theory and the calculation in
this article will not be valid for small populations after fixation
of the mutant, since the supply of mutants has been switched
off; therefore the semideterministic approach in this article
will be limited to times at or before fixation for small popu-
lation sizes.

The framework of this semideterministic theory also
makes clear why selection should have little effect on the
plateau number of origins, as the rate of establishment is
proportional to the s, whereas the time window over which
new origins can be generated is proportional to the lifetime of
the wild type, which scales as 1=s, giving a number of origins
that is independent of s. In addition, our result for the mean
number of origins shows further that it is only dependent on
the selection coefficient through the frequency of the mutant
population, and in particular on the ratio of the number of
mutants in the sample to the number of new mutants that
enter every generation (2Nl). Surprisingly, as found by
Pennings and Hermisson (2006a), the number of origins
does not depend on the exact sample path (history of the
population frequency) of the mutant; here we see further that
the number of origins only depends on the frequency of the
mutant at a given time.

Finally, we estimated the effective population size of A.
gambiae and Anopheles coluzzii to be N � 6:2� 107 using
data from the 1000Ag project (Anopheles gambiae 1000
Genomes Consortium 2017), which is roughly 2 orders of
magnitude larger than estimated using the same underlying
data from nucleotide diversity and much closer to what is
likely to be the census population size in recent history. This
supports simple calculations of Karasov et al. (2010), which
suggested values of effective population size derived from
nucleotide diversity are too small to explain adaptation of
resistance alleles or the occurrence of multiple resistance
haplotypes for the Ace gene in Drosophila melanogaster.
Here, we have provided a very simple and robust method
to quantify this effect.

The demographic history of Anopheles has also been esti-
mated from the 1000Ag project data (Anopheles gambiae
1000 Genomes Consortium 2017) using the “stairway” plot
(Liu and Fu 2015) and @a@i (Gutenkunst et al. 2009) meth-
ods, giving a recent population size of roughly N � 107,
greater than the nucleotide diversity estimate, but smaller
than our estimate. A possible reason for this discrepancy is
that these methods tend to detect long-term demographic
changes, so that the difference could represent recent
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population growth in the past 100 years. However, there are
reasons to be uncertain about these estimates; the estimates
in Anopheles gambiae 1000 Genomes Consortium (2017) are
based on applying each of these methods to data from each
geographic region, whereas the estimate here is based on data
from all geographic regions in the Ag1000 data. In the
completely panmictic case, the estimate in each region
should agree with the estimate based on pooling the data,
but as discussed below if there is spatial structure then the
relation between the two estimates would not be straightfor-
ward. There is also good reason to suggest there may have
been a reduction in effective population size due to action of
insecticides (Athrey et al. 2012; O’Loughlin et al. 2016).

More generally, a recent population expansion would fur-
ther lead to our method underestimating the current day
population size. In an expanding population, there would
be a maximum in the number of wild-type individuals that
produce independent origins at around the time t�, since at
very early times the overall population size is small and at
longer times than t� the wild type is near extinction.
Therefore, if selection is particularly strong and t� occurs far
in the past compared with the current age of the allele, this
would be a very large underestimate, as the number of ob-
served origins would be controlled by a time when the census
was very small. For the Vgsc gene of A. gambiae given that the
current day mutant frequency xðTÞ ¼ 0:78, and T � 960
generations (assuming that insecticides were introduced
about 80 years ago), we can use equation (3) to numerically
find the best fit selection coefficient as s� � 0:017 with the
constraint that l ¼ 6� 10�9. Then, using equation (5), we
calculate t� � 885 generations; this is the recent past, which
suggests our estimate N� should not be too great an under-
estimate. On the other hand, if there has been a recent de-
cline in population numbers then this would have an
opposite effect, where our method would overestimate
the effective population size due the overall number of
origins being dominated for times t < t�, when the pop-
ulation was larger in the past. Again, with our estimate of
t� being in the recent past suggests the error will be small.
Additionally, as discussed in Pennings et al. (2014), if there
are preexisting mutations then the population size esti-
mate would be influenced by the size before insecticides
were introduced.

It is also known that the Anopheles populations undergo
seasonal demographic fluctuations with peak-to-trough pop-
ulation sizes of order 10–100 (Minakawa et al. 2002; Mabaso
et al. 2007; Bomblies et al. 2009; Walker et al. 2013). To inves-
tigate the effect of such fluctuations on our population size
estimates, we performed simulations of oscillating population
sizes over time for peak-to-trough factors <1,000. These
results showed that a constant population size estimate will
tend to underestimate the harmonic mean of the maximum
and minimum of the population size for large peak-to-trough
ratios /. In addition, the simulations show for / ¼ 100, the
average number of origins is approximately one half.
Together, this allowed quantification of bounds on the
maximum and minimum population size giving 3:1� 109 �
Nmax � 6:2� 109 and 3:1� 107 � Nmin � 6:2� 107,

assuming a peak-to-trough ratio of / � 100, as suggested
by the field data (Minakawa et al. 2002; Mabaso et al. 2007;
Bomblies et al. 2009; Walker et al. 2013). This then suggests a
mean (arithmetic) population size bounded as 1:6� 109 �
hNi � 3:1� 109.

One might ask if seasonal oscillating demographics could
alone explain the discrepancy between the N estimated from
nucleotide diversity and our larger estimate here. Our results
in figure 8 suggest that for increasing peak-to-trough ratio, we
would expect to underestimate the harmonic, geometric and
arithmetic mean (arithmetic mean not shown), and so given
our constant population size estimate using equation (13) of
N� ¼ 6:2� 107, we in fact would expect the discrepancy
with respect to the nucleotide diversity estimate to be even
larger and this cannot in itself explain the discrepancy.
However, this is comparing to the estimate of N from p as-
suming a constant/fixed population size. For an oscillating
population, the nucleotide diversity will be controlled by
the harmonic average of the effective population size over a
cycle (Wright 1938; Charlesworth 2009), which can be shown
to be given by the geometric mean of the maximum and
minimum of the sinusoidal demographic variation (i.e.,

1
DT

Ð DT

0 NðtÞ�1dt��1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NmaxNmin

p
¼ hNiG

h
). This means

for different values of peak-to-trough factors / with the
same geometric mean

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NmaxNmin

p
, the nucleotide diversity

should be unchanged, on the other hand the simulations in
figure 8 show that we should observe fewer origins for in-
creasing /; this is inconsistent with observations, as fewer
origins corresponds to an underestimate of the geometric
mean, which is the effective population size estimated by
nucleotide diversity. In other words, oscillating demographics
with an unchanging mean would lead to the nucleotide di-
versity estimate of N to be greater than the value estimated
from number of origins assuming a nonoscillating and fixed
population size. We observe the opposite, which suggests
there is another mechanism by which nucleotide diversity
has been suppressed, such as historical and sustained
bottlenecks.

The results of these oscillating demographic simulations
are in contrast to those of Wilson et al. (2014), which showed
that the probability of a soft sweep in a sample size of 2 only
depends on the cycle-averaged harmonic mean, when demo-
graphic oscillations are fast. As mentioned above the cycle-
averaged harmonic mean is just the geometric mean of
the maximum and minimum population sizes; however,
our results show different peak-to-trough ratios give sig-
nificantly different numbers of independent origins for
the same geometric mean. This suggests the probability
of a soft sweep in a sample size of 2 is a weak measure of
the diversity of haplotypes compared with the number of
independent origins.

Our estimation also makes the assumption that the pop-
ulations are well mixed or panmictic and constant over time,
which clearly requires testing regarding the Ag1000 data,
which consists of the sequences of individuals collected
over the wide spatial region of sub-Saharan Africa. As dis-
cussed by Ralph and Coop (2010), we would expect our
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results to be accurate in the limit of strong long-range or
nonlocal dispersal, which mimics the panmictic approxima-
tion; on the other hand, if local migration is strong, spatial
structure of the populations would tend to give a larger num-
ber of origins compared with the panmictic case, which
would suggest our method would overestimate the effective
population size needed to explain an observed number of
origins. In other words, it is possible that spatial structure
could account partially or wholly for the large number of
origins observed in natural populations of A. gambiae and
Anopheles coluzzii. Further theory and simulations will be
needed to test this hypothesis.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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