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Abstract: In recent years, cinematography and other digital content creators have been eagerly turn-
ing to Three-Dimensional (3D) imaging technology. The creators of movies, games, and augmented
reality applications are aware of this technology’s advantages, possibilities, and new means of ex-
pression. The development of electronic and IT technologies enables the achievement of a better and
better quality of the recorded 3D image and many possibilities for its correction and modification in
post-production. However, preparing a correct 3D image that does not cause perception problems for
the viewer is still a complex and demanding task. Therefore, planning and then ensuring the correct
parameters and quality of the recorded 3D video is essential. Despite better post-production tech-
niques, fixing errors in a captured image can be difficult, time consuming, and sometimes impossible.
The detection of errors typical for stereo vision related to the depth of the image (e.g., depth budget
violation, stereoscopic window violation) during the recording allows for their correction already
on the film set, e.g., by different scene layouts and/or different camera configurations. The paper
presents a prototype of an independent, non-invasive diagnostic system that supports the film crew
in the process of calibrating stereoscopic cameras, as well as analysing the 3D depth while working
on a film set. The system acquires full HD video streams from professional cameras using Serial
Digital Interface (SDI), synchronises them, and estimates and analyses the disparity map. Objective
depth analysis using computer tools while recording scenes allows stereographers to immediately
spot errors in the 3D image, primarily related to the violation of the viewing comfort zone. The
paper also describes an efficient method of analysing a 3D video using Graphics Processing Unit
(GPU). The main steps of the proposed solution are uncalibrated rectification and disparity map
estimation. The algorithms selected and implemented for the needs of this system do not require
knowledge of intrinsic and extrinsic camera parameters. Thus, they can be used in non-cooperative
environments, such as a film set, where the camera configuration often changes. Both of them are
implemented with the use of a GPU to improve the data processing efficiency. The paper presents
the evaluation results of the algorithms’ accuracy, as well as the comparison of the performance of
two implementations—with and without the GPU acceleration. The application of the described
GPU-based method makes the system efficient and easy to use. The system can process a video
stream with full HD resolution at a speed of several frames per second.

Keywords: stereoscopy; 3D; disparity map; uncalibrated rectification; graphics processing units;
GPU; diagnostic system

1. Introduction

Stereopsis—the natural ability of humans and animals to see the 3D world [1,2]—still
presents a challenge to emulate in the electronic and IT world. Stereoscopy, a technique
imitating three-dimensional vision, allows reproducing not only the shape and colour of
objects, but also their mutual position in space and distance from the observer. Thanks to
this, 3D technology enables new means of expression and allows providing the audience
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with impressions unreachable with Two-Dimensional (2D) imaging technology. For this
reason, cinematography has been interested in 3D imaging almost from its introduction.
The current rapid development of electronics, and hence video recording and process-
ing technologies, gave another opportunity for the development of 3D technology and
significantly expanded the areas of its application. It can be useful in education, science,
engineering, and medicine, but this paper focuses on broadly understood entertainment
applications (cinematography, games, virtual reality, etc.).

The application of current technologies such as high-resolution cameras and high-
performance software tools for video analysis and post-processing causes stereoscopic films
to be more realistic and impressive. The 3D displaying techniques previously available
only in cinemas (e.g., polarised 3D system in IMAX) are now implemented in standard
TV sets, so 3D content is readily and commonly available. However, the production of 3D
video is a complex process, more challenging than in the case of 2D. People responsible for
creating and supervising the 3D video recording and post-production need to know the
new issues and restrictions coming together with the transition from 2D to 3D content.

The most important new aspect related to 3D video quality assessment is visual
comfort. An incorrect 3D image may not only be aesthetically poor, but may also harm
the viewer’s well-being. The key sources of visual fatigue are vertical disparity, vergence-
accommodation conflicts, stereoscopic window violation, or exceeding the horizontal
disparity limits [3]. Therefore, various automated methods of assessing the quality of a 3D
image have been proposed [4]. Many of them are based on the determination and analysis
of horizontal and vertical disparities [4–6]. The horizontal disparity is significant, as it is a
good measure informing about the position of an object in space. It is assumed that objects
in a correct 3D image should be within a specific disparity range. The range, known as the
comfort viewing zone, varies depending on the camera used for video recording and the
planned display system. For this reason, the depth budget should be planned at the stage
of creating the film [7], and then, the assumed limits should be monitored throughout the
production cycle, starting with recording.

The image registration process is the crucial stage in creating 3D content that affects
the quality of the final material. The 3D quality assurance and control should start from
the very beginning of the movie production—from the raw image recording. Even though
the raw data go through post-production, where some errors can be fixed or minimised,
it is essential to ensure that it is high quality and error free. Its further processing and
improvement can be costly and time consuming, and sometimes, it can be even impossible
to fix some errors in the raw input image.

Electronic and IT tools for monitoring the quality, especially the disparity limits, can
significantly facilitate the work of a film crew and enable quick and reliable detection
of errors during 3D video recording. Exemplary systems supporting the recording crew
were proposed in [7–9]. The Stereoscopic Analyzer (STAN) is an image-based assistance
tool dedicated to 3D video shooting [8,9]. It supports the mechanical alignment of the
stereoscopic cameras, allows correcting the distortions in the recorded image, and enables
determining the current depth window. The depth budget analysis is performed based
on selected feature points. A similar functionality is offered by the real-time stereoscopic
analyser proposed in [7]. The analyser monitors the horizontal disparity distribution and
generates warnings if the budget is exceeded.

The system presented in this paper is dedicated to supporting the film crew, especially
stereographers, in 3D video quality control and assessment (see Section 2). It can be easily
integrated with 3D cameras and used directly on the film set during the recording process.
The system’s main goal is to calculate and visualise a complete disparity map for the
recorded scene. The map is appropriately coloured to inform about the screen plane and
the assumed depth limits. The system implements efficient GPU-based image-processing
algorithms to estimate and analyse the disparity map of the 3D video (see Section 3). The
results of evaluating the algorithms in terms of accuracy and computational performance
are shown in Section 5.
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1.1. Use Cases

The research presented in this paper aimed to propose a complete image analysis
method for live monitoring of the 3D video quality during professional recordings on a film
set. The proposed algorithms, prototype diagnostic system, and software implementation
were developed to ensure two main functionalities important during 3D video recording:

• Support during calibration of the stereoscopic rig to precisely adjust the optical paths
of two cameras and eliminate undesirable vertical disparity as one of the main sources
of visual fatigue;

• Disparity map estimation and 3D depth analysis to avoid depth budget/range exceed-
ing and stereoscopic window violation.

Professional systems for recording 3D movies consist of two independent film cameras
mounted on a dedicated mechanical structure called a stereoscopic rig. The rig allows
changing the relative position of the cameras and, most importantly, setting the selected
convergence. Due to their mechanical structure, rigs are divided in parallel (where the
cameras are installed next to each other) and perpendicularly (where the cameras are
mounted perpendicularly using a semi-transparent mirror). Camera calibration aims to
align the optical paths of both cameras to obtain a consistent and correct stereoscopic
image. This procedure must always be performed at the beginning of the shooting day and
repeated many times during the shooting. For this reason, it should not be a long process
and at the same time precise, because the quality of the recorded image depends to a large
extent on it. The proposed calibration method is based on the dedicated reference board
with markers detectable by the algorithms implemented in the system (details can be found
in [10]).

The paper focuses on the second functionality: disparity map estimation for the needs
of 3D depth monitoring on the movie set while recording the stereoscopic image. The
analysis at the first stage of 3D video production aims to avoid visual fatigue sources
such as stereoscopic window violation and vergence-accommodation conflicts. In general,
the estimation and analysis of the disparity map can be performed in post-production.
However, errors detected at this stage cannot be fixed in many cases or their repairing may
entail high time or monetary costs. Therefore, the disparity map should be estimated and
monitored on the movie set during stereoscopic video recording.

1.2. Requirements

The nature of the work on the film set (high dynamics of the changes, time pressure,
unfavourable conditions) imposes specific requirements and expectations related to the
auxiliary systems used during recording. They should improve and support the activities
performed on the film set and not complicate them even further. Only in such a case their
application is justified and brings noticeable benefits to the film crew.

Therefore, the diagnostic system supporting disparity map estimation and analysis
should be easy to use, which means requiring as little configuration activities and user
interaction as possible. The system also should not require additional connections or signals
to be provided mainly for its purposes. Ideally, it should produce valuable results only
from signals that are already standardly available on a film set. As a diagnostic tool for the
film crew, the system should generate a disparity map that faithfully reflects the cameras’
image without distortions and losses. The results, indicators, and meters produced by
the system should be easy to unambiguously interpret. The system should offer capacity
sufficient to process video streams typical of modern cinema (at least full HD resolution)
on an ongoing basis (at least one frame per second).

2. Image Acquisition and Processing System Architecture

Based on the above requirements and discussions with the creators of 3D movies, two
different system architectures were considered. One of them is based on the computer
equipped with a Central Processing Unit (CPU), GPU, and extension cards for image
acquisition. Another one assumes the development of a dedicated electronic device based
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on an Field-Programmable Gate Array (FPGA) circuit. Considering that the development
of firmware for FPGA devices is complicated and time consuming, it was decided that the
architecture of the system be based on the CPU and GPU. This solution is more flexible,
easier to use, maintain, and extend, and gives more freedom in system development. The
architecture of the developed system is presented in Figure 1.

Figure 1. Architecture of the GPU-based diagnostic system for stereoscopic rigs.

As already mentioned, the heart of the system is a computer equipped with a CPU
and GPU accelerator. The film crew can select the form factor of the computer according
to the needs and limitations of the film set. It can be a desktop computer, notebook, or
industrial computer mounted in the rack together with other equipment. The selected
computer needs to be extended with an image acquisition card(s) supporting SDI, which is
a common standard used in the modern film industry. The system supports SDI input cards
manufactured by Blackmagic Design company. This company offers a wide range of SDI-
based solutions. Their extension cards provide from 1–8 SDI inputs and can communicate
with the CPU using an Universal Serial Bus (USB) (solution preferred for notebooks)
or Peripheral Component Interconnect Express (PCIe) interface (solution for desktop and
industrial computers). The system can handle more than one card. Its final configuration
depends on the user.

The SDI extension cards are connected to two cameras mounted in the stereoscopic rig.
In general, professional cameras dedicated to cinematography store all data on removable
disks attached directly to the camera. However, they are equipped with an additional
SDI output for image preview. The preview image is distributed throughout the entire
film set and available for all the devices such as monitors, recorders, etc. Therefore, the
natural choice was to use these signals from both cameras as the inputs of the diagnostic
system. These signals are easily available on the set, and their quality is enough for
performed analyses.

As the professional cinematography stereoscopic system comprises two independent
cameras, an important issue is their precise synchronisation, correct acquisition, and the
correlation of both video streams. As shown in Figure 1, both cameras are connected
to a dedicated synchronisation network distributing a signal compliant with the one of
the Society of Motion Picture and Television Engineers (SMPTE) timecode standards.
The SMPTE timecode standards include among others: Linear Timecode (LTC), Vertical
Interval Timecode (VITC), burnt-in timecode, MIDI timecode, etc. [11,12]. The timecode
network on the film set is always synchronised to a single device called a master generator
and distributes its time to all cameras and audio recorders. Thanks to the information
delivered to the cameras using the timecode network, all frames in the video stream are
marked with the unique identification code, which contains the binary encoded hour,
minute, second, and frame number. The developed system uses the information for
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synchronizing the incoming video streams. This process is crucial in data pre-processing,
as only precisely synchronised image frames can be considered stereoscopic pairs and used
for disparity map estimation.

As already mentioned, the computer used in the system should be equipped with
a GPU card. Most of the modern GPU cards support general-purpose computing and
can be used as a co-processor for the CPU. The General-Purpose Graphics Processing
Unit (GPGPU) cards are very efficient in image processing. Therefore, some parts of the
implemented algorithms use the GPU to obtain higher performance (see Section 3).

The presented architecture is relatively simple, and according to the requirements, the
system is easy to build and maintain. For proper operation, it requires only two connections
to camera preview outputs. As mentioned, these signals are distributed anyway throughout
the film set (e.g., for film crew monitors). This approach makes the system non-invasive,
significantly facilitates its use, and allows its installation far away from the rig.

3. Disparity Map Estimation Algorithms

Determining a disparity map on a film set during the recording process allows the
creators to analyse, evaluate, and if necessary, correct the quality of the 3D image. The gen-
erated disparity map should reflect the image observed by the camera as closely as possible,
without distortions and clipping the image area. Therefore, the main objective of the work
was to develop appropriate, efficient algorithms for image preparation (rectification) and
determining a disparity map. Figure 2 presents the data flow diagram for the implemented
diagnostic system. The raw data from the cameras are acquired by the two independent
threads, synchronised using timecode metadata attached to each frame, and transferred to
the data-processing thread that performs image rectification and disparity map calculation.

Figure 2. Disparity map calculation algorithm.

3.1. Rectification

The methods of stereoscopic image rectification can be divided into two main groups:
calibrated and uncalibrated. The calibrated rectification methods, in addition to the input
images, also require knowledge of the intrinsic (e.g., focal length, principal point) and
extrinsic (e.g., mutual position and orientation) camera parameters [13,14]. Thanks to this,
the methods achieve high-accuracy results for almost any stereoscopic camera. However,
it should be remembered that the cameras used on a film set are very diverse, and their
settings change very often. Determining the parameters mentioned above for each camera
would be a long and laborious process. Therefore, for the needs of the presented diagnostic
system, it was decided to use the uncalibrated rectification method.

The uncalibrated rectification methods require only two input images, which is their
main advantage from this system point of view. The use of these methods means that
the system can only be connected to SDI signals from cameras and does not require
any additional actions from the user (such as complicated calibration procedures). The
uncalibrated methods are usually based on detecting and matching the image features.
This means that they are flexible, but at the same time, more complicated, and hence
computationally complex and less efficient.

The review and evaluation of the available rectification algorithms showed that many
are not suitable for application in a real-time diagnostic system. The authors evaluated



Sensors 2022, 22, 471 6 of 16

rectification algorithms implemented in two popular image-processing frameworks—the
Open Source Computer Vision (OpenCV) library and the Image Processing Toolbox for
MATLAB. Both implementations are based on algorithms using a fundamental matrix to
describe the epipolar geometry (see [15,16]). Another method implemented and evaluated
during the research studies was based on the algorithm presented in [17]. It is also dedicated
to stereoscopic convergent cameras and assumes that the epipolar lines can be used instead
of the fundamental matrix for low convergence angles. The last solution considered by the
authors was the implementation of the algorithm described in [18] and given in [19]. The
method approximates calibrated rectification based on the minimisation of a cost function.

The research on uncalibrated rectification algorithms was conducted using 25 various
example movies registered using a professional stereoscopic rig. All the above algorithms
were discarded mainly because of distortions in the output image. The rectified images
were often significantly distorted (rotated, scaled, and/or cropped). Another reason was
the unsatisfactory processing efficiency. The execution time for full HD test images ranged
from a few to several seconds per frame.

The literature study and evaluation of the selected algorithms carried out using
recordings from a professional stereoscopic rig showed that the most satisfactory results
were obtained using the keystone correction algorithm proposed in [20]. The algorithm
is dedicated to stereoscopic systems, assuming low convergence angles. The evaluation
results using the example movies showed that the algorithm produces non-distorted output
with satisfactory performance. The initial implementation of the algorithm showed that the
average time required to rectify the full HD frame was 2–3 s. The implemented algorithm
can be divided into the following steps:

1. Features’ detection: Key points of the individual images are detected using the Speeded-
Up Robust Features (SURF) algorithm [21] and correlated between images to create a
list of key point pairs whose descriptors best match each other;

2. Removing outliers: Pairs of key points that have been assigned incorrectly in the
previous step are removed from the list in order not to affect the calculations in the
next steps. The deletion is based on the distance of the points in the pair and their X
and Y coordinates;

3. Target features’ calculation: Target key points are calculated in such a way that the
horizontal coordinate is the same as for input image, while the vertical coordinate is
the average value of the original key points;

4. Features-to-mesh mapping: The image is divided into an M × N uniform grid mesh,
and every original key point is then mapped to the appropriate mesh cell according
to its coordinates;

5. Bilinear inversion: The key points (both source and target) are represented as a linear
combination of the four vertices of the mesh cell;

6. Target mesh calculation: The target mesh cell calculation is defined as a linear least-
squares problem that moves the key points to the target positions and minimises
visual distortion. The implementation uses sparse linear system solvers available in
the Eigen library [22];

7. Warping: This is the mapping pixels of the original input image to the rectified
output image. The warping is guided by the mesh vertices’ position. To simplify the
transformations, the forward warping method was selected for the implementation.
The pixels of the output image that were not set during the mapping are calculated
based on values of neighbouring pixels [23].

The evaluation of the execution time of the above steps showed that the most time-
consuming parts of the algorithm are warping and (for dense mesh) calculating the target
mesh coordinates. Detailed measurements of the execution time of all individual steps are
presented in Figure 3. Taking into account that the warping is a pixelwise algorithm, it is
ideal for GPGPU parallelisation.
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Figure 3. Average execution time for the rectification algorithm steps (CPU version) for various
mesh sizes.

The GPGPU version of the warping algorithm was implemented using Open Comput-
ing Language (OpenCL) to ensure portability to other operating systems and platforms.
The main profit of the GPGPU implementation is to parallelise the processing of pixels
into many independent threads. The size of the working group is parametrised so the
application can be adapted to the hardware platform used. The algorithm code is divided
into two kernels. The first is responsible for transforming pixels from an input image to
an output image. It takes the input image pixels and calculates the new coordinates using
target mesh vertices. Then, it copies the pixel from the input to output image and marks
the output pixel coordinates in an additional mask image. The second kernel checks in
the mask image which pixels in the output are not filled, and based on this information,
it calculates their values using the data from neighbouring pixels. The GPU implemen-
tation was tested using two GPU cards: NVIDIA GeForce GT 650 M (384 CUDA Cores,
2048 MB GDDR5) (https://www.techpowerup.com/gpu-specs/geforce-gt-650m.c547 (ac-
cessed on: 12 December 2021)) and NVIDIA GeForce GTX 780 Ti (2880 CUDA Cores,
3072 MB GDDR5) (https://www.techpowerup.com/gpu-specs/geforce-gtx-780-ti.c2512
(accessed on 12 December 2021)). The parallelised implementation allowed achieving
five-times acceleration for the first GPU card and twelve-times for the second GPU card.
Detailed results are presented in Section 5.

https://www.techpowerup.com/gpu-specs/geforce-gt-650m.c547
https://www.techpowerup.com/gpu-specs/geforce-gtx-780-ti.c2512
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3.2. Disparity Map Calculation

The final stage of image processing is the computation of the disparity map. The
algorithms available in the literature were reviewed regarding the quality of the generated
results and computational efficiency. The following algorithms were selected for the
detailed evaluation: StereoBM [24], StereoSGBM—the modified version of StereoSGM [25]
implemented in the OpenCV library—and segment-based stereo matching using belief
propagation [26]. As a starting point for a CPU-only implementation, the SGBM algorithm
was selected as it generates a dense disparity map with good accuracy. At the same time,
the computation time is relatively short. For the test data used within the framework of the
conducted works (see Section 5), it was approximately 1–2 s per frame. A processing time
and latency of about 1 s could be acceptable for cursory image analysis on a movie set, but
a better performance is strongly recommended.

As in the case of rectification, the acceleration of the calculations using the GPU unit
was applied. The GPGPU implementation was based on the algorithm proposed in [27].
The algorithm was integrated with other components of the software. It can be executed in
the GPU immediately after the rectification. This allows avoiding data copying between
then CPU and GPU. Ultimately, thanks to the use of the GPU, the time needed to determine
the depth map was less than 100 ms, which gives at least ten-times acceleration.

Thanks to the acceleration of the calculations using the GPU, it is possible to process a
few image frames per second, assuming that the video preview distributed over the movie
set is full HD resolution. A higher frame rate makes the disparity map video feel smoother
and improves the quality of work with the system. Figures 4 and 5 present example outputs
of the disparity map generated by the described diagnostic system. Figure 4 presents
the disparity map calculated for raw images acquired from the stereoscopic rig (without
rectification). Figure 5 presents the disparity map for the same images, but after rectification
performed with the algorithm described in Section 3.1. The comparison of both figures
shows that even for stereoscopic rigs with low-angle convergence, the rectification of the
input images significantly affects the quality of the generated disparity map. It is related to
the optimisation of the depth map determination algorithms, which, to save computing
time, assume practically zero vertical disparity. Detailed results from the evaluation of the
system performance are presented in Section 5.

Figure 4. Calculated disparity map without image rectification—greyscale (left) and with depth
budget constraints’ information (right).

Figure 5. Calculated disparity map after image rectification—greyscale (left) and with depth budget
constraints’ information (right).
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4. Software

The algorithms described in the previous section were integrated with a uniform
functional graphical application. The application is an easy-to-use tool with a Graphical
User Interface (GUI) that controls all the hardware components, ensures the acquisition
and synchronisation of video streams, performs data processing, and visualises the raw
data and analyses the results. The software application is the only system component with
which the user interacts. This means the GUI should be ergonomic and intuitive to ensure
easy operation in a very dynamic environment such as a movie set. On the other hand,
the software also implements all the image-processing algorithms, which need to be very
efficient and robust.

Structure of Image Acquisition and Processing Application

All the components that make up the user application can be divided into three
main layers:

• Device drivers—responsible for communication with the hardware components. De-
vice drivers provided by hardware manufacturers, together with related low-level
libraries, support discovering all connected devices, communication and control, as
well as the acquisition of raw data from the cameras;

• Image-processing libraries—provide all the algorithms required for camera calibration
and disparity map estimation;

• GUI application—merges all lower-level components and ensures video acquisition,
synchronisation, processing, and visualisation.

The application was developed for the Windows operating system and tested using
Windows 7 and Windows 10. Still, one of the assumptions for future development is
migration with macOS, which is commonly used in the cinema industry. Therefore, all
the tools and libraries used in the developed software are supported by both operating
systems. The primary development environment was the Qt toolkit. It is an open-source
environment supporting the development of cross-platform applications and creating
modern graphical user interfaces. The software also uses the OpenCV library for image-
acquisition and -processing purposes. The library is an extensive collection of computer
vision algorithms optimised for efficiency and real-time processing. Some image-processing
algorithms implemented for the needs of the presented diagnostic system can be executed
using a GPGPU. These algorithms were implemented using the OpenCL framework. This
was selected because it ensures cross-platform compatibility. Thanks to OpenCL’s usage,
the software can be executed across heterogeneous platforms, taking into account various
operating systems and GPU types and architectures.

Figure 6 shows a simplified sequence diagram presenting all the algorithms executed
by the software to acquire and synchronise two video streams, process images, and display
all information to the user. As shown in the diagram, the software uses multiple indepen-
dent threads for individual tasks to improve performance and achieve the maximum use
of the processing power of the CPU. Communication between all the threads is based on
signals and callback functions, reducing the latency and facilitating software development.

The Main Thread of the application is responsible for handling and monitoring all
events happening in the system. First, it communicates with the libraries responsible for
detecting and managing the SDI input modules. Based on the information provided by
these libraries, two Frame Grabber objects are created, one per SDI input. The objects are
wrappers providing the interface for the Qt and OpenCV libraries to configure the devices
and acquire a full video stream.
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The acquired raw data streams from both cameras are transferred to Pre-processing
Threads. The pre-processing includes, but is not limited to, image rotations and flipping,
which are especially useful in the case of a mirror rig. After the pre-processing, both streams
are transferred to the Synchronisation Thread. It creates stereo pair images based on the
timecode information attached to each video frame. After synchronisation, both frames
are considered inseparable stereo pair image, and as such, they are processed by all other
application components.

The synchronised video stream can be used by the Calibration Threads and Disparity
Map Thread. The operation mode of the application can be changed during the operation
by selecting the appropriate view. Threads related to a given operation mode are properly
started and stopped so as not to overload the processor with unnecessary tasks. The
Calibration Threads execute the algorithms aimed at the detection of the calibration reference
board (separately on the left and right image) and the calculation of the camera alignment
coefficients (using results from both images) [10]. The Disparity Map Thread is responsible
for disparity map estimation. For this purpose, it first rectifies the images using the
uncalibrated rectification algorithm and then calculates the disparity map (see Section 3).

Figure 6. Multi-threaded execution sequence in the graphical user application for image acquisition,
synchronisation, and processing.

An exemplary view of the main application window is shown in Figure 7. On the right
side, there are controls necessary for the application configuration (e.g., data acquisition
devices, pre-processing configuration) and disparity map algorithm settings. The main
view is divided into two sections. The top part presents the main result of the disparity map
algorithm—a greyscale disparity map coloured based on the depth budget information.
The middle part is the disparity histogram calculated for the disparity map. In the bottom
part, the application displays a preview of raw data received from the cameras. Each of the
three sections can be hidden or displayed depending on the user’s needs.
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Figure 7. Graphical user interface for the disparity map calculation algorithm.

5. Experimental Evaluation and Results

The algorithms for the rectification and determination of the disparity map imple-
mented in the developed system were tested in terms of functionality and performance. The
functional verification was carried out mainly based on the Middlebury Stereo Datasets [28].
The aim of the tests with the use of the Middlebury Datasets was to verify the quality of the
generated disparity map and, above all, to verify the rectification algorithm and its impact on
the map accuracy. For this purpose, many tests were carried out using 10 evaluation training
and 13 additional datasets. These datasets contain a Ground Truth (GT) image to verify the
obtained results. The tests consisted of calculating the depth map for the raw image and
the image after rectification using the developed algorithm. Then, the number of incorrect
pixels (as a percentage) and the average error of the obtained disparity map (in pixels) were
compared. To select the best mesh size that would be the best compromise between accuracy
and performance, the tests were performed for different mesh dimensions—1 × 1, 3 × 3,
5 × 5, 10 × 10, 20 × 20, and 30 × 30 (rows × columns). Table 1 presents the results for the
selected measurements. The underlined values indicate that the result after rectification
was better than for the original image. For example, for dataset Storage, the number of
invalid pixels in the disparity map calculated without rectification was 47.54%, and the
average error in the calculated disparity was 4.48 px. Executing the rectification algorithm
before calculating the disparity map reduced both indicators regardless of the mesh size.
For example, for a mesh with five rows and five columns, the number of invalid (undeter-
mined) pixels was reduced to 43.68 % and the average disparity error to 4.31 px. The results
obtained for all the datasets showed that the implemented algorithm works correctly and,
for meshes other than 1 × 1, positively influences the accuracy of the generated disparity
map for almost all evaluated datasets. It should also be noted that increasing the mesh size
improved the quality of the map.

The rectification algorithm was also tested on sample movies recorded on a real film
set. It was a set of 25 films shot under various conditions, both indoors and outdoors. The
videos were recorded in full HD resolution (1920 × 1080 pixels). Each movie contained
approximately 150 frames. A common problem in uncalibrated rectification methods based
on detecting image features is the incorrect identification of key points. This results in a
wrong rectification and hence the deterioration of the correlation between the left and right
image. The tests aimed to check the quality of the rectification on the pictures from the film
set, and the measure was the average vertical disparity calculated for a set of selected key
points before and after the rectification. The evaluation consisted of determining several
dozen key points using the SURF algorithm in the right and left images of the stereoscopic
pair. The points were then paired, manually verified, and outliers discarded. For the rest of



Sensors 2022, 22, 471 12 of 16

the points, the average vertical disparity was calculated. The underlined values show the
cases when the average vertical disparity after rectification was smaller than before. The
results showed that the rectification algorithm worked correctly for almost all test videos.
Only in the case of one film, the mean vertical disparity was greater after rectification. It is
important that even in the case of movies shot at a low convergence angle (small disparity
in the raw file), the rectification algorithm did not cause erroneous image distortions and
magnification of disparity.

Table 1. Results of the accuracy evaluation of the proposed algorithms using the Middlebury Stereo
Datasets [28].

Raw Rectified Using Mesh Size
1 × 1 5 × 5 10 × 10 30 × 30

Dataset Invalid
[%]

Avg.
Error [px]

Invalid
(%)

Avg.
Error (px)

Invalid
(%)

Avg.
Error (px)

Invalid
(%)

Avg.
Error (px)

Invalid
[%]

Avg.
Error [px]

Adirondack 37.75 6.77 38.63 7.49 36.29 6.91 36.24 6.89 36.38 6.96
Backpack 8.99 1.68 9.05 1.72 8.64 1.65 8.65 1.67 8.82 1.71
Bicycle1 42.92 11.9 40.69 11.78 42.07 13.65 39.38 13.19 41.6 11.61
Cable 24.78 3.39 28.21 3.41 21.47 2.94 22.04 2.91 23.24 3.32
Classroom1 17.57 1.04 15.56 1.06 15.75 1.02 15.97 1.04 16.3 0.99
Couch 27.59 3.96 27.58 4.29 27.48 4.25 27.48 4.28 27.47 4.25
Flowers 47.42 3.41 48.75 3.88 45.09 3.63 44.7 3.19 45.39 3.29
Jadeplant 35.43 4.9 35.0 5.14 35.87 5.13 35.67 5.2 34.98 5.1
Mask 26.5 3.07 26.6 3.36 26.53 3.41 26.43 3.38 26.29 3.38
Motorcycle 14.31 1.62 11.13 1.29 11.41 1.35 11.81 1.4 12.78 1.54
Piano 20.83 3.61 21.12 4.21 20.15 4.21 20.07 4.17 20.1 4.17
Pipes 14.92 2.38 10.39 2.2 11.13 2.26 11.44 2.29 13.28 2.42
Playroom 34.74 5.8 33.64 5.96 34.24 6.04 33.91 5.99 33.96 5.95
Playtable 30.05 7.91 18.76 1.97 19.08 2.01 25.47 5.29 29.27 7.68
Recycle 22.78 1.71 22.5 1.82 22.13 1.79 21.73 1.73 22.08 1.78
Shelves 43.16 3.97 41.4 3.3 40.52 3.58 41.65 3.79 41.61 3.9
Shopvac 64.84 12.13 64.92 13.3 66.25 13.32 64.93 12.94 64.87 13.48
Sticks 11.83 2.05 11.83 2.2 11.7 2.18 11.68 2.19 11.68 2.2
Storage 47.54 4.48 42.88 3.95 43.68 4.31 43.83 4.38 45.31 4.39
Sword1 10.65 1.33 10.64 1.38 10.44 1.36 10.38 1.38 10.32 1.38
Sword2 46.12 9.16 43.27 5.92 34.91 5.1 37.34 6.34 41.66 8.13
Umbrella 39.42 4.08 37.61 4.12 37.63 4.03 37.87 4.07 38.51 4.25
Vintage 46.29 3.88 45.72 3.98 46.13 4.1 45.82 4.0 45.77 4.04

In addition to functional tests, performance tests of the full-image-processing path,
including the rectification and calculation of the disparity map, were also carried out. The
performance tests consisted of processing all 25 test films and measuring the execution
time of individual steps of the algorithms. Two implementations of the algorithms were
tested—one based only on the CPU and one also using the GPU. The tests were performed
on two typical personal computers—desktop and notebook. The desktop computer was
equipped with an Intel Core i7-4790 CPU, 32 GB of Random-Access Memory (RAM), and
an NVIDIA GeForce GTX 780 Ti GPU card. The notebook was equipped with an Intel Core
i7-3630QM CPU, 8 GB of RAM, and an NVIDIA GeForce GT 650 M GPU card. The results
are presented in Figures 8 and 9.

As can be seen, the use of the GPU allowed significantly reducing the time of warping
and determining the disparity map. The resulting acceleration is shown in Figure 10.

In the case of the notebook, the obtained acceleration was 4–5-times, and the average
processing time required to calculate the disparity map was about 1 s per frame. In the
case of the desktop computer with much better performance parameters, the speedup
was about 10–12-times, and the total processing time was around 300 ms. As shown in
Figures 8 and 9, the last non-optimised part was the algorithm responsible for calculating
the coordinates of the target mesh vertices. Its execution time is related to the mesh size,
and for dense meshes, it can significantly slow down the whole algorithm. However, as
can be seen from Tables 1 and 2, the use of fine meshes did not bring significant advantages
in terms of accuracy. For the tested mesh sizes, the 10 × 10 size seemed to compromise the
accuracy and efficiency of the proposed algorithms. However, in the further development
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of the system, the authors considered also transferring this step to the GPU and using a
dedicated sparse matrix solver.

Figure 8. Results of the performance evaluation using the notebook computer—execution time of
individual steps of the algorithms on a CPU (left) and GPU (right).

Figure 9. Results of the performance evaluation using the desktop computer—execution time of
individual steps of the algorithms on a CPU (left) and GPU (right).

The proposed diagnostic system was evaluated on film sets during the production
of 3D films (in cooperation with the Polish companies FINN Sp. z o.o. and Isyrius). It
was tested with two different camera models: EPIC MYSTERIUM-X manufactured by
RED Digital Cinema and Phantom Flex4K from Vision Research. The system correctly
acquired and synchronised the video streams for both of them. The developed method
implemented in the prototype system gave results satisfactory for the film crew and allowed
the detection of possible problems in the recorded image. It is possible to assess whether
the recorded stereoscopic material is correct, does not violate the depth budget, and meets
the assumptions for a given scene. An exemplary window with system processing results
is shown in Figure 7. It can be seen that the characters in the foreground exceed the depth
budget assumed for the given scene and camera configuration. Such a violation may cause
difficulties with the image reception of the viewer due to the need to squint.
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Figure 10. Results of the performance evaluation—speedup obtained by using the parallelisation of
the algorithms using a GPU: results for a notebook (left) and desktop (right).

Table 2. Average value of vertical disparity (in px) for all frames in the movie—before (raw) and after
(rectified) rectification.

RectifiedMovie Raw 1 × 1 3 × 3 5 × 5 10 × 10 20 × 20 30 × 30

01 2.6 2.6 2.5 2.6 2.6 2.5 2.5
02 0.7 0.9 0.7 0.6 0.6 0.6 0.6
03 11.9 1.1 0.8 0.9 1.3 2.0 2.6
04 0.7 0.6 0.6 0.6 0.6 0.5 0.5
05 6.4 0.9 0.8 0.8 0.9 1.3 1.7
06 28.8 2.8 2.8 3.0 3.9 6.3 9.8
07 5.1 1.2 1.0 1.1 1.3 1.7 1.9
08 0.4 0.6 0.4 0.4 0.4 0.4 0.4
09 0.7 1.0 0.4 0.4 0.4 0.4 0.4
10 2.9 0.8 0.8 0.8 0.7 0.7 0.8
11 1.0 0.5 0.4 0.4 0.4 0.4 0.4
12 0.6 1.0 0.8 0.8 0.7 0.7 0.7
13 4.2 0.7 0.5 0.3 0.3 0.4 0.4
14 0.9 0.8 0.6 0.5 0.4 0.4 0.4
15 0.6 0.7 0.5 0.5 0.4 0.5 0.5
16 2.4 0.9 0.6 0.5 0.5 0.5 0.6
17 1.3 0.7 0.7 0.7 0.7 0.8 0.8
18 1.8 0.7 0.5 0.6 0.5 0.5 0.6
19 7.5 1.2 1.1 1.1 1.2 1.9 2.8
20 0.5 1.0 0.5 0.4 0.4 0.4 0.4
21 2.7 2.3 2.4 1.9 1.6 1.6 1.7
22 0.8 0.6 0.4 0.4 0.3 0.4 0.4
23 85.5 0.4 0.4 0.4 0.5 2.3 7.4
24 0.5 0.5 0.5 0.5 0.5 0.5 0.5
25 0.3 0.5 0.3 0.3 0.3 0.3 0.3

6. Conclusions

The main result of the research presented in this paper was the efficient GPU-based
implementation of algorithms dedicated to the support of the film crew in analysing the
quality of the recorded stereoscopic image. The proposed solution allows near real-time
determining of the 3D disparity map in parallel with the image-recording process. The
method was implemented and evaluated in the prototype diagnostic system dedicated to
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being used directly on the film set to acquire, synchronise, and process the video streams
from stereoscopic converged rigs.

The implemented algorithms were tested as part of the automated system developed
for monitoring the 3D image quality on a film set. The main goal of the system is to provide
a disparity map and histogram with the best possible reflection of the recorded image.
The proposed approach and high-performance implementation of the algorithms using a
GPU support allowed the development of the diagnostic system, which can generate and
mark a disparity map on an ongoing basis. Its advantage is the lack of a need to calibrate
and know the parameters of the cameras, thanks to which it easily adapts to frequent
changes on the film set. The implementation of the selected algorithms using a GPGPU
accelerator resulted in a 10-fold acceleration of the calculations and a reduction in the time
for determining the disparity map to 300 ms. The processing efficiency at the level of a
few frames per second (at full HD resolution) allows for relatively comfortable work with
the system and tracking the image quality in parallel with its recording. Thanks to the
uncalibrated image rectification algorithm, the system easily adapts to frequent changes
of the camera configuration, which makes it easy to use and non-invasive in the entire
filming process.

The developed universal graphic software can be used on any hardware platform,
enabling it to be used in various environments and film sets. However, the performance
evaluation showed that it is still possible to optimise the processing algorithms, especially
those related to image transformation and solving sparse matrix equation systems. It is also
worth considering migrating and testing the developed algorithms on modern miniaturised
GPUs (such as NVIDIA Xavier). The embedded GPU modules can further miniaturise the
entire system and extend its scope of application.
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SDI Serial Digital Interface
USB Universal Serial Bus
CPU Central Processing Unit
FPGA Field-programmable Gate Array
GPU Graphics Processing Unit
GPGPU General-Purpose Graphics Processing Unit
PCIe Peripheral Component Interconnect Express
API Application Programming Interface
SDK Software Development Kit
SIMD Single Instruction, Multiple Data
OpenCL Open Computing Language
GUI Graphical User Interface
IDE Integrated Development Environment
SMPTE Society of Motion Picture and Television Engineers
RAM Random-Access Memory
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