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Abstract: Presently, in the context of the novel coronavirus pneumonia epidemic, several antibi-
otics are overused in hospitals, causing heavy pressure on the hospital’s wastewater treatment
process. Therefore, developing stable, safe, and efficient hospital wastewater treatment equipment
is crucial. Herein, a bench-scale electrooxidation equipment for hospital wastewater was used to
evaluate the removal effect of the main antibiotic levofloxacin (LVX) in hospital wastewater using
response surface methodology (RSM). During the degradation process, the influence of the following
five factors on total organic carbon (TOC) removal was discussed and the best reaction condition
was obtained: current density, initial pH, flow rate, chloride ion concentration, and reaction time of
39.6 A/m2, 6.5, 50 mL/min, 4‰, and 120 min, respectively. The TOC removal could reach 41% after
a reaction time of 120 min, which was consistent with the result predicted by the response surface
(40.48%). Moreover, the morphology and properties of the electrode were analyzed. The degradation
pathway of LVX was analyzed using high-performance liquid chromatography–mass spectrometry
(LC–MS). Subsequently, the bench-scale electrooxidation equipment was changed into onboard-scale
electrooxidation equipment, and the onboard-scale equipment was promoted to several hospitals
in Dalian.

Keywords: titanium suboxide electrode; levofloxacin; response surface methodology (RSM);
degradation mechanisms and pathways

1. Introduction

With the continuous improvement of the human quality of life and the abuse of an-
tibiotics, the application of antibiotics in various fields, such as medical care, agriculture,
animal husbandry, aquaculture, and other fields [1], has become increasingly extensive.
Fluoroquinolones (FQs) are broad-spectrum antibiotics with the largest consumption [2]
and which are highly concentrated in the environment [3]. FQs primarily include lev-
ofloxacin (LVX), ofloxacin, norfloxacin, enrofloxacin, and ciprofloxacin [4]. Among them,
LVX is the most widely used, mainly for treating pneumonia, urinary tract infection, acute
pyelonephritis, and skin and tissue infections [5]. Actual novel coronavirus wastewater
was tested, and the results are shown in Figure 1. The LVX content was the highest among
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all antibiotics. Therefore, LVX was selected as the target pollutant herein. The long-term
existence and accumulation of LVX in water bodies is hazardous to human health, the
natural environment, and ecological balance. Therefore, an effective degradation method
is urgently needed to degrade LVX.
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Figure 1. Antibiotic content in wastewater from novel coronavirus pneumonia epidemic. 

2. Experimental Section 
2.1. Experimental Materials 

Levofloxacin (Shanghai Aladdin Biochemical Technology Co., Ltd., Shanghai, China, 
HPLC grade) and concentrated sulfuric acid (Liaoning Xinxing Reagent Company, Ltd., 
Tieling, China, 98%). Sodium hydroxide (Tianjin Kermel Chemical Reagent Co., Ltd., 
Tianjin, China, chemical purity), sodium sulfate (Meryer, Shanghai, China) Chemical 
Technology Co., Ltd., Shanghai, China, analytical purity), and sodium chloride (Beijing 
Chemical Plant, Beijing, China, analytical purity). Ultrapure water was used as the labor-
atory water. 

2.2. Experimental Instrument 
Total organic carbon analyzer (TOC-L, Shimadzu (Suzhou) Instruments Manufactur-

ing Co., Ltd. Suzhou, China); DC stabilized power supply (HY3005MT, Hangzhou Huayi 
Electronics Industry Co., Ltd., Hangzhou, China); ultrasonic cleaning machine (SB-25-
12DT, Ningbo Xinzhi Biological Technology Co., Ltd., Ningbo, China); tube furnace (SK2-
4-12, Tianjin Zhonghuan Experimental Electric Furnace Co., Ltd., Tianjin, China); syringe 
filter (25-mm diameter, 0.45-μm pore size, membrane material of polyethersulfone (PES), 
Tianjin Jinteng Experimental Equipment Co., Ltd., Tianjin, China); fluorescence spectro-
photometer (F4700, Hitachi, Tokyo, Japan). 

2.3. Electrode Preparation 
The ruthenium–titanium electrode was purchased from Baoji Eike Metal. The specific 

process of preparing the titanium suboxide electrode is as follows. The titanium plate was 
cut using a computer numerical control machine into a circle with a diameter of 80 mm, 
cleaned using absolute ethanol, and polished using a semi-automatic metallographic 
grinding and polishing machine. Before the deposition of the TiO2 coating, the surface of 
the titanium plate had been etched with oxygen plasma for 3 min at 100 W of RF power. 
Subsequently, we employed plasma-enhanced chemical vapor to deposit TiO2 onto the 
titanium plate at a power level of 200 W, flow rate of oxygen = 40 mL/min, flow rate of 
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Existing methods for degrading antibiotics mainly include the ozone oxidation
method [6], Fenton oxidation method [7,8], catalytic wet oxidation method [9,10], photo-
catalytic oxidation method [11,12], and electrocatalytic oxidation [13,14] methods. Among
them, the electrocatalytic oxidation method has received wide attention from scholars be-
cause of its excellent selectivity, high degradation efficiency, few byproducts, and operabil-
ity under normal temperature and pressure [15–18]. Presently, the commonly used anode
materials in electrocatalysis mainly include boron-doped diamond (BDD) film [19–23],
titanium suboxide [15,24–27], and carbon material [28–30] electrodes and dimensionally
stable anodes (DSAs) electrodes [31–36]. In terms of the physical properties of titanium
suboxide electrodes, the Magneli phase titanium oxide material (TinO2n−1) has good elec-
trical conductivity under normal temperature [37]. Additionally, Magnéli phase titanium
oxide materials, compared to the conventional electrode materials used in industry, exhibit
high chemical stability, corrosion resistance, and a wide electrochemical stability potential
window [15,26,37]. The material could be used as both cathode and anode, which is eco-
friendly and cost-effective [38]. Therefore, herein, it was used as an electrooxidation anode,
and ruthenium–titanium was used as a cathode to degrade target pollutants. As far as we
know, this approach is the first time that a titanium suboxide electrode is being used to
degrade LVX wastewater.

A single factor could affect the total organic carbon (TOC) removal, but note that inter-
action between factors could also affect the TOC removal. Response surface methodology
(RSM) could explore the interaction among different influencing factors and fit the best
conditions through multiple quadratic regression equations [39–41]. Thus, RSM was used
to conduct electrooxidation and degradation of LVX model wastewater. In the degradation
process, the influence of five factors, namely current density, initial pH value, flow rate,
chloride ion concentration, and reaction time, were discussed.
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Presently, in the context of the novel coronavirus pneumonia epidemic, several an-
tibiotics are overused in hospitals, resulting in a large amount of medical wastewater
containing antibiotics and the novel coronavirus. Since the antibiotics and novel coro-
navirus are difficult to degrade using traditional biochemical methods, it causes heavy
pressure on the hospital wastewater treatment process. Therefore, it is necessary to develop
stable, safe, and efficient hospital wastewater treatment equipment. Herein, brand-new
hospital wastewater bench-scale and onboard-scale electrooxidation treatment equipment
was developed. The bench-scale electrooxidation equipment for hospital wastewater was
used to evaluate the removal effect of the main antibiotic LVX in hospital wastewater, which
proved the stability and high efficiency of the equipment. Afterward, the bench-scale elec-
trooxidation equipment was changed into onboard-scale electrooxidation equipment, and
its application was promoted to many hospitals in Dalian.

The electrode was fully characterized by investigating the morphology and elemental
composition of the material using scanning electron microscopy (SEM), X-ray diffraction
(XRD), atomic force microscopy (AFM), and energy-dispersive X-ray spectrometry (EDS).
A mathematical model of the influence of reaction conditions on the TOC removal rate was
established using response surface methodology. The degradation pathway of LVX was
analyzed using high-performance liquid chromatography–mass spectrometry (LC–MS).
Subsequently, the bench-scale electrooxidation equipment was changed into onboard-scale
electrooxidation equipment and promoted to many hospitals in Dalian.

2. Experimental Section
2.1. Experimental Materials

Levofloxacin (Shanghai Aladdin Biochemical Technology Co., Ltd., Shanghai, China,
HPLC grade) and concentrated sulfuric acid (Liaoning Xinxing Reagent Company, Ltd., Tiel-
ing, China, 98%). Sodium hydroxide (Tianjin Kermel Chemical Reagent Co., Ltd., Tianjin,
China, chemical purity), sodium sulfate (Meryer, Shanghai, China) Chemical Technology
Co., Ltd., Shanghai, China, analytical purity), and sodium chloride (Beijing Chemical Plant,
Beijing, China, analytical purity). Ultrapure water was used as the laboratory water.

2.2. Experimental Instrument

Total organic carbon analyzer (TOC-L, Shimadzu (Suzhou) Instruments Manufactur-
ing Co., Ltd. Suzhou, China); DC stabilized power supply (HY3005MT, Hangzhou Huayi
Electronics Industry Co., Ltd., Hangzhou, China); ultrasonic cleaning machine (SB-25-12DT,
Ningbo Xinzhi Biological Technology Co., Ltd., Ningbo, China); tube furnace (SK2-4-12,
Tianjin Zhonghuan Experimental Electric Furnace Co., Ltd., Tianjin, China); syringe filter
(25-mm diameter, 0.45-µm pore size, membrane material of polyethersulfone (PES), Tianjin
Jinteng Experimental Equipment Co., Ltd., Tianjin, China); fluorescence spectrophotometer
(F4700, Hitachi, Tokyo, Japan).

2.3. Electrode Preparation

The ruthenium–titanium electrode was purchased from Baoji Eike Metal. The specific
process of preparing the titanium suboxide electrode is as follows. The titanium plate was
cut using a computer numerical control machine into a circle with a diameter of 80 mm,
cleaned using absolute ethanol, and polished using a semi-automatic metallographic
grinding and polishing machine. Before the deposition of the TiO2 coating, the surface
of the titanium plate had been etched with oxygen plasma for 3 min at 100 W of RF
power. Subsequently, we employed plasma-enhanced chemical vapor to deposit TiO2
onto the titanium plate at a power level of 200 W, flow rate of oxygen = 40 mL/min, flow
rate of argon carrier gas = 2 mL/min, and the temperature of the TiCl4 container was
kept at 0 ◦C. The system pressure during the deposition was ~53.2 Pa. The deposition
process lasted 45 min. We were able to get a TinO2n−1-coated titanium plate. The titanium
dioxide plate was reduced in a mixture of N2 and H2 gases, where the mixed gas was
obtained instantaneously from decomposed ammonia. Ammonia flowed into an ammonia-
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decomposing furnace, and the decomposed gas directly went into the pipe reduction
chamber, where the reduction of TiO2 occurred at 1127 K. The flow rate of ammonia was
1 L/min. The effective diameter of the electrodes was 75 mm [42,43].

2.4. TOC and LVX Content Analysis

The TOC of the samples was acquired using a TOC Analyzer (TOC-L CPN, Shimadzu,
Tyoto, Japan). TOC removal efficiency was calculated as follows (Equation (1)):

TOC removal =
(TOC0 − TOCt)

TOC0
× 100% (1)

where TOC0 is the total organic carbon of the initial wastewater, and TOCt is the total
organic carbon of the wastewater at the given time.

Levofloxacin Conversion rates =
(C0 −Ct)

C0
× 100%, (2)

where C0 is LVX content of initial wastewater and Ct is LVX content of the wastewater at
the given time.

2.5. Experimental Design

The experimental design was executed by the Design Expert Software (version 8.0.6,
Inc., Minneapolis, MN, USA). Five independent experimental variables, including current
density, initial pH value, flow rate, chloride ion concentration, and reaction time, were
controllable. These experiments were designed using the coded value and the central
combination model. The experimental scheme is shown in Table 1.

Table 1. Actual value and code value correspondence table.

Factor Name Number Unit
Coded Value

−1.68 −1 0 1 1.68

Initial pH value A 0.55 4 6.5 9 12.4
Current density B A/m2 5.6 17 28.3 39.6 51.0

Flow rate C mL/min 5.20 50 82.5 115 159.7
Reaction time D min 18.6 60 90 120 161.3

Chloride ion content E ‰ 0.62 2 3 4 5.38

2.6. Electrooxidation Experiment

Figure 2 shows the electrooxidation experimental device. The cyclic reaction mode was
adopted. After the LVX wastewater was pumped into the electrochemical reactor, it was
energized for the electrooxidation experiment. During the reaction, the aqueous solution
in the electrochemical reactor was pumped back into the beaker through a pump. A rotor
was placed in the beaker. The speed of the magnetic stirrer was adjusted to 300 r/min.
After the reaction, the TOC was measured after filtration. To ensure that the reaction could
proceed normally, 3% Na2SO4 was added to each group of reactions.

2.7. Model Fitting and Data Analysis

The quadratic equation model (Equation (3)) was applied to predict the response.
Here, Y is the response; b0 is the offset term; bi, bij, and bii are the linear, interaction effect,
and squared effects, respectively; and ε is the random error.

Y = b0 +
3

∑
i=1

bixi +
2

∑
i=1

3

∑
i<j

bijxixj +
3

∑
i=1

biixi
2 + ε (3)

The data were analyzed using the analysis of variance (ANOVA) approach. The
coefficient R2 expressed the quality of the fit of the polynomial model, whose statistical
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significance could be checked by the F-value. Then, the back elimination method was
employed to optimize the model by selecting or eliminating the model terms according to
the p-value with a 0.10 confidence level. Afterward, variables were chosen to estimate the
optimized model’s accuracy. Finally, three-dimensional (3D) plots were obtained, and the
interaction of the two factors on the responses was discussed.
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Figure 2. Electrooxidation experimental device.

2.8. Fluorescence Measurement

Hitachi’s F4700 was used to investigate the degradation process. For fluorescence
studies, two measurement modes were employed. The first mode was employed to select
the excitation wavelength at 286 nm and record the emission in the 250–600 nm range. The
other mode was employed to select the emission wavelength at 510 nm and record the
emission in the 250–600 nm range. The width of the excitation and emission slits was fixed
at 5 nm.

3. Results and Discussion
3.1. Stability Assessment
3.1.1. Scanning Electron Microscope (SEM) Analysis

As shown in Figure 3a,b, the scanning electron microscope was able to magnify by
1000 times; evidently, the surface of the titanium suboxide electrode is uneven and has
a small amount of hole structure, and there is no obvious change before and after the
reaction. Overall, the performance stability of the electrode was excellent. Figure 3a,b
shows that the titanium suboxide electrode has a higher active surface area, which may
promote the transfer of electrons and ions, thus increasing the specific capacitance in
subsequent electrochemical detection [25,44]. To explore the distribution positions of O
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and Ti atoms in the titanium suboxide electrode, EDS detection on the titanium suboxide
electrode was conducted. The green color in Figure S2b,e represents the oxygen element.
The oxygen element is uniformly distributed on the surface of the titanium suboxide
electrode before and after the reaction, and even after the reaction, the oxygen element is
more uniformly distributed. It is speculated that the electrooxidation process promotes
the oxygen distribution of elements. In Figure S2c,f, the red color represents titanium.
Titanium is uniformly distributed on the surface of the titanium suboxide electrode before
and after the reaction, indicating that the electrode has good stability.
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Figure 3. SEM spectrum before (a) and after (b) electrooxidation reaction. AFM before (c) and after (d)
electrooxidation reaction.

According to Table S1, the weight percentages of O and Ti before the reaction were
46.35% and 53.65%, and after the reaction they were 43.50% and 56.50%, respectively.
The atomic percentages of O and Ti before the reaction were 72.12% and 27.88%, and
after the reaction they were 69.74% and 30.26%, respectively, indicating that the electrode
performance of stability was excellent.

3.1.2. Atomic Force Microscopy (AFM) Analysis

As shown in Figure 3c,d, a 3D characterization of the apparent structure of the titanium
suboxide electrode was performed. Some mountain-like structures were present on the
surface of the titanium suboxide. Before the reaction, the average height was ~122.3 nm,
and the average depth was about −58.4 nm. The electrode has a higher roughness and a
larger specific surface area [44]. After repeated reactions, the average height and depth
were ~116.4 and −55.7 nm, respectively. After repeated reactions, the edge of the electrode
became unsharp, but the average height and depth did not change significantly, indicating
that the electrode has good stability.

3.1.3. X-ray Diffraction (XRD) Analysis

Figure S1 shows that the surface crystal phase structure of the titanium suboxide
electrode was analyzed using XRD, and the obvious Ti4O7 diffraction peaks appeared at
diffraction angles of 14.3◦, 31.7◦, and 36.2◦. Observing the XRD spectra of the titanium
suboxide electrode before and after the reaction, almost no change occurred in the titanium
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suboxide electrode, which was basically consistent with the SEM results, indicating that
the electrode prepared by the current method has good stability.

3.1.4. XPS Analysis

From the results, Figure S4 shows that titanium suboxide has two peaks at 464.32 eV
and 458.49 eV, which belong to Ti2p1/2 and Ti2p3/2, respectively, indicating the existence
of Ti4+. The characteristic peak at 457.90 eV belongs to Ti3+ [37,45].

3.2. Electrochemical Analysis

The electrochemical performance of the titanium suboxide electrode was investigated
using the cyclic voltammetry of the titanium suboxide electrode (Figure S3a). The titanium
suboxide electrode has a wider electrochemical window, indicating high electrochemical
activity. Figure S3b shows the linear sweep voltammetry (LSV) curve of the titanium
suboxide electrode. The LSV results show that the oxygen evolution potential of titanium
suboxide (2.83 V vs. SCE) exceeded that of ruthenium–titanium (1.31 V vs. SCE), indicating
that compared with the industrialized ruthenium–titanium electrode, the titanium suboxide
electrode has higher electrochemical activity.

3.3. ANOVA and Model Simplification

Statistical analysis of the experimental data was performed to analyze the variance
table (Table 2). Through the influence of this factor, the significance of the model simulated
by the experimental design was verified. The model F-value of the TOC removal was less
than unity, indicating that the noise variable of the model design is minute and the model
has excellent significance [46]. Additionally, the lack-of-fit values of the model were small,
indicating that the pure error effect during model design was minute. The results show
that the model is significant and the best fitting effect is obtained.

As shown in Figure 4a, in the staggered normal distribution diagram, the residual
points are evenly distributed on both sides of the fitted straight line, and most of the points
fall on the straight line. Therefore, it could be inferred from Figure 4a that the fitted model
is significant. Finally, Equation (3) was obtained.

TOC removal = 0.29− 7.496× 10−3A + 0.067B− 3.636× 10−4C + 0.042D

+ 6.842× 10−3E + 2.689× 10−3AB− 5.705× 10−4AC + 7.075× 10−3AD

− 0.026AE− 9.166× 10−3BC− 1.567× 10−3BD− 4.678× 10−3DE

− 0.030A2 + 8.603× 10−3B2 − 0.014ABC− 0.015ABD + 0.015ADE

− 0.042A2B− 0.035AB2

(4)

where A is the pH, B is the current density, C is the flow rate, D is the reaction time, and E
is the chloride ion content.

3.4. Response Surface Single Factor Investigation

Figure 4b shows that as the current density in the reaction increases, the TOC removal
gradually increases. The applied current density positively influences the degradation. It is
assumed that when the current density was lower, the amount of hydroxyl radicals (·OH)
produced was lower, which was insufficient to remove all pollutants. Figure 4c shows that
as the circulating flow rate increases, the TOC removal changes insignificantly. Figure 4d
shows that as the reaction time increases, the TOC removal gradually increases. As the
reaction time increases, the electrode degrades the intermediate products, thus increasing
the TOC removal. Figure 4e shows that as the chloride ion content increases, the TOC
removal gradually increases. As the chloride ion content increases, active chlorine, such
as HClO, will be generated in the water, which accelerates the mineralization of TOC. In
Figure 4f, the TOC removal initially increases and then decreases as the pH increases. The
reaction occurs best when the pH is neutral. Considering the cathode, it is speculated
that a large amount of hydrogen peroxide could be produced in both acidic and alkaline
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conditions, and hydrogen peroxide could easily quench the ·OH generated on the anode, so
the neutral conditions are better [47]. Considering the anode, it is speculated that in acidic
solutions, the presence of HSO4

− may quench the ·OH, thereby reducing the degradation
efficiency of LVX [48]. Alkaline conditions reduce the oxygen evolution overpotential
and increase the side reaction of oxygen evolution. Therefore, the ion electrode shows
lower removal efficiency under alkaline conditions [45]. It could be seen from single-factor
investigation that pH and current density have a greater impact on TOC removal.

Table 2. ANOVA.

Source Sum of
Squares df Mean

Square F-Value p-Value
Prob > F Significance

Model 3.10 × 10−1 19 1.63 × 10−2 6.95 <0.0001 significant
A-pH 6.36 × 10−4 1 6.36 × 10−4 2.71 × 10−1 0.6067 -

B-current density 5.11 × 10−2 1 5.11 × 10−2 21.76 <0.0001 -
C-flow rate 5.73 × 10−6 1 5.73 × 10−6 2.44 × 10−3 0.9609 -

D-reaction time 7.72 × 10−2 1 7.72 × 10−2 32.89 <0.0001 -
E-chloride ion concentration 2.03 × 10−3 1 2.03 × 10−3 8.64 × 10−1 0.3601 -

AB 2.31 × 10−4 1 2.31 × 10−4 9.85 × 10−2 0.7558 -
AC 1.04 × 10−5 1 1.04 × 10−5 4.43 × 10−3 0.9473 -
AD 1.60 × 10−3 1 1.60 × 10−3 6.82 × 10−1 0.4154 -
AE 2.17 × 10−2 1 2.17 × 10−2 9.25 0.0049 -
BC 2.69 × 10−3 1 2.69 × 10−3 1.14 0.2932 -
BD 7.86 × 10−5 1 7.86 × 10−5 3.35 × 10−2 0.8561 -
DE 7.00 × 10−4 1 7.00 × 10−4 2.98 × 10−1 0.5890 -
A2 5.31 × 10−2 1 5.31 × 10−2 22.63 <0.0001 -
B2 4.29 × 10−5 1 4.29 × 10−5 1.83 × 10−2 0.8934 -

ABC 6.21 × 10−3 1 6.21 × 10−3 2.64 0.1145 -
ABD 7.57 × 10−3 1 7.57 × 10−3 3.22 0.0827 -
ADE 7.63 × 10−3 1 7.63 × 10−3 3.25 0.0816 -
A2B 1.48 × 10−2 1 1.48 × 10−2 6.30 0.0177 -
AB2 1.00 × 10−2 1 1.00 × 10−2 4.26 0.0478 -

Residual 7.04 × 10−2 30 2.35 × 10−3 - - -
Lack of Fit 6.83 × 10−2 23 2.97 × 10−3 9.77 0.0024 significant
Pure error 2.13 × 10−3 7 3.04 × 10−4 - - -
Cor total 0.38 49 - - - -

3.5. Response Surface Multifactor Interaction

From the 2D contour map in Figure 5, when the response variable was the TOC
removal, the 2D contour map between the AB and AD factors was comprised of curves,
indicating that the degree of influence of influencing factors on the response variable
could be fully investigated within the range of value. The 2D contour map of AC, AE, BC,
BD, and DE factors was a situation where curves and straight lines coexisted. This trend
occurred because the range of value of the independent variables set in the experimental
design is minute. There was an obvious interaction between A and E or A and D, and the
analysis of the response surface diagram shows that a significant synergy exists between
the AC and AE factors. However, the AE two-factor 3D response surface map was more
prominent upwards. Thus, the AE two-factor antagonism was more obvious, and the
best applicable value point was within the preset range of value. The A and B factors
presented a concave shape toward the bottom surface, so the two factors antagonistically
affected each other. Through the depression in the response surface, the lowest value of the
fitted model could be determined, providing a reference range of value for the subsequent
optimization process [46].
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Figure 4. (a) Staggered normal distribution diagram. (b–f) Influence of single factor on TOC removal.

3.6. Experimental Verification

Based on the aforementioned experimental results and conditional analysis of factors,
the optimal reaction conditions of the deep optimization factors are obtained through the
simulation and optimization of the mathematical model: the current density, initial pH
of the reaction, flow rate, chloride ion concentration, and reaction time were 39.6 A/m2,
6.5, 50 mL/min, 4%, and 120 min, respectively. Figure 6 shows the conversion of LVX
during electrooxidation. Figure 6a shows that as time changes, the fluorescence intensity at
the emission wavelength (510 nm) gradually decreases. Additionally, Figure 6b shows that
the fluorescence intensity at the excitation wavelength (290 nm) decreased gradually with
time. As shown in Figure 6, the 3D excitation-emission matrix (3D EEMs) fluorescence
spectrum was employed in detecting the fluorescence change of the LVX solution during
the electrooxidation process of the titanium suboxide electrode. As shown in Figure 6c, the
three main peaks are Ex/Em = 250–300/450–600 (peak A), 300–375/450–600 (peak B), and
350–465/325–450 (peak C). According to Figure 6d, after 20 min of reaction, the fluorescence
intensity of peaks A and B disappeared, whereas peak C increased, indicating that the
conjugated heterocyclic structure of LVX was destroyed. As the reaction time increases,
Ex/Em = 350–465/325–450 (peak C) in Figure 6g–i also disappear gradually, indicating that
LVX was all converted into small molecules.
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Figure 5. Two-dimensional contour maps (left) and three-dimensional response surface diagrams (right) of the TOC
removal of: (a) factors A, B (flow rate, chloride ion concentration, and reaction time of 82.5 mL/min, 3‰, and 90 min,
respectively); (b) factors A, C (current density, chloride ion concentration, and reaction time of 28.3 A/m2, 4‰, and 120 min,
respectively); (c) factors B, C (initial pH, chloride ion concentration, and reaction time of 6.5, 90 min, and 3‰, respectively);
(d) factors B, D (initial pH, flow rate, and chloride ion concentration of 6.5, 82.5 mL/min, and 3‰, respectively); (e) factors
E, D (current density, initial pH, and flow rate of 28.3 A/m2, 6.5, and 82.5 mL/min, respectively); (f) factors A, D (current
density, flow rate, and chloride ion concentration of 28.3 A/m2, 82.5 mL/min, and 3‰, respectively); and (g) factors A, E
(current density, flow rate, and reaction time of 28.3 A/m2, 82.5 mL/min, and 90 min, respectively).
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Figure 6. (a) Fluorescence spectra of LVX at emission wavelength of 510 nm. (b) Fluorescence spectra of LVX at 290 nm
excitation wavelength. Three-dimensional EEMs of LVX solution after electrocatalysis degradation of (c) 0, (d) 20, (e) 40,
(f) 60, (g) 80, (h) 100, and (i) 120 min by titanium suboxide anode.

Figure 7a shows that under optimal reaction conditions, the removal rate of LVX
reached 41%, which was basically consistent with the result predicted by the response
surface (40.84%). As shown in Figure 7b, the LVX conversion rate of titanium suboxide
reached 100%. The removal and conversion rates of LVX are significantly greater than
that of the ruthenium–titanium electrode, indicating that the titanium suboxide electrode
has much better electrochemical performance than the industrially produced ruthenium–
titanium electrode. For the EPR test, spin trapping was employed on 5,5-dimethyl-1-
pyrroline-1-oxide (DMPO) as a hydroxyl-radical scavenger (Figure 7e). As the reaction
progresses, the intensity of hydroxyl radicals gradually increases.

3.7. Exploration of Degradation Mechanism

Tert-butyl alcohol (TBA) has been frequently adopted as a quenching agent for hy-
droxyl radicals (·OH). Hence, herein, TBA was added to the system under study to elucidate
the degradation mechanism. In this reaction, active chlorine mainly stems from NaCl added
in the reaction. Figure 7c shows that after adding TBA, the TOC removal and the LVX
conversion rate decreased, indicating that ·OH influenced the degradation of LVX. Active
chlorine has a promoting effect on the conversion and mineralization of LVX when NaCl is
not involved in the reaction (Equations (4)–(6)) [16]. Figure 7d shows that when NaCl was
absent, the removal rate of TOC and the conversion rate of LVX decreased more, so it was
speculated the active chlorine significantly influences the degradation of LVX, followed
by ·OH.

2Cl− → Cl2 + 2e− (5)
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Cl2 + H2O � HClO + Cl− + H+ (6)

HClO � ClO− + H+. (7)

Figure 7. (a) TOC removal and (b) LVX conversion rates of ruthenium–titanium electrode and titanium suboxide under
optimal reaction conditions (current density of 39.6 A/m2, initial pH of 4, flow rate of 50 mL/min, chloride ion concentration
of 4%, and reaction time of 120 min). (c) Effect of NaCl and TBA on TOC removal. (d) Effect of NaCl and TBA on LVX
conversion. (e) EPR spectra of hydroxyl radicals.

3.8. Possible Degradation Routes of LVX

To further disclose the degradation mechanism, the intermediate products of LVX
degradation in the electrooxidation system were identified using LC–MS. Figure 8 displays
the MS spectra of detected degradation intermediates. Furthermore, five plausible degra-
dation routes of LVX were proposed (Figure 8) according to the intermediates. In pathway
I, the hydroxylation reactions lead to the production of L1 (m/z = 379). L6 (m/z = 337)
was formed by decarboxylation of L1 (m/z = 379). In pathway III, according to this, the
molecular ion peak underwent a decarboxylation reaction of the methyl morpholine group
in the LVX drug and was transformed into L3 (m/z = 333). Then, the decarboxylation
and despiperazine groups of L3 (m/z = 333) lead to the production of L10 (m/z = 250). In
pathway IV, L4 (m/z = 278) was initially formed via an attack on the N-methyl piperazine
group by reactive radicals (·OH) and active chlorine. L4 (m/z = 278) was converted to
L10 (m/z = 250) by decarboxylation. In pathway V, L5 (m/z = 317) was produced via the
decarboxylation of LVX. Furthermore, L14 (m/z = 163) was obtained by demethylation,
decarboxylation, and despiperazine groups of L5. In pathway II, the demethylation and
hydroxylation reactions lead to the production of L2 (m/z = 363). L7 (m/z = 335) was
formed by the decarboxylation of L2 (m/z = 363). In addition, L6 (m/z = 337) could be
obtained by breaking the double bond of L7 (m/z = 335). L7 (m/z = 335), the important
intermediate of LVX, was further degraded on the N-methyl piperazine ring, and it was
oxidized to form a stable intermediate form L8 (m/z = 264). Afterward, the intermediate
compound L8 was further dealkylated to produce two intermediates: L9 (m/z = 250) and
L10 (m/z = 250). Next, the demethylation and dehydroxylation lead to the production
of L11 (m/z = 234) and L12 (m/z = 234). Furthermore, the intermediate compounds L11
and L12 were further dealkylated to produce two intermediates, L13 (m/z = 181) and
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L14 (m/z = 163), via decarboxylation, the opening of quinolone, and demethylation. L13
and L14 compounds could further undergo defluorination and hydroxylation to form
L15 (m/z = 93). Subsequently, the opening of benzene rings lead to the production of L16
(m/z = 80) and L17 (m/z = 54). Finally, intermediate L17 products might be continuously
broken into small-molecule organic acids and mineralization products [49–56].

Materials 2021, 14, x FOR PEER REVIEW 15 of 19 
 

 

 
Figure 8. Proposed degradation pathways of LVX during electrooxidation reaction. 

3.9. Treatment of Wastewater from Novel Coronavirus Epidemic 
Titanium suboxide electrodes were employed to treat wastewater from the novel 

coronavirus pneumonia epidemic. Figure 9a shows the results. The removal rate of sulfa-
methoxazole, azithromycin, and LVX reached 100%, and the total removal rate of all anti-
biotics reached 94.5%, indicating that the titanium suboxide electrode has great develop-
ment potential. Figure 9b,c show the industrial wastewater treatment device. 

O

NN

N

F

O

OH

O

CH3H3C

O
NN

N

F
O

OH

O

H3C

Levofloxacin m/z = 361

OH

L2  m/z = 363

H3C

NN
N

F
O

OH

O

H3C
OH

L7  m/z = 335

O

NN

N

F
O

OH

O

CH3H3C

L1  m/z = 379

L16  m/z = 80

O

NH2N

F

O

OH

O

CH3

L4  m/z = 278

CH3

NN

N

F

O

OH

O

H3C

OH

L6  m/z = 337

OH

CH3

NHN

F

O

OH

O

 L8 m/z = 264
CH3

NH2N

F

O

OH

O

CH3

CH3

N
NH

F

O

OH

O

L9  m/z = 250
H3C

L10  m/z = 250

NH2N

F

O O

CH3

CH3

N
NH

F

O O

H3C

 L11 m/z = 234

N
H3C

H3C

F

CH3

O

L13  m/z = 181

N
H

F

O

 L14 m/z = 163

NH2

 L15 m/z = 93  L17 m/z = 54

Small organic molecules,
CO2 and H2O

pathway Ⅰ

pa
th

wa
y Ⅱ

pa
th

w
a y

 Ⅲ

pathway Ⅳ

pathway Ⅴ

O
NN

N

F

CH3H3C

L5  m/z = 317

NN

N

F

O

OH

O

CH3H3C

L3  m/z = 333

 L12 m/z = 234

Figure 8. Proposed degradation pathways of LVX during electrooxidation reaction.
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3.9. Treatment of Wastewater from Novel Coronavirus Epidemic

Titanium suboxide electrodes were employed to treat wastewater from the novel
coronavirus pneumonia epidemic. Figure 9a shows the results. The removal rate of
sulfamethoxazole, azithromycin, and LVX reached 100%, and the total removal rate of
all antibiotics reached 94.5%, indicating that the titanium suboxide electrode has great
development potential. Figure 9b,c show the industrial wastewater treatment device.
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4. Conclusions

Herein, bench-scale electrooxidation equipment for hospital wastewater was used
to evaluate the removal effect of the primary antibiotic, levofloxacin (LVX), in hospital
wastewater, which proved the stability and high efficiency of the equipment. In this bench-
scale apparatus, titanium suboxide and ruthenium–titanium were used as the anode and
cathode, respectively. RSM was used to conduct electrooxidation and degradation of LVX
model wastewater. In the degradation process, the influence of current density, initial pH
value, flow rate, chloride ion concentration, and reaction time on the TOC removal were
investigated and the best reaction condition was obtained as follows: current density, initial
aqueous pH, flow rate, concentration of chloride ion, and reaction time were 39.6 A/m2,
6.5, 50 mL/min, 4% and 120 min, respectively. The TOC removal could reach 41% after
reaction time 120 min, which was basically consistent with the result predicted by the
response surface (40.84%).

The morphology and properties of the electrode were analyzed using techniques such
as SEM, XRD, EDS, and AFM, which showed that the titanium suboxide electrode has high
stability and is a promising electrode material.

Further, the bench-scale electrooxidation equipment was changed into onboard-scale
electrooxidation equipment, and its application was promoted in several hospitals in
Dalian. The results show that the removal rate of titanium suboxide for sulfamethoxazole,
azithromycin, and LVX reached 100%, and the total removal rate of all antibiotics reached
94.5%, indicating that the titanium suboxide electrode has great development potential.
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suboxide electrode before (a–c) and after (d–f) the electrooxidation reaction. Figure S3: Titanium
Suboxide Electrode (a) cyclic voltammetry (CV) curve of titanium suboxide electrode in 100 ppm
levofloxacin, 1mol/L Na2SO4 solution, scanning rate: 50 mV/S (b) linear sweep voltammetry (LSV)
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34. Krstić, V.; Pešovski, B. Reviews the research on some dimensionally stable anodes (DSA) based on titanium. Hydrometallurgy
2019, 185, 71–75. [CrossRef]

35. Yang, J.; Wang, Q.; Zhou, J.; Shen, Q.; Cao, L.; Yang, J. Electrochemical removal of gaseous elemental mercury in liquid phase
with a novel foam titanium-based DSA anode. Sep. Purif. Technol. 2020, 250, 117162. [CrossRef]

36. Abdalrhman, S.; Gamal, M. Degradation of organics in real oil sands process water by electro-oxidation using graphite and
dimensionally stable anode. Chem. Eng. J. 2020, 389, 124406. [CrossRef]
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