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Abstract: Porous noble metal nanomaterials have attracted extensive attention due to their high
specific surface area and surface plasmon resonance effect. However, it is difficult to form porous
structures due to the high mobility and low reduction potential of noble metal precursors. In this
article, we developed a facile method for preparing porous Ag with a controllable structure at room
temperature. Two kinds of Ag crystals with different porous structures were successfully prepared by
using AgCl cubes as sacrificial templates. Through the galvanic replacement reaction of Zn and AgCl,
Ag crystals with a sponge-like porous structure were successfully prepared. Additionally, using
NaBH4 as the reducing agent, we prepared granular porous Ag cubes by optimizing the amount of
reducing agent. Both the sponge-like and granular porous Ag cubes have clean and accessible surfaces.
In addition, we used the prepared two porous Ag cubes as substrate materials for SERS detection
of five kinds of methamphetamine analogs. The experimental results show that the enhancement
effect of granular porous Ag is better than that of sponge-like porous Ag. Furthermore, we probed
the hot spot distribution of granular porous Ag by Raman mapping. By using granular porous Ag as
the substrate material, we have achieved trace detection of 5 kinds of methamphetamine analogs
including Ephedrine, Amphetamine, N-Methyl-1-(benzofuran-5-yl)propan-2-amine (5-MAPB), N-
Methyl-1-(4-methoxyphenyl)propan-2-amine (PMMA) and N-Methyl-1-(4-fluorophenyl)propan-2-
amine (4-FMA). Furthermore, to achieve qualitative differentiation of analogs with similar structures
we performed density functional theoretical (DFT) calculations on the Raman spectra of the above
analogs. The DFT calculations provided the vibrational frequencies, Raman activities, and normal
mode assignment for each analog, enabling the qualitative differentiation of the above analogs.

Keywords: Ag crystal; methamphetamine; SERS; porous structure

1. Introduction

Noble metal nanomaterials have aroused great interest among researchers due to
their excellent localized surface plasmon resonance (LSPR) characteristics. Its unique
LSPR characteristics are widely used in catalysis, surface-enhanced Raman scattering
(SERS), photothermal therapy, and chemical and biological sensing technologies [1–5].
Due to the fact that the LSPR effect of noble metal nanoparticles is closely related to their
morphology and size, a lot of research has been devoted to regulating the morphology and
size of noble metal nanoparticles in the past few decades. Many noble metal nanoparticles
with regular morphology and uniform size, including spherical [6,7], octahedral [8,9],
cubic [10,11], rhombic [12,13], rod-shaped [14,15], plate-shaped [16,17], and high-index
facet nanoparticles [18–20], have been prepared. In addition, in the application field of SERS,
noble metal nanoparticles with sharp tips or porous structure usually show more excellent
effects. In recent years, numerous studies have reported on the preparation methods
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of noble metal nanoparticles with sharp tips or nano-gaps, including nanostars [21,22],
nanoflowers [23,24], and porous nanoparticles [25,26].

In particular, porous structures have attracted intensive attention due to their large
relative surface area, high internal “hot spot” density, and optical properties related to
porosity. Due to their unique structure-related properties, porous structures have been
widely used in various research fields, including catalysis [27–29], sensing [30,31], and
SERS [32–35]. As a kind of porous material, porous noble metal material not only has a high
surface area, high gas permeability and low density, but also has surface plasmon resonance
characteristics, which has a wide range of applications in the optical field [36–38]. For
example, Liu et al. deposited a layer of gold on a hexagonal densely stacked polystyrene
(PS) colloidal monolayer by plasma sputtering, and then obtained an ordered array of Au
open-nano-shells after removing the PS colloidal template. By changing the experimental
parameters, the SPR characteristic could be regulated to the near infrared region and realize
near infrared SERS highly sensitive detection [36]. Cai et al. used AgCl as a template
to prepare a hollow porous structure by the heteroepitaxial growth of Au nanocrystals
on AgCl crystals and used them for the capture of hexachlorocyclohexane pesticides and
ultra-sensitive detection based on SERS [39]. So far, various physical and chemical methods
have been developed to prepare porous metal nanomaterials, including the template
method, galvanic replacement, and dealloying method. However, although the template
method can produce a controllable porous network with regular nanopore distribution, the
sample prepared by the template method has a relatively low surface area. In addition, the
template method usually requires the use of a large amount of organic ligand additives,
organic polymers and reducing agents, thus the surface of the prepared nanomaterial
adsorbs organic substances, thereby affecting its application. When the porous metal
nanomaterial is prepared by the galvanic replacement reaction, due to the reducing atoms
which often occupy only the outermost area randomly, the uniform porous structure cannot
be prepared. Furthermore, dealloying methods have been widely used to synthesize porous
metal nanomaterials. This method requires first synthesizing alloyed nanoparticles, and
then selectively etching less-stable metals from the fully alloyed nanoparticles to produce
porous noble metal nanostructures. In this process, calcination is usually required for
synthesis, which requires high temperatures to obtain a clean surface. This makes the
preparation process more complicated. Therefore, there is an urgent need to develop a
simple and inexpensive method to prepare porous noble metal particles with controllable
microstructures and clean and accessible surfaces.

In this article, we report a simple, fast and inexpensive method to prepare granular porous
Ag and sponge-like porous Ag with a highly accessible surface. As shown in Figure 1, the
preparation process includes the preparation and reduction of AgCl. We first prepared AgCl
cubes according to our previous reported method [40]. Additionally, we successfully prepared
porous Ag cubes with a sponge-like structure through a galvanic replacement approach using
sacrificial Zn and granular porous Ag cubes by optimizing the amount of reducing agent.
Two kinds of porous Ag with different structures were prepared by reducing AgCl at room
temperature without any surfactant, so they have a clean and highly accessible surface to
target analysts. Furthermore, we used the porous Ag as a SERS substrate material to detect
five kinds of methamphetamine analogs, including Ephedrine, Amphetamine, N-Methyl-1-
(benzofuran-5-yl)propan-2-amine (5-MAPB), N-Methyl-1-(4-methoxyphenyl)propan-2-amine
(PMMA) and N-Methyl-1-(4-fluorophenyl)propan-2-amine (4-FMA). Additionally, we realized
the trace detection of the above five substances. Additionally, the Raman spectra of the above
five substances were calculated by DFT, and the vibration peaks were assigned through the
calculation results.
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Figure 1. Schematic diagram of the preparation process for granular and sponge-like Ag cubes.

2. Results and Discussion
2.1. Characterization of the Prepared Porous Ag

In this article, we use AgCl as a sacrificial template to prepare a porous Ag microstruc-
ture. We first prepared concave Ag microcubes according to our previous reported method
with a little modification [40]. Figure S1 shows the Scanning Electron Microscope (SEM)
image of the AgCl microcubes. It can be clearly seen that the prepared microcubes have
regular concave surfaces and sharp corners and edges. Additionally, the average size of
the edge of the as prepared microcubes is approximately 10 µm. The as-prepared AgCl
microcubes were used as templates to synthesize porous Ag particles by two different
methods. First, we use NaBH4 as a reducing agent to reduce concave AgCl cubes to prepare
porous Ag. We observed that when the reducing agent NaBH4 was added, the AgCl imme-
diately changed from white to gray and was suspended in the solution. Figure 2 shows
the SEM images of different magnifications of the products prepared by adding different
amounts of NaBH4. As shown in Figure 2A1–A3, when the ratio of NaBH4 to AgCl is 1:2,
we will prepare AgCl@Ag, and only a small amount of Ag is reduced on the AgCl surface,
the main part is still AgCl. Moreover, when the ratio of NaBH4 to AgCl is 1:2, we further
characterized the prepared AgCl@Ag. Figure S2C,D show the distribution of Cl and Ag
on AgCl@Ag, respectively. From the EDS diagram of the prepared AgCl@Ag particles
(Figure S2E), it can be seen that there is a large amount of AgCl. The atomic content ratio of
Ag to Cl is 64: 36. When the amount of NaBH4 is increased so that the ratio of NaBH4 to
AgCl is 1:1, the amount of Ag in the prepared AgCl@Ag will increase and the size of Ag
particles anchored on the AgCl surface also increases, as shown in Figure 2B1–B3. When
the content of NaBH4 increases to the ratio of NaBH4 to AgCl of 2:1, the granular porous
Ag was formed, as shown in Figure 2C1–C3. To further characterize the prepared porous
Ag structure, we can see the morphology of which remains cubic (Figure 3B). The high
magnification SEM image (Figure 3A) shows that the produced Ag NPs are assembled
into a 3D structure with a high rough surface and the Ag particles are filled with pore
structures. From the EDS element distribution spectrum (Figure 3C,D) and element content
(Figure 3E), it can be seen that there is almost no Cl element; that is, AgCl is all reduced
to Ag, and finally the granular porous Ag cube is formed. Interestingly, we can see that
the porous Ag particles formed after the reduction of concave AgCl cube, resulting in a
regular cubic morphological structure with a flat surface. Therefore, we believe that during
the reduction process, there will be a rearrangement process of Ag atoms, which causes the
original concave surface to disappear and form a flat surface with lower energy.
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(C,D) The distribution of Cl and Ag on the porous Ag surface, respectively; (E) Energy dispersive
X-ray spectroscopy diagram of porous Ag particles.
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In addition, we used Zn as a sacrificial template to prepare a porous Ag structure by
reducing AgCl through a galvanic replacement reaction according to previous reports [41].
Figure S3A,B are the SEM images of the porous Ag structure formed after AgCl is com-
pletely reduced by Zn. We can see that the porous Ag maintains the cubic structure. Figure
S3D,E show the distribution of Ag and Cl element of the porous Ag particles, respectively,
and Figure S3F is the EDS diagram of porous Ag particles. It can be clearly seen that
compared with sponge-like porous Ag particles, granular porous Ag has a rougher surface
and deeper gaps, which make it an ideal highly reinforced SERS substrate material.

2.2. SERS Properties of the Sponge-like and Granular Porous Ag Cubes

In order to prove that the prepared porous Ag base material is free of impurities,
we first tested the prepared porous Ag base material. As shown in Figure 4A (red line
and black line), when nothing is added, the porous Ag has no Raman scattering peak,
indicating that the porous Ag structure itself is clean and will not interfere with the test.
Then, we compared the SERS enhanced effect of spongy and granular porous Ag. As
shown in Figure 4, we first added two kinds of Ag particles to 1.0 mL of 4-ATP solution
with a concentration of 10−6 M and put it at room temperature for 1 h to allow 4-ATP
molecules to adsorb on the Ag particles through Ag-S bound. Then, Ag particles were
collected and dropped on a glass plate for the SERS test. It can be seen from Figure 4A that
the SERS enhanced effect of granular porous Ag on 4-ATP was higher than that of spongy
Ag, indicating that the granular porous Ag structure had a better SERS enhanced effect. In
addition, we also investigated the SERS enhanced effect of AgCl under different reduction
degrees. As shown in Figure 4B, AgCl with different reduction degrees was applied to detect
R6G at 10−6 M. When there was no reducing agent, R6G could not be detected by AgCl as
SERS substrate material. As AgCl was gradually reduced to Ag, the characteristic peak of
R6G would be detected gradually. As the increase in Ag content, the characteristic peaks of
R6G at 613, 772, 1312, 1362 and 1509 cm−1 gradually enhanced, indicating that its SERS
enhanced effect was better with the increase in AgCl reduction degree. When AgCl was
completely reduced to porous Ag, the SERS enhanced effect was the best. Therefore, we all
adopted fully reduced porous Ag as SERS substrate material for detection in the subsequent
tests. Figure 4C is the SERS spectrum of R6G with different concentrations. The Raman
peaks at 613, 772, and 1180 cm−1 correspond to C-C-C in-plane vibration, C-H out-of-plane
bending vibration, and C-H in-plane bending vibration in R6G, respectively. The Raman
peaks at 1312, 1362 and 1509 cm−1 correspond to the N-H plane bending vibration and the
C-C plane stretching in R6G, respectively [42]. Moreover, the characteristic peak strength
of R6G increased significantly with the increase in the concentration, and the minimum
detection concentration of R6G reached 10−10 M. According to previous reports [43,44], the
EF value @613 cm−1 was calculated to be 4.3 × 106. The detailed calculation process can be
found in Supplementary Information S1. In addition, Figure 4D presents a linear calibration
graph between the intensity of the Raman peak and the concentration of R6G. The y value
represents the intensity of the Raman peak at 613 cm−1 and the x value represents the
logarithm of the concentration of R6G. A linear regression equation is proposed. The
reproducibility of the SERS signal is another important feature of the actual analysis. To
test the reproducibility, we selected 15 random locations to collect R6G SERS signals. All
spectra of the 15 random spots are shown in Figure 4E. The relative standard deviation
(RSD) of the absolute intensity of the prominent peak at 613 cm−1 is calculated as 13.2%,
indicating the good reproducibility of the SERS substrate.

We further explored the SERS hotspot distribution of granular porous Ag by Raman
imaging. The porous Ag was soaked in 10−4 M R6G solution for 30 min, so that the R6G
molecules were adsorbed on the surface of the porous Ag to form a monolayer, and then
longitudinal scanning imaging was used to explore the SERS hot spot distribution inside
the granular porous Ag, as shown in Figure 5. Figure 5A is an optical micrograph of a
single granular porous silver and Figure 5B is the longitudinal SERS mapping along the
red line in Figure 5A. From the figure, we can see that there are dense SERS hot spots
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distributed in the granular porous Ag. Figure 5C,D are the distribution diagrams of the
SERS intensity at the peak positions of 613 cm−1 and 1127 cm−1, respectively. From the
figure, we can also see that there are a large number of SERS-enhanced hot spots (the red
curve part) on the longitudinal section inside the porous Ag. This indicates that a large
number of dense SERS-enhanced hot spots distributed inside the granular porous Ag can
be used for highly sensitive detection.
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Figure 4. (A) Sponge and granular porous Ag used as a SERS substrate to detect 10−6 M 4-ATP.
(B) Particles prepared at different ratios of NaBH4 to AgCl (purple curve 0, red curve 1:2, green curve
1:1, blue curve 2:1) were used to detect 10−6 M R6G. (C) Granular porous Ag used as a SERS substrate
to detect R6G at 10−6 M–10−10 M. (D) Intensity of 613 cm−1 as a function of the concentrations of
R6G. (E) SERS spectra of 15 different points of R6G. (F) Graphs of the intensity of the peaks at 613
cm−1 from 15 SERS spectra.
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As is well known, Illegal drug abuse is a common problem faced by all countries
in the world. In particular, rapid and highly sensitive detection of drug abuse plays a
crucial role in anti-drug studies. Surface-enhanced Raman spectroscopy (SERS) as a fast,
non-destructive and highly sensitive detection technology has a good application prospect
in the field of drug detection. In this article, we applied the porous Ag structure to the
detection of five kinds of methamphetamine analogs, including Ephedrine, Amphetamine,
5-MAPB, PMMA and 4-FMA. Figure 6A–E is the molecular structure schematic diagram
of five methamphetamine analogs, and it can be seen that five molecules all have similar
amphetamine parent structures. We first performed Raman tests on standards of five kinds
of methamphetamine analogs, as shown by the black spectral curves in Figure 6A1–E1.
Furthermore, we performed SERS tests on the hydrochloric acid solution of five metham-
phetamine analogs at 2 g/L, using granular porous silver as the base material, as shown in
the red spectral curves in Figure 6A1–E1. From its Raman spectrum and SERS spectrum,
we can see that the Raman peak positions of the two are basically consistent.
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(black), DFT (blue) and SERS spectrum (red) of 5 kinds of amphetamine analogs powders, (A2–E2)
SERS spectra of 5 kinds of amphetamine analogs at different concentrations. (A3–E3) The calibration
curves of 5 kinds of amphetamine analogs.

In addition, we calculated the Raman spectra of the above substances by DFT and as-
signed their characteristic peaks, thus realizing the identification of five methamphetamine
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analogs with similar structures. The structure of the above molecules was optimized, and
the optimized molecules were calculated by DFT using B3LYP/6–311++G(d, p) [45–47]. In
order to correct for errors caused by the harmonic approximation in the theoretical model,
a scaling factor of was applied to the fundamental frequency [48]. From Figure 6A1–E1,
it can be seen that the Raman characteristic peaks of 4-FMA are located at 638, 829, 862,
1002, 1162, 1216 and 1601 cm−1, and the Raman characteristic peaks of Amphetamine are
located at 622, 826, 862, 1002, 1031, 1208 and 1602 cm−1; the Raman characteristic peaks
of 5-MAPB are located at 761, 886, 862, 1265, 1334, 1538 and 1616 cm−1, and the Raman
characteristic peaks of 5-MAPB are located at 761, 886, 862, 1265, 1334, 1538 and 1616 cm−1;
the Raman characteristic peaks of PMMA are located at 640, 824, 849, 1182, 1210, 1250 and
1610 cm−1, and the Raman characteristic peaks of Ephedrine are located at 618, 1002, 1030
and 1598 cm−1. Figure 6A2–E2 is SERS spectra of five alkaloids at different concentrations.
We can see that the minimum detection concentration of five methamphetamine analogs can
reach 1 g/L. Figure 6A3–E3 are linear calibration curves of 4-FMA, Amphetamine, 5-MAPB,
PMMA and Ephedrine (with peak intensities at 829, 1002, 1182, 1538, and 1002 cm−1 as the
vertical axis, respectively). As you can see from the figure, the above substances have good
linear correlations in the range of 1 g/L to 1 mg/L, and the R2 are all greater than 0.97.

According to Figure 6A1–E1, we assigned the theoretical spectra, Raman spectra
and SERS Raman peaks of the above five substances, as shown in Tables S1–S5. Raman
spectroscopy is a molecular fingerprint spectroscopy that allows us to identify fentanyl
and its analogues. Figure 7 shows the SERS spectra of five methamphetamine analogs.
From Figure 7, we can see that when the analogs have only one group on the benzene
ring (Ephedrine and Amphetamine), the breathing vibration of the benzene ring located
at 1002 cm−1 and 1031 cm−1 has the highest intensity and is easier to be recognized.
However, compared with ephedrine, amphetamine has an obvious Raman characteristic
peak at 826 cm−1, which belongs to the stretching vibration mode of isopropyl C-C [49]. In
addition, there are weak peaks around 1600 cm−1 for the five species, corresponding to the
stretching and in-plane bending of the aromatic ring. In particular, 5-MAPB has a sharp and
distinct Raman characteristic peak at 1538 cm−1 due to the presence of furan substituents.
For PMMA and 4-FMA, which are very similar in structure, the only difference between the
two is the substituents on the benzene ring. The biggest difference between the two Raman
spectra is that the Raman vibration peak of C-F bond in 4-FMA is located at 1162 cm−1,
while the Raman vibration peak of C-O bond in PMMA is located at 1182 cm−1.
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3. Materials and Methods
3.1. Materials

All chemicals were purchased from commercial sources and used as received with-
out further purification. Chemicals used in this study included silver nitrate (AgNO3, A.R.
99.8%, Sinopharm Group Reagent Co., Ltd., Shanghai, China), Hydrochloric acid (HCl, AR,
36.0–38.0%), Sodium chloride (NaCl, AR) nitric acid (HNO3, AR, 65.0–68.0%), ethylene gly-
col (EG, 99%), poly(diallyldimethylammonium) chloride (PDDA, MW = 200,000–350,000 D,
20 wt% in H2O, ≥99%), 4-aminothiophenol (4-ATP, 98% GC), Sodium borohydride (NaBH4,
98%) Rhodamine 6G (R6G, 95%), which were purchased from Aladdin (Shanghai, China). Zn
tablets were purchased from Tengfeng Metal Company. 2-(methylamino)-1-phenylpropan-1-
ol (Mw = 165.23), AmphetaMine (Mw = 135.2), 4-Fluoromethamphetamine (Mw = 167.22),
4-Methoxy Methamphetamine (Mw = 215.72) and 5-MAPB (Mw = 189.25) were purchased
from The Third Research Institute of the Ministry of Public Security. The solutions were
prepared from super pure water (18 MΩ cm) purified through a Milli-Q Lab system (Nihon
Millipore Ltd., Shanghai, China).

3.2. Preparation of Concave AgCl Cube

The concave the AgCl cube was prepared according to our previous reported method
with a little modification [40]. We took a 50 mL round bottom flask and add 20 mL of
ethylene glycol, weighed 1.0 g of NaCl powder into the above ethylene glycol solution,
stirred at room temperature to dissolve NaCl, then heated the above solution in an oil bath
to 190 ◦C, and added 200 µL of 1 M AgNO3 solution. We continued the reaction for 30 min.
A white precipitate appeared immediately after adding AgNO3 solution. After 30 min, the
above solution was cooled to room temperature, centrifuged at 8000 rpm for 10 min, the
supernatant was removed, 20 mL of water and ethanol were added to ultrasonically clean
twice, and the obtained product was dispersed in ethanol for storage.

3.3. Preparation of Granular Porous Ag Cubes

The prepared AgCl was dispersed in 20 mL of pure water, added to a 100 mL beaker,
and then uniformly dispersed by ultrasound at room temperature. Then, 0.2 M NaBH4 was
added, reacted at room temperature for 30 min, and centrifuged at 8000 rpm for 10 min to
remove the supernatant, and then washed twice with water and ethanol, and dispersed in
ethanol for later use.

3.4. Preparation of Sponge-like Porous Ag Cube

We first cut the high-purity zinc foil into 5 × 5 cm2, cleaned the zinc foil with 0.1 M
dilute nitric acid, and then rinsed with hydrated ethanol. Using the prepared AgCl cube as
a template, we then added it to a zinc foil containing 50 mL of water with a pipette, and
used a galvanic replacement reaction to reduce AgCl to obtain porous Ag. In addition, we
adjusted the reaction time by adjusting the concentration of NaCl in the solution.

3.5. Instrumentation and Characterization

The prepared porous Ag crystals were characterized by scanning electron microscope
(SEM, SU8010, Hitachi, Japan) and transmission electron microscope (TEM, Tecnai G2 F20
S-TWIN). The SEM study was conducted on a JEOL JSM-6700F SEM running at 3.0 kV. A
Hitachi HT7700 operating at 100 kV was used for TEM characterization. Surface-enhanced
Raman spectroscopy was performed using a confocal Raman microscope (Thermo Fisher
DXR2xi) with a laser excitation at 633 nm, an exposure time of 10 s and an objective lens
with a magnification of 50 times.

3.6. The SERS Test

A confocal Raman microscope (Thermo Fisher DXR2xi) was used for surface enhanced
Raman detection under laser excitation at 633 nm, with a laser power of 6.0 mW and an
acquisition time of 10 s. After concentrating the porous Ag separately, we took 10 µL and
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soaked them in 4-ATP solutions of different concentrations, and let them stand for 60 min
at room temperature to allow 4-ATP molecules to adsorb on the surface of Ag crystals to
form a monolayer, and then the crystals. The centrifugal collection was dripped on the
glass slide for SERS detection. All the glass pieces used were soaked in aqua regia for
30 min, and then rinsed twice with ultrapure water and ethanol to remove impurities, and
dried in an oven for later use. The 4-ATP concentration is 10−6 M. For the mapping of
granular porous silver, 10−4 M R6G molecule was used as the test object, and the porous
silver particles were soaked in the R6G solution for 30 min, and then the porous silver
particles were dripped on the glass slide and dried at room temperature. The surface
scan adopts 633 nm laser wavelength. The acquisition was performed three times and
the acquisition time was set to 0.5 s. The step width of longitudinal Raman mapping is
0.2 µm, equipped with a microscope (50× objective lens). The SERS test conditions for
five kinds of methamphetamine analogs are consistent with the above process, except that
a 10× objective was used. For the detection of five kinds of methamphetamine analogs,
including Ephedrine, Amphetamine, 5-MAPB, PMMA and 4-FMA, we first mixed 10 µL of
the prepared porous Ag with 10 µL of the test solution and then performed the test after
the solvent evaporated at room temperature.

4. Conclusions

We used AgCl cubes as the sacrificial template to prepare two kinds of porous Ag
crystals. Using NaBH4 as the reducing agent, we prepared granular porous Ag cubes
using the hydrothermal method. Using Zn as the sacrificial metal, we prepared sponge-like
porous Ag cubes by a galvanic replacement approach. The two kinds of prepared porous
Ag cubes were further used for SERS detection, and the results showed that the granular
porous Ag cube has a better SERS effect than sponge porous Ag. Furthermore, we used
granular porous Ag as the SERS base material to detect the five kinds of methamphetamine
analogs, including Ephedrine, Amphetamine, 5-MAPB, PMMA and 4-FMA, with the
lowest detection concentrations of 1 mg/L. Furthermore, we combined the analysis of the
conventional Raman spectra, DFT calculated spectra and obtained SERS spectra of five
kinds of methamphetamine analogs, and we achieved their discrimination. We showed
that the porous Ag structure has great application prospects in label-free SERS detection.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27123939/s1, S1: Calculation of EF value; Figure S1:
SEM images of as prepared concave AgCl micro cubes. (A) High magnification, (B) Low magnification.
Figure S2: (A) and (B) SEM images of porous Ag structure prepared when the ratio of NaBH4 to AgCl
is 1:2; (C) and (D) are the distribution of Cl and Ag on the porous Ag surface, respectively; (E) EDS
diagram of porous Ag particles. Figure S3: (A), (B) and (C) are SEM images of porous Ag structure
prepared by galvanic replacement reaction, (D) and (E) are the distribution of Ag and Cl on the
porous Ag surface, respectively. (F) EDS diagram of porous Ag particles. Tables S1–S5: Expiremental
and DFT frequencies with respective spectral assignments for 5 kinds of methamphetamine analogs.
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