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With implanted markers, daily prostate displacements can be automatically 
detected with six degrees of freedom. The reported magnitudes of the rotations, 
however, are often greater than the typical range of a six-degree treatment couch. 
The purpose of this study is to quantify geometric and dosimetric effects if the 
prostate rotations are not corrected (ROT_NC) and if they can be compensated with 
translational shifts (ROT_C). Forty-three kilovoltage cone-beam CTs (KV-CBCT) 
with implanted markers from five patients were available for this retrospective 
study. On each KV-CBCT, the prostate, bladder, and rectum were manually con-
toured by a physician. The prostate contours from the planning CT and CBCT were 
aligned manually to achieve the best overlaps. This contour registration served 
as the benchmark method for comparison with two marker registration methods:  
(a) using six degrees of freedom, but rotations were not corrected (ROT_NC); and 
(b) using three degrees of freedom while compensating rotations into the transla-
tional shifts (ROT_C). The center of mass distance (CMD) and overlap index (OI) 
were used to evaluate these two methods. The dosimetric effects were also analyzed 
by comparing the dose coverage of the prostate clinical target volume (CTV) in 
relation to the planning margins. According to our analysis, the detected rotations 
dominated in the left–right axis with systematic and random components of 4.6° and 
4.1°, respectively. When the rotation angles were greater than 10°, the differences in 
CMD between the two registrations were greater than 5 mm in 85.7% of these frac-
tions; when the rotation angles were greater than 6°, the differences of CMD were 
greater than 4 mm in 61.1% of these fractions. With 6 mm/4 mm posterior planning 
margins, the average difference between the dose to 99% (D99) of the prostate in 
CBCTs and the planning D99 of the prostate was -8.0 ± 12.3% for the ROT_NC 
registration, and -3.6 ± 9.0% for the ROT_C registration (p = 0.01). When the plan-
ning margin decreased to 4 mm/2 mm posterior, the average difference in D99 of 
the prostate was -22.0 ± 16.2% and -15.1 ± 15.2% for the ROT_NC and ROT_C 
methods, respectively (p < 0.05). In conclusion, prostate rotation cannot be simply 
dismissed, and the impact of the rotational errors depends on the distance between 
the isocenter and the centroid of implanted markers and the rotation angle. 
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I. IntroductIon

During radiotherapy of patients with prostate cancer, the prostate position may vary due to the 
changes in the filling of the bladder and rectum.(1-2) Such variations pose a great  challenge to 
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the precision of treatment delivery. The use of image-guided radiotherapy (IGRT) improves 
treatment precision considerably by correcting daily patient setup error and internal organ 
motion. Most target localization corrections from IGRT, however, are limited in transla-
tion only. Rotational setup error and rotational organ motion have been reported, but often 
dismissed clinically. 

For patient positional setup errors, which are often detected by registering bony structures 
from the verification images with those from the planning images, most studies reported that 
rotational setup errors were relatively small with a standard deviation of about 1° around each 
axis.(3-6) Because of the small magnitude, some have suggested that the rotational errors can 
be ignored,(7-8) while others have suggested use of a robotic treatment couch to correct for this 
magnitude of rotation.(9) 

For intertreatment organ motion of the prostate, several studies showed that the prostate 
organ rotation could be greater than setup error and might have an important dosimetric impact.
(3,10-19) Large prostate rotations are often reported by registering the implanted markers between 
the verification and planning images. Rotations around left–right (LR) axis were found to be 
dominant because of influence of the filling of the rectum. Deutschmann et al.(18) found the 
average LR rotation was 5.3° ± 4.9°, with maximum at 30.7° for 31 patients. Lips et al.(19) 
reported rotational errors with systematic error of 6.3° and random error of 4.9°, ranging from 
-12.1° to 9.1° for a cohort of 19 patients. 

Although using implanted markers as a surrogate to localize the prostate is a well-adopted 
method for daily IGRT,(20-21) large rotations reported from the implanted marker registration are 
beyond the maximum correction ranges for most commercially available six-degree couches. 
Others may even question the accuracy of such large rotations, and how the stability of the 
markers and their implanted locations affect the accuracy of these detected rotations. The purpose 
of this study is to quantify geometric and dosimetric effects with and without compensation 
for rotations detected based on marker registration, rather than to determine accuracy of the 
rotations detected from the marker registration.

 
II. MAtErIALS And MEtHodS

A.  Patient selection and treatment planning
Five patients, who underwent definitive external beam radiotherapy for prostate cancer, had 
three electromagnetic transponders implanted in the prostate for daily IGRT, using the Calypso 
4D localization system (Calypso Medical, Seattle, WA). In addition, weekly or daily kilovolt-
age cone-beam CTs (KV-CBCT) were also acquired to cross-check the Calypso system, as 
needed, upon the request of radiation oncologists. A total of 43 KV-CBCTs were available for 
this retrospective study. 

The patients were treated with two different dose schemes: 2 Gy per fraction to a total dose 
of 78 Gy, and 2.5 Gy per fraction to a total dose of 70 Gy. For the purpose of this study, the 
prescription dose for all plans was renormalized to 2 Gy per fraction to a total dose of 78 Gy 
without altering IMRT optimization. The CTV was the prostate and the organs at risk (OAR) 
were the bladder and rectum. The clinical planning margins for these patients were 6 mm/4 mm 
posterior. The IMRT plans were created with the Pinnacle treatment planning system (Pinnacle3, 
8.0m-9.0, Philips Radiation Oncology System, Madison, WI), using a typical five beam arrange-
ment with 10 MV photon beams.

B.  Quantification of the prostate displacement 
On each KV-CBCT, the prostate, rectum, and bladder were manually contoured by a physi-
cian. Subsequently, each CBCT was registered with the corresponding planning CT using four 
different alignment methods (a total of 172 imaging registrations) including (i) manually align 
the bones using three degrees of freedom (three translations only) (Bone_T); (ii) automatically 
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align the three markers using six degrees of freedom (three translations and three rotations), 
but rotations are not corrected (ROT_NC); (iii) manually align the three markers using three 
degrees of freedom, which partially compensates rotations with translational shifts (ROT_C); 
and (iv) manually align the prostate contour using three degrees of freedom (Contour_T), which 
also partially compensates rotations with translational shifts. After subtracting translational 
shifts from the bony alignment (Bone_T), patient setup error was removed from the other 
three alignment methods. All the reported shifts in this paper were the prostate displacements 
relative to the pelvic bones. 

To quantify rotations of the prostate, overall mean and standard deviation of the rotational 
errors were determined from the measurements of all patients. Systematic and random errors 
were calculated according to the method published by Remeijer et al.(5) The systematic error 
of the entire group is the standard deviation of the individual patient means corrected for the 
limited and different number of measurements for each patient. The random error of the entire 
group is the root mean square of the individual patient standard deviation, also weighted by 
the number of measurements for each patient.

To investigate whether the rotations of the prostate can be compensated with translational 
shifts, we used the contour registration method (Contour_T) as a benchmark to evaluate the 
two marker registration methods (ROT_NC and ROT_C) by comparing their geometric and 
dosimetric indices.

C.  Marker migration and false identification
Marker migration is critical for detection of the daily prostate rotation. It can be quantified by 
measuring the intermarker distance variation of the implanted markers between the planning 
CT and the daily CBCT. Besides marker migration, other causes that might produce intermarker 
distance variation include organ shrinkage, organ deformation, and position localization errors 
of the markers. These factors can affect the accuracy of the detected rotations. To examine 
the stability and localization error of the implanted markers, we measured the intermarker 
distances of the treatment day with detected rotations greater than 10° and compared them 
with the intermarker distances in the planning CT. We also simulated marker migration/false 
identification by manually adjusting the position of one of the three markers to investigate how 
it affects the detected rotations. For 7 fractions with rotations greater than 10°, we moved the 
selected marker by 1 mm and 2 mm from its original position in axial plane and moved one 
slice thickness (1.5 mm) superiorly and inferiorly. 

d.  Geometric analysis
To minimize potential prostate contour variations in daily CBCT, manually contoured prostate 
on each CBCT, denoted as Prostate_CBCT, was used only for contour-based alignment, not for 
geometric analysis. After each image registration, we used the transferred contours from the 
planning CT for geometric analysis. The transferred contours, denoted as Prostate_ROT_NC, 
Prostate_ROT_C, and Prostate_Contour_T, corresponded to the ROT_NC, ROT_C, and 
Contour_T registrations, respectively. All these contours were the CTV contours. For the 
ROT_NC registration, rotations were ignored for contour transferring, reflecting a certain 
clinical scenario in which a registration with six degrees of freedom was performed, but only 
translational shifts were corrected. Figure 1 is an example illustrating these prostate contours 
obtained from different registration methods. 
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D.1 Center of mass distance
For each of these prostate contours, a center of mass (COM) was calculated in the same CBCT 
frame. As a global measure of daily prostate displacement, the center-of-mass distance (CMD) 
of the prostate contours between the bony registration and each of the other three registration 
methods was calculated using the following equation:

  (1)

where d is the CMD, and x, y, and z are the coordinates of the COM of the transferred prostate 
contour after each registration method, and x0, y0, and z0 are the coordinates of the COM of the 
transferred prostate contour after bony registration. Using this equation, we verified the result 
of the contour-based registration by calculating the relative CMD between the Prostate_CBCT 
and the Prostate_Contour_T. 

Using the contour registration (Contour_T) as a benchmark, we compared the accuracy of 
the two marker registration methods (ROT_NC and ROT_C) by calculating the relative CMDs 
between the Prostate_Contour_T and Prostate_ROT_NC, and between the Prostate_Contour_T 
and Prostate_ROT_C. 

D.2 Overlap index
To quantitatively evaluate the geometric properties of the two marker registration methods, we 
defined the volume overlap index (OI) as:

  (2)
 

where T is the transformation applied to the prostate contour from the planning CT (Prostate_CT) 
by the two marker registration methods, and the operator  defines the common area between 
the two regions of interest. Thus we have: 

  (3)
 

and

  (4)
 

Fig. 1. Prostate contours from different registration methods in (a) transverse, (b) coronal, and (c) sagittal views. Prostate_
ROT_NC is shown in blue, Prostate_ROT_C in red, Prostate_Contour_T in purple, and Prostate_CBCT in yellow.
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where subscript NC and C represent the ROT_NC and ROT_C methods, respectively. OI is a 
volumetric measure for registration accuracy, describing the geometric overlap between the 
“prostate of the day” and the “prostate at planning”. Since all the contours (Prostate_Contour_T, 
Prostate_ROT_NC, and Prostate_ROT_C) presented in Eqs. (3) and (4) are contours transferred 
from the planning CT based on different registration methods, OI is a value ranging between 
0 and 1. The higher the value, the more the overlap between the actual target volume and the 
planned target volume, and thus the better the registration outcome.

E.  dosimetric analysis
For each CBCT, three verification plans were created to calculate the radiation dose of the 
treatment day using the same beam configuration as the original treatment plan. The treatment 
isocenters for these three verification plans were placed according to the three registration 
methods, ROT_NC, ROT_C, and Contour_T, respectively. A total of 129 verification plans were 
created and analyzed. Since the Hounsfield Units (HU) in CBCT is inaccurate and unreliable 
for dose calculation, the electron density of the CBCT was overridden with 1 g/cm3 for voxels 
inside the patient external body contour, and 0 (air) for voxels outside the external contour.

The clinical planning margins for the prostate were 6 mm, except 4 mm posterior. To inves-
tigate the effect of prostate rotation with reduced planning margins, we chose not to conduct 
replanning for each patient using progressively reduced planning margins, which may introduce 
variations in initial plan quality. Instead, we created three expanded prostates (namely Prostate-
CTVs) to simulate replanning with reduced margins. These Prostate-CTVs were created by 
three-dimensionally expanding the Prostate_CBCT contour with 2 mm, 4 mm, and 6 mm /4 mm 
posterior. We calculated the doses to 99% (D99) of these Prostate-CTVs. For verification plans 
with 6 mm and 4 mm posterior planning margins, we also evaluated the dose to 5% and 50% 
(D5 and D50) of the bladder and rectum. 

 
III. rESuLtS 

A.  Prostate rotations
The prostate rotations detected from the ROT_NC registration were recorded and are shown 
in Fig. 2 for all 43 fractions. The rotations around the anterior–posterior (AP) and superior–
inferior (SI) axes were relatively small and primarily within the range of -5° and +5°,  
while the rotations around the left–right (LR) axis were larger, at times exceeding 10°. The 
overall mean and standard deviation (SD) of the rotations were 3.3° ± 5.8°, -1.4° ± 2.9°, and 
-0.8° ± 2.8°, for the LR, AP, and SI axes, respectively. The systematic SDs were 4.6°, 2.3°, and 
2.1°, and the random SDs were 4.1°, 2.0°, and 2.0° for the three axes, respectively (Table 1).

Fig. 2. Prostate rotations about the left–right (LR), anterior–posterior (AP), and superior–inferior (SI) axes for 43 fractions.
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B.  Marker migration and false identification
Among 43 fractions, 7 fractions from three patients had rotations greater than 10°. The average 
intermarker distance for these fractions was 23.3 ± 7.0 mm. The average absolute variation of 
intermarker distance was 0.8 ± 0.6 mm. Four fractions exhibited marker migrations greater than 
1 mm, with a maximum of 2.4 mm. Simulation results of marker migration/false identification 
showed that with 1 mm variation of the marker position, variation in rotations was less than 
2°; with 2 mm variation of the marker position, the maximum variation in the rotations was 
6°. Changing the marker position to its adjacent image slice (slice thickness 1.5 mm) resulted 
in 3° variation of the rotations.

c.  Geometric analysis
The CMD between the transferred prostate contour based on contour registration and the physi-
cian drawn contour on the CBCT is shown in Fig. 3(a). This distance is a global measure of the 
potential prostate deformation and contouring uncertainty, which was detected to be less than 
1.9 mm (1.3 ± 0.5 mm) for 95.3% of the fractions. Thus, it is reasonable to use contour-based 
registration as our benchmark for comparison of the two marker-based registration methods.

Figure 3(b) demonstrates the CMDs between the prostates from the contour-based registration 
(Contour_T) and from the marker-based registration with rotations zero out (ROT_NC), and 
the CMD between the prostates from the contour-based registration and from the marker-based 
translation only registration (ROT_C). Figure 3(b) also shows the CMD differences between 
the two marker-based registrations. It is observed that when compared with the prostate contour 
from the ROT_NC registration, the prostate contour from the ROT_C registration is closer to 
the prostate contour from the Contour_T registration, especially when the rotation is large. The 
mean CMDs were 6.6 mm and 3.9 mm, respectively. The difference between the two CMDs 
ranged from -0.9 mm to 8.3 mm when the maximum rotation (absolute value) from all three 
axes varied from 0.9° to 13.8°. When the rotation was greater than 10°, the difference in CMD 
between the prostates from the two marker-based registrations was greater than 5 mm in 6 of 
7 (85.7%) fractions. When the rotation was greater than 6°, the difference in CMD was greater 
than 4 mm in 11 of 18 fractions (61.1%). The statistics of the two CMDs and their differences 
are summarized in Table 2. 

The average OI between the transferred prostate contour based on contour registration and 
the physician drawn contour on the CBCT is 0.79 ± 0.06, as shown in Fig. 4(a). This index 
includes the potential prostate deformation, as well as prostate contour uncertainties in the 
CBCTs. We were not able to separate these two factors. However, the contouring uncertain-
ties had a smaller impact on the CMDs. As shown in Fig. 3(a), the average CMD between 
the Prostate_Contour_T and the Prostate_CBCT of 1.3 ± 0.5 mm indicated that the prostate 
deformation might be minimal.  

Figure 4(b) compares the OI averaged over each patient for the two marker registration 
methods. In general,  exhibits greater value than , indicating that better geometric 
overlap between the “prostate of the day” and the “prostate at planning” can result from the 
marker registration with translational correction. In three of five patients,  shows over 10% 
improvement of overlap when compared with .

Table 1. Prostate rotation variations (in degrees) about the left–right (LR), anterior–posterior (AP), and superior–
inferior (SI) axes.

 LR AP SI

Overall Mean 3.3 -1.4 -0.8
Overall SD 5.8 2.9 2.8
Systematic SD 4.6 2.3 2.1
Random SD 4.1 2.0 2.0
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Fig. 3. Center of mass distance (CMD): (a) between the Prostate_Contour_T and Prostate_CBCT; (b) between the Prostate_
Contour_T and Prostate_ROT_NC, between the Prostate_Contour_T and Prostate_ROT_C, and the difference.

(a)

(b)

Table 2. Center of mass distance (CMD) of prostate shifts between the contour-based and two marker-based 
registrations.

 CMD Between ROT_NC and CMD Between ROT_C and
 Contour_T(39) Contour_T(39) Difference(39)

Max. 15.8 9.1 8.3
Min. 1.9 1.4 -0.9
Mean 6.6 3.9 2.7
SD 2.6 1.8 2.4
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d. dosimetric analysis
Figure 5 shows the ratios of D99 of the Prostate-CTVs from three types of verification plans 
to the planned D99 of the prostate with three equivalent planning margins. With 6 mm/4 mm 
posterior planning margins, D99 of the prostate was significantly different between the two 
marker registrations (p = 0.01) — -3.6 ± 9.0% difference from the planned dose for the ROT_C 
method, compared to -8.0 ± 12.3% for the ROT_NC method. The dose differences (p < 0.05) 
between the two methods increased as the planning margins decreased, as shown in Table 3. 
For example, with a 2 mm margin reduction (equivalent to a 2 mm expansion of the prostate 
in this study), the ROT_C method could improve dose coverage to the Prostate-CTV D99 by 
6.9%. From Fig. 5, the contour-based registration achieved the best dose coverage, followed 
by the ROT_C method as the planning margin progressively reduced.  

The dosimetric improvement of translational correction is greater when the magnitude of 
the rotation is large. For example, for a patient with detected rotations of 8.8° ± 2.9° around the 
LR axis, the average daily D99 of the prostate was 1.99 Gy (99.7% of the planned dose, with 
a daily prescription dose of 2.0 Gy) with the ROT_C method, compared to 1.68 Gy (84.4% of 
the planned dose) with the ROT_NC method. As the planning margin decreased to 4 mm/2 mm 
posterior, the average daily D99 of the Prostate-CTV improved from 1.39 Gy from the ROT_NC 
method to 1.82 Gy from the ROT_C method, a 21.4% improvement by compensating rotations 
with translational shifts.  

Figure 6 shows doses to 5% (D5) and 50% (D50) of the bladder and rectum for the two 
marker registration methods. D5 of the bladder and D50 of the rectum did not reach  statistically 

Fig. 4. Overlap index (OI): (a) the average OI for Prostate_Contour_T and Prostate_CBCT for each patient; (b) the average OI 
for each patient compared between the two marker-based registration methods. Error bar shows one standard deviation.

(a)

(b)



185  Shang et al.: Prostate rotation cannot be dismissed 185

Journal of Applied clinical Medical Physics, Vol. 14, no. 3, 2013

significant differences (p-values were 0.09 and 0.44, respectively) by the ROT_NC and ROT_C 
methods. D5 of the rectum was lower than the planned dose for both methods, and D50 of 
the bladder was significantly lower for the ROT_C method (p = 0.004). We also noticed that 
the dose variation in D50 of the bladder was largely due to the large volume variation of the 
bladder during the treatment course. The average dose differences for OAR from all fractions 
between the dose of the day and the dose of the plan are listed in Table 4.

 

Fig. 5. Average D99 of the Prostate-CTV as a function of CTV expansion margins for the three registration methods. 
D99 is expressed as a ratio of the daily dose to the planned daily D99 of the prostate. Error bar represents one standard 
deviation.

Fig. 6. Average D5 and D50 of the bladder and rectum. Column represents mean value (normalized to the planned dose) 
and error bar corresponds to one standard deviation.

Table 3. Average difference in D99 of the Prostate-CTV between the daily and planned dose. 

 CTV Expansion(39) 

 Registration Methods 0 2 4 6/4

ROT_NC -8.0±12.3% -22.0±16.2% -28.7±15.8% -39.0±15.3%
ROT_C -3.6±9.0% -15.1±15.2% -20.4±14.7% -31.9±15.1%
Contour_T -1.6±5.2% -11.3±15.0% -15.6±14.4% -28.3±16.3%
Improvement by correction 4.4% 6.9% 8.3% 7.1%

Note: The differences are expressed in percentage (%) of the planned D99 of the prostate as a function of CTV 
expansion margins. Negative mean value indicates less dose in daily D99 of the Prostate-CTV when compared to the 
planned dose.
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IV. dIScuSSIon

We investigated the magnitude and distribution of the prostate interfractional rotations and 
evaluated the geometric and dosimetric effects of the rotations. Precisely correcting the pros-
tate organ rotation is clinically important but challenging, especially when rotation angles 
are large. Recent development of six-degree treatment couches has enabled correction of the 
rotations,(9,17,22-23) but such treatment couches are not widely available or able to correct large 
magnitude of rotations. For the purpose of patient safety, the correction range for a typical six-
degree couch is about 4°–5°. Other correction strategies have been proposed, such as gantry 
and collimator angle adjustments to partially correct for left–right rotations,(24) offline adaptive 
planning,(25-27) and dynamic MLC tracking.(28) However, most of these strategies are in the 
investigation stages and are not yet clinically practical. 

During treatment for most patients with prostate cancer, patient positioning errors and pros-
tate displacement are often not separated. In this study, we used a dual imaging registration 
method to separate the positioning errors and prostate displacement. Because reported rotation 
errors in patient positioning were small, we used the bony registration with translational shifts 
to determine the positional setup errors. Subtracting the translational shifts from the bone 
registration, the translational shifts and rotations from the marker registration were primarily 
from the displacement of the prostate, or artifact of the registration method. 

Nevertheless, Table 5 compares our data with other reported data in the literature for both 
systematic and random components of prostate rotations detected with three imaging registra-
tion methods. The systematic component describes the variation of the mean displacement of 
the prostate, while the random component delineates the day-to-day position variation of the 
prostate. Compared to the results from marker registration, our data agree well with previous 

Table 4. Average dose difference for OAR between the daily and planned dose. 

 OAR Dose 
 Registration Methods Bladder D5 Bladder D50 Rectum D5 Rectum D50

 ROT_NC 7.2±15.9% 48.5±133.4% -10.5±19.5% 1.2±41.7%
 ROT_C 4.8±13.2% 10.1±98.4% -4.7±10.2% -1.3±30.5%
 Contour_T 0.8±11.8% 0.9±77.2% 0.2±7.9% 7.2±40.0%

Note: The differences are expressed in percentage (%) of the planned dose as the mean ± standard deviation. Negative 
mean value indicates better organ sparing compared with the original plan.

Table 5. Systematic and random components (in degrees) of prostate rotations in the literature.

 Systematic Components Random Components
 Authors LR AP SI LR AP SI

 Van Herk et al.(29) N/A N/A N/A 4.0 1.3 2.1Contour-based Stroom et al.(10) 3.6 0.8 1.7 3.3 0.9 1.5Registration Hoogeman et al.(13) 5.1 1.3 2.2 3.6 1.6 2.0

Image-based
Registration Nijkamp et al.(25) 2.9 0.9 1.0 3.0 1.0 1.1

 Dehnad et al.(11) 4.7 2.0 2.7 3.6 1.7 1.9
 Aubry et al.(12) 5.6 2.2 2.4 6.1 2 2.8

Marker-based Graf et al.(17) 4.1 2.3 1.6 3.1 1.8 2.0

Registration Van der Heide et al.(20) 6.8 2.8 2.8 3.1 1.7 2.0
 Lips et al.(19) 6.3 2.0 2.8 4.9 1.0 1.4
 Owen et al.(16) 7.6 5.0 7.7 10.2 6.5 15.8
 Our study 4.6 2.3 2.1 4.1 2.0 2.0
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results from Dehnad et al.(11) and Graf et al.(17) Except for the study conducted by Owen et 
al.,(16) prostate rotation around the LR axis was found to be the largest of the three axes. Lips 
et al.(19) and van der Heide et al.(20) found larger systematic error (6.3° and 6.8°, respectively) 
than others around the LR axis, and Aubry et al.(12) also reported greater random error (6.1°) 
around the LR axis.

The variation of the reported prostate rotations (Table 5) may stem from differences in treat-
ment protocols, image registration approaches, and mathematical methods for error computation 
at each institute. Some studies matched the prostate contours in the planning CT with those in 
the repeated CT scans to get the rotations of the prostate relative to the pelvic bones,(3,10,13) while 
others performed the registration based on the implanted markers.(11-12,16-17,19-20) In addition, 
the mathematical equations used to compute the systematic and random errors might be slightly 
different from one study to another. For example, Owen et al.(16) computed the errors using 
the method described by van Herk,(29) and Stroom et al.,(10) and Hoogeman et al.(13) utilized a 
similar method but corrected the systematic error for the finite number of measurements. Aubry 
et al.(12) employed an approach by Remeijer et al.,(5) not only considering the limited size of 
samples, but also accounting for the different number of measurements for each patient. In 
this study, we used the same method as that in the Remeijer study. Furthermore, the selection 
of rotation center has a strong effect on the resultant rotations. Owen and colleagues used the 
marker placed near the apex of the prostate as the pivot point for rotation computation, while 
for most of the other studies, rotations were measured at the centroid of the prostate contours 
or the centroid of the markers, depending on whether the contour-based or marker-based reg-
istration method is used. The Owen study reported much greater rotations (7.6°, 5.0°, and 7.7° 
for systematic and 10.2°, 6.5°, and 15.8° for random) than others.

In this study, the registration was performed in the treatment planning system instead of the 
on-board imaging system of the linear accelerator. Daily CBCT and the planning CT are served 
as the primary and secondary image for fusion, respectively. The secondary image is translated 
and rotated to match the primary image. The resultant rotations were measured around the 
image volume center of the secondary image (planning CT). Rotations could also be measured 
at the treatment isocenter.(30) However, the centroid of the markers, which in general represents 
the center of mass of the prostate organ, could be different from the treatment isocenter or the 
image center. For example, for concurrent treatment of the prostate and pelvic lymph nodes, the 
isocenter is usually placed outside of the prostate. Isocenter may also be adjusted away from 
the center of the prostate because of practical reasons. In these cases, if rotations are measured 
around the isocenter, or any point other than the centroid of the markers (e.g., image volume 
center), ignoring such rotation will introduce a translational error at the centroid of the markers, 
indicating prostate displacement from its supposed position. For instance, Linthout et al.(23) 
reported that a tilt rotation of 2.5° at the foot end of the couch could lead to a vertical shift of 
4.5 cm at the isocenter for a standard prostate cancer patient positioning (where the isocenter 
is close to the center of the prostate). 

The ROT_NC method obtains a six-degree-of-freedom solution, but only applies the trans-
lational components of the solution for correction. In the scenario where the rotation center is 
different from the centroid of the markers, only the rotation center is corrected precisely with 
the ROT_NC method (under the assumption of no prostate deformation and other uncertainties 
such as marker migration). For all the other points in the image, especially for points inside the 
prostate which we are interested in, there will be a translational error produced by the uncor-
rected rotation. The magnitude of the error depends on the distance to the rotation center and 
the detected rotation at that point. Mathematically, the translational error at the centroid of the 
markers due to uncorrected rotations can be estimated roughly by Eq. (5) according to the law 
of cosines in Euclidean geometry:

  (5)
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where D is the distance between the centroid of the markers and the rotation center, and θ is 
the rotation angle about the LR axis (assuming rotations about the AP and SI axes are small 
enough to be neglected). Figure 7 shows the magnitude of the measured and estimated error of 
the ROT_NC method at the centroid of the markers from its true position where rotations are 
corrected precisely. Except for a few fractions where the assumption of small rotations about 
the other two axes was not satisfied, the measured errors agreed well with the estimated ones 
for the majority of fractions. A greater distance D and/or larger rotation angle θ creates larger 
error. For example, for a patient with D = 7.3 cm and θ = 4.9°, the measured translational error 
associated with the ROT_NC method was 6.8 mm; for another patient with D = 3.5 cm and θ = 
4.5°, the error was 2.2 mm. For the same patient with D = 3.5 cm, the error was 4.0 mm when 
the detected rotation was 9.4°, compared to 0.5 mm error when the rotation was less than 1°. 

On the other hand, the ROT_C method uses only three degrees of freedom for correction. 
The resultant translational solution contains two separable components. The first component 
corrects the initial translational error (three translations from the six-degree-of-freedom solu-
tion) to the rotation center; and the second component compensates for translations caused by 
the rotation for points in the prostate by matching the three markers. Therefore, the centroid of 
the three implanted markers is precisely corrected (theoretically, with the same assumption as 
above). For other points inside the prostate, the second translational component only partially 
corrects for rotations. Thus, the residual translational errors of the prostate from the ROT_C 
method are smaller than those from the ROT_NC method. Using contour-based registration as 
our benchmark, the displacement of the prostate from its supposed position after correction by 
the two marker-based registration methods was quantified by the center of mass distance and 
overlap index (Figs. 3 and 4). In the scenario where the rotation center is the centroid of the 
prostate, the ROT_NC method will produce the same results as that of the ROT_C method. To 
avoid substantial shifts of the prostate centroid caused by the ROT_NC method, placing the 
isocenter close to the centroid of the implanted markers is recommended. Otherwise, using the 
ROT_C method is recommended.   

The detected rotations from marker registration may depend on spatial relationship of the 
implanted markers, marker stability within the prostate, and the accuracy of the marker iden-
tification. It is speculated that when markers are implanted close to each other, large organ 
rotations may be falsely rendered. Migration or localization errors of implanted markers could 
also lead to falsely rendered rotations. Although several studies reported that the average marker 
movement was very small, on the order of 1 mm,(11,31-34) there was evidence of relatively large 
intermarker distance variations for individual patients. McNair et al.(35) found marker migra-
tion of more than 2 mm in 10% (3 of 30) patients; Deutschmann et al.(18) observed 24 of 342 
patients had intraprostatic migrations of one of four markers greater than 3 mm, and 10 greater 

Fig. 7. The magnitude of measured and estimated errors associated with the ROT_NC method.
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than 4 mm; while Kupelian et al.(34) reported that in 47 of 56 patients (84%), the maximum 
intermarker distance variation was at least 2 mm, and the percentage for 3, 4, 5 mm variation 
were 41%, 18%, and 9%, respectively. They also reported that the maximum standard deviation 
of the intermarker distance was 4.2 mm and the maximum observed variation was 10.2 mm. 
The infrequent yet potential marker migrations may have more profound effect on the resulted 
rotations than translations.(18) 

By examining the intermarker distance variation of fractions with detected rotations greater 
than 10°, we observed the maximum variation of the Calypso transponders exceeded 2 mm 
in two patients. Studies have shown that the migration of Calypso transponders is within the 
similar range of gold markers routinely implanted for prostate treatment.(36) When large inter-
marker distance variations (up to a few millimeters) occurred, either substantial marker migra-
tion or significant organ deformation was indicated.(31,34) In these cases, the rotations detected 
by marker registration may not truly represent the actual organ displacement. Our simulation 
experiment reported up to 6° of rotation variation resulted from 2 mm marker migration/false 
identification, indicating that a small migration of the implanted markers or a small localization 
error in marker positions may result in a large degree of rotation. Such uncertainties in rotation 
detection will further hamper the accuracy of rotation correction. On the other hand, marker 
migrations and false identification will have less influence on the accuracy of the translational 
shifts. Using translational shifts to compensate for rotational error of the prostate is a safe strat-
egy which will not be affected substantially by the potential marker migration or localization 
errors of the marker positions. 

Mutanga et al.(37) found the benefit of rotation corrections was insignificant for systematic 
error around the LR axis of 4.3° and random error of 4.5° for patients receiving treatment to 
the prostate only. With 3 mm uniform planning margin, they reported the average increase in 
population   with rotation corrections was only 0.3 ± 0.8 Gy. However, Lips et al.(19) observed 
patients with large rotations had considerable dose reduction in the CTV in a study with plan-
ning margins of 2, 4, 6, and 8 mm. It was concluded that without correcting the rotation errors, 
online translational correction produced little improvement compared with off-line verification 
for complex prostate IMRT plans. A study by Li et al.(30) also shown that the dosimetric impact 
of prostate rotation was more significant than the impact of translational shifts in intrafractional 
motion. They concluded that the treatment margin can be reduced substantially if the residual 
rotational errors can be managed within 1° in any direction. In our study, we found that correct-
ing rotation errors becomes more important when a smaller planning margin is used to reduce 
normal tissue toxicity, as well as for patients with greater distances between the centroid of 
the markers and the rotation center, and patients with large rotation angles. For example, for 
patients with distances 7.3 cm and 3.5 cm, the daily D99 of the prostate was 1.82 Gy (90.9% 
of the planned dose) and 1.91 Gy (95.3% of the planned dose), respectively, for the ROT_NC 
method when the rotation was about 4° for both cases. As the planning margin decreased from 
6 mm/4 mm to 4 mm/2 mm, and further to 2 mm/0 mm posterior, the improvement of D99 of 
the prostate with translational correction increased from 4.4% to 6.9%, and further to 8.3% 
(Table 3). Such improvement in D99 is even greater for patients exhibiting large rotations. For 
example, for a selected patient with rotations of 8.8° ± 2.9°, 2.0° ± 1.7°, and 2.3° ± 1.5° around 
the LR, AP, and SI axes, for planning margins of 6 mm/4 mm, 4 mm/2 mm, and 2 mm/0 mm 
posterior, the translational correction method improved D99 of the prostate by 15.3%, 21.4%, 
and 25.9%, respectively. 

It should be noted that, in this study, we only investigated the rotations from the prostate 
motion alone. We did not specifically examine the movement of the seminal vesicles because 
fiducial markers were not routinely implanted in the seminal vesicles to monitor the organ 
motion. However, the dosimetric impact of rotation errors on seminal vesicles is worthy 
of further investigation, since it is known that the seminal vesicles move even more than 
 the prostate.(38)
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V. concLuSIonS

This study indicates that the rotation of the prostate resulting from marker registration may be 
substantial. Without correcting the rotation error, inadequate dosimetric coverage to the prostate 
may result, especially when the rotations are large. Purposely placing the isocenter, which is 
presumed to be the rotation center of the image registration method, close to the centroid of 
the implanted markers can minimize the potential rotation error when an automatic marker 
registration method is applied without a six-degree couch. Otherwise, manually registering the 
implanted markers with translational shifts, which partially compensates rotations, is recom-
mended, especially when the magnitude of the rotation is large.
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